!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! !! !! GNU General Public License !! !! !! !! This file is part of the Flexible Modeling System (FMS). !! !! !! !! FMS is free software; you can redistribute it and/or modify !! !! it and are expected to follow the terms of the GNU General Public !! !! License as published by the Free Software Foundation. !! !! !! !! FMS is distributed in the hope that it will be useful, !! !! but WITHOUT ANY WARRANTY; without even the implied warranty of !! !! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !! !! GNU General Public License for more details. !! !! !! !! You should have received a copy of the GNU General Public License !! !! along with FMS; if not, write to: !! !! Free Software Foundation, Inc. !! !! 59 Temple Place, Suite 330 !! !! Boston, MA 02111-1307 USA !! !! or see: !! !! http://www.gnu.org/licenses/gpl.txt !! !! !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! module bm_omp_mod !---------------------------------------------------------------------- use fms_mod, only: file_exist, open_namelist_file, check_nml_error, & error_mesg, FATAL, mpp_pe, mpp_root_pe, & close_file, write_version_number, stdlog use sat_vapor_pres_mod, only: escomp, descomp use constants_mod, only: HLv,HLs,Cp_air,Grav,rdgas,rvgas, cp_vapor, & kappa implicit none private !----------------------------------------------------------------------- ! ---- public interfaces ---- public bm_omp, bm_omp_init, bm_omp_end !----------------------------------------------------------------------- ! ---- version number ---- character(len=128) :: version = '$Id: bm_omp.F90,v 17.0.2.1 2009/07/24 21:50:23 wfc Exp $' character(len=128) :: tagname = '$Name: mom4p1_pubrel_dec2009_nnz $' !----------------------------------------------------------------------- ! ---- local/private data ---- real, parameter :: d622 = rdgas/rvgas real, parameter :: d378 = 1.-d622 logical :: module_is_initialized =.false. !----------------------------------------------------------------------- ! --- namelist ---- real :: tau_bm=7200. real :: rhbm = .8 real :: revap = 1.0 logical :: do_shallower = .false. logical :: do_changeqref = .false. namelist /bm_omp_nml/ tau_bm, rhbm, do_shallower, do_changeqref, revap !----------------------------------------------------------------------- ! description of namelist variables ! ! tau_bm = betts-miller relaxation timescale (seconds) ! rhbm = relative humidity that you're relaxing towards ! In contrast to standard BM, this can be put as high as 100% ! as long as the convection scheme is not overwhelmd by ! the large-scale condensation. ! ! not used: ! ! ! do_shallower = do the shallow convection scheme where it chooses a smaller ! depth such that precipitation is zero ! ! do_changeqref = do the shallow convection scheme where if changes the ! profile of both q and T in order make precip zero ! !----------------------------------------------------------------------- contains !####################################################################### subroutine bm_omp (dt, tin, qin, pfull, phalf, coldT, & rain, snow, tdel, qdel, q_ref, bmflag, & klzbs, t_ref, & mask, conv) !----------------------------------------------------------------------- ! ! Betts-Miller Convection Scheme ! !