! source file: /Users/jfidler/work/UVic_ESCM/2.9/source/embm/insolation.F subroutine zenith (points, t, dt, daylen, lat, lon, sindec, cosz) !----------------------------------------------------------------------- ! Calculate the cosine of the average zenith angle over a time period !----------------------------------------------------------------------- implicit none ! points = number of points ! t = start time (sec from GMT) ! dt = time step (forced to be between 1 msec and 1 day - 1 msec) ! daylen = day length (sec) ! lat = latitude (degrees) ! lon = longitude (degrees) ! sindec = sine of solar declination ! cosz = mean cosine of solar zenith angle integer, intent(in) :: points real, intent(in) :: t, dt, daylen real, intent(in) :: lat(points), lon(points) real, intent(in) :: sindec real, intent(out) :: cosz(points) ! sinlat = sine of latitude ! sinsin = product of the sines of solar declination and of latitude. ! coscos = product of the cosines of solar declination and of latitude. ! hld = half length of the day in radians ! coshld = cosine of hld ! hat = local hour angle at the start time. ! omegab = hour angle at beginning of timestep (radians from sunrise) ! omegae = hour angle at end of timestep (radians from sunrise) ! omegae = hour angle of end of sunset (radians from sunrise) ! omega1 = hour angle at beginning of integration (radians from sunrise) ! omega2 = hour angle at end of integration (radians from sunrise) ! omegas = hour angle at sunset (radians from sunrise) ! difsin = an intermediate difference of sines ! diftim = an intermediate difference of times ! trad = start time (radians after midday GMT) ! dtrad = timestep (radians after midday GMT) ! pi = pi ! twopi = 2*pi ! rtwopi = reciprocal of 2*pi ! secrad = seconds to radians converter ! degrad = degrees to radians converter ! msec = seconds in a msec (used to restrict the range of dt) integer j real (kind=8) sinlat, sinsin, coscos, hld, coshld, hat real (kind=8) omegab, omegae, omega1, omega2, omegas real (kind=8) difsin, diftim, trad, dtrad real (kind=8) pi, twopi, rtwopi, secrad, degrad, msec parameter (msec=0.001) pi = 4.0*atan(1.0) twopi = 2.0*pi rtwopi = 0.5/pi secrad = twopi/daylen degrad = pi/180. trad = t*secrad - pi dtrad = dt dtrad = max(msec,min(daylen-msec,dtrad))*secrad do j=1,points sinlat = sin(lat(j)*degrad) sinsin = sindec*sinlat coscos = sqrt((1. - sindec**2)*(1. - sinlat**2)) coshld = sinsin/(coscos + 1.e-20) if (coshld .lt. -1.) then ! perpetual night (all longitudes) cosz(j) = 0. elseif (coshld .gt. 1.) then ! perpetual day (all longitudes) hat = lon(j)*degrad + trad cosz(j) = (sin(hat + dtrad) - sin(hat))*coscos/dtrad + sinsin else ! day and night (for at least some longitudes) hat = lon(j)*degrad + trad hld = acos(-coshld) omegab = hat + hld ! times relative to sunrise but they must be kept in the range ! 0 to 2pi for the tests on their orders to work if (omegab.lt.0.) omegab = omegab + twopi if (omegab.ge.twopi) omegab = omegab - twopi if (omegab.ge.twopi) omegab = omegab - twopi omegae = omegab + dtrad if (omegae.gt.twopi) omegae = omegae - twopi omegas = 2.*hld if (omegab .le. omegas .or. omegab .lt. omegae) then omega1 = omegab - hld else omega1 = - hld endif if (omegae .le. omegas) then omega2 = omegae - hld else omega2 = omegas - hld endif ! case were the sun is not up during the timestep if (omegae.gt.omegab .and. omegab.gt.omegas) omega2 = omega1 difsin = sin(omega2) - sin(omega1) diftim = omega2 - omega1 if (diftim .lt. 0.) then ! case where the sun sets and then rises again within the ! timestep so the original integration is backward. difsin = difsin + 2.