----------------------------------------------------------------------- ! ! input: dt time step in seconds ! tin temperature at full model levels ! qin specific humidity of water vapor at full ! model levels ! pfull pressure at full model levels ! phalf pressure at half (interface) model levels ! coldT should precipitation be snow at this point? ! optional: ! mask optional mask (0 or 1.) ! conv logical flag; if true then no betts-miller ! adjustment is performed at that grid-point or ! model level ! ! output: rain liquid precipitation (kg/m2) ! snow frozen precipitation (kg/m2) ! tdel temperature tendency at full model levels ! qdel specific humidity tendency (of water vapor) at ! full model levels ! bmflag flag for which routines you're calling ! klzbs stored klzb values ! !----------------------------------------------------------------------- !--------------------- interface arguments ----------------------------- real , intent(in) , dimension(:,:,:) :: tin, qin, pfull, phalf real , intent(in) :: dt logical , intent(in) , dimension(:,:):: coldT real , intent(out), dimension(:,:) :: rain,snow, bmflag, klzbs real , intent(out), dimension(:,:,:) :: tdel, qdel, q_ref, t_ref real , intent(in) , dimension(:,:,:), optional :: mask logical, intent(in) , dimension(:,:,:), optional :: conv !----------------------------------------------------------------------- !---------------------- local data ------------------------------------- logical,dimension(size(tin,1),size(tin,2),size(tin,3)) :: do_adjust logical :: avgbl real,dimension(size(tin,1),size(tin,2),size(tin,3)) :: & rin, esat, qsat, desat, dqsat, pmes, pmass real,dimension(size(tin,1),size(tin,2)) :: & hlcp, precip, cape, cin real,dimension(size(tin,3)) :: eref, rpc, tpc real :: & cape1, cin1, tot, deltak, deltaq, qrefint, deltaqfrac, deltaqfrac2, & ptopfrac, revap_eff integer i, j, k, ix, jx, kx, klzb, ktop, klcl, k_950 !modif omp: real :: q_src_up, ratio, q_src, ratio_q, ratio_T, en_acc, m_en, ratio_ml real :: rs, es real,dimension(size(tin,3)) :: gz, q_sat, q_adj !----------------------------------------------------------------------- ! computation of precipitation with a betts-miller-like scheme ! ! (Olivier Pauluis / Dargan Frierson 2003-2004) ! ! In this convection scheme, the atmosphere is separated between ! a boundary layer and the free troposphere above. The boundary ! layer is taken here to be fixed by the liftiing condensation ! level. First, a moist adiabat is computed for an air parcel ! originating near the surface. Temperature above the LCL are ! relaxed toward this moist adiabat, while the BL supply the ! moisture. Humidity tendency above the LC are obtained by ! precribing the reevaporation rate. ! !----------------------------------------------------------------------- if (.not. module_is_initialized) call error_mesg ('bm_omp', & 'bm_omp_init has not been called.', FATAL) ix=size(tin,1) jx=size(tin,2) kx=size(tin,3) avgbl = .false. !----- compute proper latent heat -------------------------------------- ! ! omp: at this stage,uses only the latent heat of vaporization. ! --- this is used only by the energy budget. The lapse rate ! has its own value. (This should be made consistent.) ! WHERE (coldT) ! hlcp = HLs/Cp_air ! ELSEWHERE hlcp = HLv/Cp_air ! END WHERE !------------------- calculate CAPE and CIN ---------------------------- ! calculate r rin = qin/(1.0 - qin) do i=1,ix do j=1,jx cape1 = 0. cin1 = 0. tot = 0. klzb=0 klcl = 0 bmflag(i,j) = 0. ! the bmflag is written out to show what aspects of the bm scheme is called ! bmflag = 0 is no cape, no convection ! bmflag = 1 cape but no precip: nothing happens ! bmflag = 2 is deep convection tpc = tin(i,j,:) rpc = rin(i,j,:) ! calculate cape, cin, level of zero buoyancy, and parcel properties w/ leo's ! code ! call