*sqrt(1.-coshld**2) diftim = diftim + 2.*hld endif if (diftim .eq. 0.) then cosz(j) = 0. else cosz(j) = (difsin*coscos/diftim + sinsin)*(diftim/dtrad) endif endif enddo return end subroutine decl (day, eccen, obliq, mvelp, lambm0, sindec, eccf) !----------------------------------------------------------------------- ! Compute earth/orbit parameters using Berger, Andre. 1978 ! "A Simple Algorithm to Compute Long-Term Variations of Daily ! Insolation". Contribution 18, Institute of Astronomy and Geophysics, ! Universite Catholique de Louvain, Louvain-la-Neuve, Belgium !----------------------------------------------------------------------- implicit none ! day = Calendar day, including fraction ! eccen = orbital eccentricity ! obliq = obliquity (degrees) ! mvelp = moving vernal equinox longitude of perihelion (degrees) ! lambm0 = Mean long of perihelion at vernal equinox (radians) ! sindec = sine of solar declination angle in rad ! eccf = Earth-sun distance factor (ie. (1/r)**2) real, intent(in) :: day real, intent(in) :: eccen, obliq, mvelp, lambm0 real, intent(out) :: sindec, eccf ! lambm = Lambda m, mean long of perihelion (rad) ! lmm = Intermediate argument involving lambm ! lamb = Lambda, the earths long of perihelion ! invrho = Inverse normalized sun/earth distance ! sinl = Sine of lmm ! dayspy = days per year ! ve = day of vernal equinox assumes Jan 1 = day 1 ! pi = pi ! degrad = degree to radian converter ! obliqr = Earths obliquity (radians) ! mvelpp = moving vernal equinox long of perihelion plus pi (radians) real (kind=8) lambm, lmm, lamb, invrho, sinl, dayspy, ve real (kind=8) pi, degrad, obliqr, mvelpp ! parameter (dayspy=365.0, ve=80.5) ! to reproduce berger you need the following parameter settings: parameter (dayspy=365.25, ve=80.) pi = 4.*atan(1.) degrad = pi/180. obliqr = obliq*degrad mvelpp = (mvelp + 180.)*degrad ! Compute eccentricity factor and solar declination using ! day value where a round day (such as 213.0) refers to 0z at ! Greenwich longitude. ! Use formulae from Berger, Andre 1978: Long-Term Variations of Daily ! Insolation and Quaternary Climatic Changes. J. of the Atmo. Sci. ! 35:2362-2367. ! To get the earths true longitude (position in orbit; lambda in Berger ! 1978) which is necessary to find the eccentricity factor and ! declination, must first calculate the mean longitude (lambda m in ! Berger 1978) at the present day. This is done by adding to lambm0 ! (the mean longitude at the vernal equinox, set as March 21 at noon, ! when lambda=0; in radians) an increment (delta lambda m in Berger ! 1978) that is the number of days past or before (a negative increment) ! the vernal equinox divided by the days in a model year times the 2*pi ! radians in a complete orbit. lambm = lambm0 + (day - ve)*2.*pi/dayspy lmm = lambm - mvelpp ! The earths true longitude, in radians, is then found from ! the formula in Berger 1978: sinl = sin(lmm) lamb = lambm + eccen*(2.*sinl + eccen*(1.25*sin(2.*lmm) & + eccen*((13.0/12.0)*sin(3.*lmm) - 0.25*sinl))) ! Using the obliquity, eccentricity, moving vernal equinox longitude of ! perihelion (plus), and earths true longitude, the declination (delta) ! and the normalized earth/sun distance (rho in Berger 1978; actually ! inverse rho will be used), and thus the eccentricity factor (eccf), ! can be calculated from formulae given in Berger 1978. invrho = (1. + eccen*cos(lamb - mvelpp)) / (1. - eccen*eccen) ! Set solar declination and eccentricity factor ! delta = asin(sin(obliqr)*sin(lamb)) sindec = sin(obliqr)*sin(lamb) eccf = invrho*invrho return end subroutine orbit (year, eccen, obliq, mvelp, lambm0) !----------------------------------------------------------------------- ! Calculate earths orbital parameters using Berger, Andre. 1978 ! "A Simple Algorithm to Compute Long-Term Variations of Daily ! Insolation". Contribution 18, Institute of Astronomy and Geophysics, ! Universite Catholique de Louvain, Louvain-la-Neuve, Belgium !----------------------------------------------------------------------- implicit none ! year = calender year of orbit (-ve => B.C. +ve => A.D.) ! eccen = orbital eccentricity ! obliq = obliquity in degrees ! mvelp = moving vernal equinox longitude ! lambm0 = Mean long of perihelion at vernal equinox (radians) real, intent(in) :: year real, intent(inout) :: eccen, obliq, mvelp real, intent(out) :: lambm0 ! obamp = amplitudes for obliquity cos series (arc seconds) ! obrate = rates for obliquity cosine series (arc seconds/year) ! obphas = phases for obliquity cosine series (degrees) real (kind=8) obamp(47), obrate(47), obphas(47) data obamp(1:3) /-2462.2214466, -857.3232075, -629.3231835/ data obamp(4:6) / -414.2804924, -311.7632587, 308.9408604/ data obamp(7:9) / -162.5533601, -116.1077911, 101.1189923/ data obamp(10:12) / -67.6856209, 24.9079067, 22.5811241/ data obamp(13:15) / -21.1648355, -15.6549876, 15.3936813/ data obamp(16:18) / 14.6660938, -11.7273029, 10.2742696/ data obamp(19:21) / 6.4914588, 5.8539148, -5.4872205/ data obamp(22:24) / -5.4290191, 5.1609570, 5.0786314/ data obamp(25:27) / -4.0735782, 3.7227167, 3.3971932/ data obamp(28:30) / -2.8347004, -2.6550721, -2.5717867/ data obamp(31:33) / -2.4712188, 2.4625410, 2.2464112/ data obamp(34:36) / -2.0755511, -1.9713669, -1.8813061/ data obamp(37:39) / -1.8468785, 1.8186742, 1.7601888/ data obamp(40:42) / -1.5428851, 1.4738838, -1.4593669/ data obamp(43:45) / 1.4192259, -1.1818980, 1.1756474/ data obamp(46:47) / -1.1316126, 1.0896928/ data obrate(1:3) / 31.609974, 32.620504, 24.172203/ data obrate(4:6) / 31.983787, 44.828336, 30.973257/ data obrate(7:9) / 43.668246, 32.246691, 30.599444/ data obrate(10:12) / 42.681324, 43.836462, 47.439436/ data obrate(13:15) / 63.219948, 64.230478, 1.010530/ data obrate(16:18) / 7.437771, 55.782177, 0.373813/ data obrate(19:21) / 13.218362, 62.583231, 63.593761/ data obrate(22:24) / 76.438310, 45.815258, 8.448301/ data obrate(25:27) / 56.792707, 49.747842, 12.058272/ data obrate(28:30) / 75.278220, 65.241008, 64.604291/ data obrate(31:33) / 1.647247, 7.811584, 12.207832/ data obrate(34:36) / 63.856665, 56.155990, 77.448840/ data obrate(37:39) / 6.801054, 62.209418, 20.656133/ data obrate(40:42) / 48.344406, 55.145460, 69.000539/ data obrate(43:45) / 11.071350, 74.291298, 11.047742/ data obrate(46:47) / 0.636717, 12.844549/ data obphas(1:3) / 251.9025, 280.8325, 128.3057/ data obphas(4:6) / 292.7252, 15.3747, 263.7951/ data obphas(7:9) / 308.4258, 240.0099, 222.9725/ data obphas(10:12) / 268.7809, 316.7998, 319.6024/ data obphas(13:15) / 143.8050, 172.7351, 28.9300/ data obphas(16:18) / 123.5968, 20.2082, 40.8226/ data obphas(19:21) / 123.4722, 155.6977, 184.6277/ data obphas(22:24) / 267.2772, 55.0196, 152.5268/ data obphas(25:27) / 49.1382, 204.6609, 56.5233/ data obphas(28:30) / 200.3284, 201.6651, 213.5577/ data obphas(31:33) / 17.0374, 164.4194, 94.5422/ data obphas(34:36) / 131.9124, 61.0309, 296.2073/ data obphas(37:39) / 135.4894, 114.8750, 247.0691/ data obphas(40:42) / 256.6114, 32.1008, 143.6804/ data obphas(43:45) / 16.8784, 160.6835, 27.5932/ data obphas(46:47) / 348.1074, 82.6496/ ! ecamp = ampl for eccen/fvelp cos/sin series (arc seconds) ! ecrate = rates for eccen/fvelp cos/sin series (arc seconds/year) ! ecphas = phases for eccen/fvelp cos/sin series (degrees) real (kind=8) ecamp(19), ecrate(19), ecphas(19) data ecamp(1:3) / 0.01860798, 0.01627522, -0.01300660/ data ecamp(4:6) / 0.00988829, -0.00336700, 0.00333077/ data ecamp(7:9) / -0.00235400, 0.00140015, 0.00100700/ data ecamp(10:12) / 0.00085700, 0.00064990, 0.00059900/ data ecamp(13:15) / 0.00037800, -0.00033700, 0.00027600/ data ecamp(16:18) / 0.00018200, -0.00017400, -0.00012400/ data ecamp(19) / 0.00001250/ data ecrate(1:3) / 4.2072050, 7.3460910, 17.8572630/ data ecrate(4:6) / 17.2205460, 16.8467330, 5.1990790/ data ecrate(7:9) / 18.2310760, 26.2167580, 6.3591690/ data ecrate(10:12) / 16.2100160, 3.0651810, 16.5838290/ data ecrate(13:15) / 18.4939800, 6.1909530, 18.8677930/ data ecrate(16:18) / 17.4255670, 6.1860010, 18.4174410/ data ecrate(19) / 0.6678630/ data ecphas(1:3) / 28.620089, 193.788772, 308.307024/ data ecphas(4:6) / 320.199637, 279.376984, 87.195000/ data ecphas(7:9) / 349.129677, 128.443387, 154.143880/ data ecphas(10:12) / 291.269597, 114.860583, 332.092251/ data ecphas(13:15) / 296.414411, 145.769910, 337.237063/ data ecphas(16:18) / 152.092288, 126.839891, 210.667199/ data ecphas(19) / 72.108838/ ! mvamp = amplitudes for mvelp sine series (arc seconds) ! mvrate = rates for mvelp sine series (arc seconds/year) ! mvphas = phases for mvelp sine series (degrees) real (kind=8) mvamp(78), mvrate(78), mvphas(78) data mvamp(1:3) / 7391.0225890, 2555.1526947, 2022.7629188/ data mvamp(4:6) /-1973.6517951, 1240.2321818, 953.8679112/ data mvamp(7:9) / -931.7537108, 872.3795383, 606.3544732/ data mvamp(10:12) / -496.0274038, 456.9608039, 346.9462320/ data mvamp(13:15) / -305.8412902, 249.6173246, -199.1027200/ data mvamp(16:18) / 191.0560889, -175.2936572, 165.9068833/ data mvamp(19:21) / 161.1285917, 139.7878093, -133.5228399/ data mvamp(22:24) / 117.0673811, 104.6907281, 95.3227476/ data mvamp(25:27) / 86.7824524, 86.0857729, 70.5893698/ data mvamp(28:30) / -69.9719343, -62.5817473, 61.5450059/ data mvamp(31:33) / -57.9364011, 57.1899832, -57.0236109/ data mvamp(34:36) / -54.2119253, 53.2834147, 52.1223575/ data mvamp(37:39) / -49.0059908, -48.3118757, -45.4191685/ data mvamp(40:42) / -42.2357920, -34.7971099, 34.4623613/ data mvamp(43:45) / -33.8356643, 33.6689362, -31.2521586/ data mvamp(46:48) / -30.8798701, 28.4640769, -27.1960802/ data mvamp(49:51) / 27.0860736, -26.3437456, 24.7253740/ data mvamp(52:54) / 24.6732126, 24.4272733, 24.0127327/ data mvamp(55:57) / 21.7150294, -21.5375347, 18.1148363/ data mvamp(58:60) / -16.9603104, -16.1765215, 15.5567653/ data mvamp(61:63) / 15.4846529, 15.2150632, 14.5047426/ data mvamp(64:66) / -14.3873316, 13.1351419, 12.8776311/ data mvamp(67:69) / 11.9867234, 11.9385578, 11.7030822/ data mvamp(70:72) / 11.6018181, -11.2617293, -10.4664199/ data mvamp(73:75) / 10.4333970, -10.2377466, 10.1934446/ data mvamp(76:78) / -10.1280191, 10.0289441, -10.0034259/ data mvrate(1:3) / 31.609974, 32.620504, 24.172203/ data mvrate(4:6) / 0.636717, 31.983787, 3.138886/ data mvrate(7:9) / 30.973257, 44.828336, 0.991874/ data mvrate(10:12) / 0.373813, 43.668246, 32.246691/ data mvrate(13:15) / 30.599444, 2.147012, 10.511172/ data mvrate(16:18) / 42.681324, 13.650058, 0.986922/ data mvrate(19:21) / 9.874455, 13.013341, 0.262904/ data mvrate(22:24) / 0.004952, 1.142024, 63.219948/ data mvrate(25:27) / 0.205021, 2.151964, 64.230478/ data mvrate(28:30) / 43.836462, 47.439436, 1.384343/ data mvrate(31:33) / 7.437771, 18.829299, 9.500642/ data mvrate(34:36) / 0.431696, 1.160090, 55.782177/ data mvrate(37:39) / 12.639528, 1.155138, 0.168216/ data mvrate(40:42) / 1.647247, 10.884985, 5.610937/ data mvrate(43:45) / 12.658184, 1.010530, 1.983748/ data mvrate(46:48) / 14.023871, 0.560178, 1.273434/ data mvrate(49:51) / 12.021467, 62.583231, 63.593761/ data mvrate(52:54) / 76.438310, 4.280910, 13.218362/ data mvrate(55:57) / 17.818769, 8.359495, 56.792707/ data mvrate(58:60) / 8.448301, 1.978796, 8.863925/ data mvrate(61:63) / 0.186365, 8.996212, 6.771027/ data mvrate(64:66) / 45.815258, 12.002811, 75.278220/ data mvrate(67:69) / 65.241008, 18.870667, 22.009553/ data mvrate(70:72) / 64.604291, 11.498094, 0.578834/ data mvrate(73:75) / 9.237738, 49.747842, 2.147012/ data mvrate(76:78) / 1.196895, 2.133898, 0.173168/ data mvphas(1:3) / 251.9025, 280.8325, 128.3057/ data mvphas(4:6) / 348.1074, 292.7252, 165.1686/ data mvphas(7:9) / 263.7951, 15.3747, 58.5749/ data mvphas(10:12) / 40.8226, 308.4258, 240.0099/ data mvphas(13:15) / 222.9725, 106.5937, 114.5182/ data mvphas(16:18) / 268.7809, 279.6869, 39.6448/ data mvphas(19:21) / 126.4108, 291.5795, 307.2848/ data mvphas(22:24) / 18.9300, 273.7596, 143.8050/ data mvphas(25:27) / 191.8927, 125.5237, 172.7351/ data mvphas(28:30) / 316.7998, 319.6024, 69.7526/ data mvphas(31:33) / 123.5968, 217.6432, 85.5882/ data mvphas(34:36) / 156.2147, 66.9489, 20.2082/ data mvphas(37:39) / 250.7568, 48.0188, 8.3739/ data mvphas(40:42) / 17.0374, 155.3409, 94.1709/ data mvphas(43:45) / 221.1120, 28.9300, 117.1498/ data mvphas(46:48) / 320.5095, 262.3602, 336.2148/ data mvphas(49:51) / 233.0046, 155.6977, 184.6277/ data mvphas(52:54) / 267.2772, 78.9281, 123.4722/ data mvphas(55:57) / 188.7132, 180.1364, 49.1382/ data mvphas(58:60) / 152.5268, 98.2198, 97.4808/ data mvphas(61:63) / 221.5376, 168.2438, 161.1199/ data mvphas(64:66) / 55.0196, 262.6495, 200.3284/ data mvphas(67:69) / 201.6651, 294.6547, 99.8233/ data mvphas(70:72) / 213.5577, 154.1631, 232.7153/ data mvphas(73:75) / 138.3034, 204.6609, 106.5938/ data mvphas(76:78) / 250.4676, 332.3345, 27.3039/ ! i = Index for series summations ! obsum = Obliquity series summation ! cossum = cos series summation for eccentricity/fvelp ! sinsum = Sin series summation for eccentricity/fvelp ! fvelp = Fixed vernal equinox long of perihelion ! mvsum = mvelp series summation ! beta = Intermediate argument for lambm0 ! ryear = year relative to 1950 (1950 = 0) ! eccen2 = eccentricity squared ! eccen3 = eccentricity cubed ! mvelpp = moving vernal equinox long of perihelion plus pi (radians) ! pi = pi ! psecdeg = arc sec to deg conversion ! degrad = degree to radian conversion factor integer i real (kind=8) obsum, cossum, sinsum, fvelp, mvsum, beta, ryear real (kind=8) eccen2, eccen3, mvelpp, pi, psecdeg, degrad pi = 4.*atan(1.) psecdeg = 1./3600. degrad = pi/180. ! The following calculates the earths obliquity, orbital eccentricity ! and vernal equinox mean longitude of perihelion using constants ! given in the program of: ! Berger, Andre. 1978 A Simple Algorithm to Compute Long-Term ! Variations of Daily Insolation. Contribution 18, Institute of ! Astronomy and Geophysics, Universite Catholique de Louvain, ! Louvain-la-Neuve, Belgium. ! and formulae given in the paper (where less precise constants are also ! given): ! Berger, Andre. 1978. Long-Term Variations of Daily Insolation and ! Quaternary Climatic Changes. J. of the Atmo. Sci. 35:2362-2367 ! The algorithm is valid only to 1,000,000 years past or hence. ! For a solution valid to 5-10 million years past see the above author. ! Algorithm below is better for years closer to present than is the ! 5-10 million year solution. ! In the summations below, cosine or sine arguments, which end up in ! degrees, must be converted to radians via multiplication by degrad. ! Summation of cosine series for obliquity (epsilon in Berger 1978) in ! degrees. Convert the amplitudes and rates, which are in arc secs, ! into degrees via multiplication by psecdeg (arc seconds to degrees ! conversion factor). For obliq, first term is Berger 1978 epsilon ! star; second term is series summation in degrees. ryear = year - 1950. if ( abs(ryear) .gt. 1000000.0 )then print*, 'Error ==> orbit only valid for ryear+-1000000' stop endif obsum = 0.0 do i=1,47 obsum = obsum + obamp(i)*psecdeg*cos((obrate(i)*psecdeg*ryear & + obphas(i))*degrad) enddo obliq = 23.320556 + obsum ! Summation of cosine and sine series for computation of eccentricity ! (eccen; e in Berger 1978) and fixed vernal equinox longitude of ! perihelion (fvelp; pi in Berger 1978), which is used for computation ! of moving vernal equinox longitude of perihelion. Convert the rates, ! which are in arc seconds, into degrees via multiplication by psecdeg. cossum = 0.0 do i=1,19 cossum = cossum + ecamp(i)*cos((ecrate(i)*psecdeg*ryear & + ecphas(i))*degrad) enddo sinsum = 0.0 do i=1,19 sinsum = sinsum+ecamp(i)*sin((ecrate(i)*psecdeg*ryear & + ecphas(i))*degrad) enddo ! Use summations to calculate eccentricity eccen2 = cossum*cossum + sinsum*sinsum eccen = sqrt(eccen2) eccen3 = eccen2*eccen ! A series of cases for fvelp, which is in radians. if (abs(cossum) .le. 1.0e-8) then if (sinsum .eq. 0.0) then fvelp = 0.0 elseif (sinsum .lt. 0.0) then fvelp = 1.5*pi elseif (sinsum .gt. 0.0) then fvelp = .5*pi endif elseif (cossum .lt. 0.0) then fvelp = atan(sinsum/cossum) + pi elseif (cossum .gt. 0.0) then if (sinsum .lt. 0.0) then fvelp = atan(sinsum/cossum) + 2.*pi else fvelp = atan(sinsum/cossum) endif endif ! Summation of sin series for computation of moving vernal equinox long ! of perihelion (mvelp; omega bar in Berger 1978) in degrees. For ! mvelp, first term is fvelp in degrees; second term is Berger 1978 psi ! bar times years and in degrees; third term is Berger 1978 zeta; fourth ! term is series summation in degrees. Convert the amplitudes and ! rates, which are in arc seconds, into degrees via multiplication by ! psecdeg. Series summation plus second and third terms constitute ! Berger 1978 psi, which is the general precession. mvsum = 0.0 do i=1,78 mvsum = mvsum + mvamp(i)*psecdeg*sin((mvrate(i)*psecdeg*ryear & + mvphas(i))*degrad) enddo mvelp = fvelp/degrad + 50.439273*psecdeg*ryear + 3.392506 + mvsum ! Cases to make sure mvelp is between 0 and 360. do while (mvelp .lt. 0.0) mvelp = mvelp + 360.0 enddo do while (mvelp .ge. 360.0) mvelp = mvelp - 360.0 enddo ! 180 degrees must be added to mvelp since observations are made from ! the earth and the sun is considered (wrongly for the algorithm) to go ! around the earth. For a more graphic explanation see Appendix B in: ! A. Berger, M. Loutre and C. Tricot. 1993. Insolation and Earth ! Orbital Periods. J. of Geophysical Research 98:10,341-10,362. ! So mvelp becomes mvelpp (mvelp plus pi) mvelpp = (mvelp + 180.)*degrad ! Set up an argument used several times in lambm0 calculation ahead. beta = sqrt(1. - eccen2) ! The mean longitude at the vernal equinox (lambda m nought in Berger ! 1978; in radians) is calculated from the following formula given in ! Berger 1978. At the vernal equinox the true longitude (lambda in ! Berger 1978) is 0. lambm0 = 2.*((.5*eccen + .125*eccen3)*(1. + beta)*sin(mvelpp) & - .250*eccen2*(.5 + beta)*sin(2.*mvelpp) & + .125*eccen3*(1./3. + beta)*sin(3.*mvelpp)) return end