capecalc( Cp_air, cp_vapor, d622, kx, pfull(i,j,:),& ! rin(i,j,:), rdgas, hlv, rvgas, tin(i,j,:),& ! cape1, cin1, tot, tpc, rpc, klcl, klzb) call capecalcnew( kx, pfull(i,j,:), phalf(i,j,:),& Cp_air, rdgas, rvgas, hlv, kappa, tin(i,j,:), & rin(i,j,:), avgbl, cape1, cin1, tpc, & rpc, klzb,klcl) ! set values for storage cape(i,j) = cape1 cin(i,j) = cin1 klzbs(i,j) = klzb if(cape1.gt.0.) then ! if( (tot .gt. 0.) .and. (cape1.gt.0.) ) then bmflag(i,j) = 1. ! reference temperature is just that of the parcel all the way up t_ref(i,j,:) = tpc do k=klzb,kx q_ref(i,j,k) = rpc(k)/(1. + rpc(k)) end do ! set the tendencies to zero where you don't adjust ! set the reference profiles to be the original profiles (for diagnostic ! purposes only -- you can think of this as what you're relaxing to in ! areas above the actual convection do k=1,max(klzb-1,1) qdel(i,j,k) = 0.0 tdel(i,j,k) = 0.0 q_ref(i,j,k) = qin(i,j,k) t_ref(i,j,k) = tin(i,j,k) end do ! initialize p to zero for the loop !modif omp: my way... ! check on the LCL. if LCL is less than 50mb above the surface, ! the 'lcl' is put at the first ! level above 950mb (required for adjustment near surface) ! (adjustment dries out ML if lcl too low). if (phalf(i,j,kx+1) -phalf(i,j,klcl+1) .LT. 5000) then do k = kx-1,1,-1 if (phalf(i,j,kx+1) -phalf(i,j,k+1) .GT. 5000) then klcl = k go to 11 end if end do end if ! alternatively, just ensure that there is one layer where convection occurs. !if (klcl .eq. kx ) then ! klcl = kx -1 !end if 11 continue precip(i,j) = 0.0 q_src_up = 0.0 en_acc = 0.0 q_src = 0.0 !adjustement above PBL. 1st compute difference between the ! profile and computed tendecies ! T adjusted toward pseudo-adiabat ! qv adjusted to reference profile multiplied by prescribed relative humidity do k=klzb, klcl tdel(i,j,k) = - (tin(i,j,k) - t_ref(i,j,k)) qdel(i,j,k) = - (qin(i,j,k) - rhbm * q_ref(i,j,k)) precip(i,j) = precip(i,j) + tdel(i,j,k)*(phalf(i,j,k+1) - & phalf(i,j,k))/grav/hlcp(i,j) !note omp: I change the sign when I changed prec_rev into prec_src! q_src_up = q_src_up - qdel(i,j,k)*(phalf(i,j,k+1) - & phalf(i,j,k))/grav end do do k = klcl + 1, kx !no temperature change in the ML tdel(i,j,k) = 0.0 ! alternatively: ! relax the ML temp. toward the pseudo-adiabat ! tdel(i,j,k) = - (tin(i,j,k) - t_ref(i,j,k)) precip(i,j) = precip(i,j) + tdel(i,j,k)*(phalf(i,j,k+1) - & phalf(i,j,k))/grav/hlcp(i,j) end do ! at this point: precip = total amount of precip required to brin the temperature to moist adiabat. ! q_src_up = total water excess (respectively to moist adiabat) ! >0 : there will be a net drying of the free troposphere ! <0 : " " moistening " " ! humidity adjustment in the ML ! modif df/omp: changed from earlier version. en_acc = precip(i,j) * grav / & (phalf(i,j,kx+1) - phalf(i,j,klcl+1)) ! en_acc is the change in specific humidity in the BL required to ! to bring the free troposphere to the current adiabat. ! adjustment in the pbl do k = klcl + 1, kx qdel(i,j,k) = -min(qin(i,j,k), en_acc) q_src = q_src - qdel(i,j,k)*(phalf(i,j,k+1) - & phalf(i,j,k))/grav end do ! Determine the adjustment time-scale if (precip(i,j) .gt. 0.0) then ! note: if cape is computed correctly, precip should always be positive at this point. ! If precip > 0, then correct energy. bmflag(i,j) = 2. ratio = min(dt / tau_bm, 1.0) ! modif df: due to the modification above, it's impossible for this to be negative. ! therefore everything is commented out. in case someone wants to use ! this however, I put in the proper correction into the ratio_q line ! (the added minus sign, which keeps the timescale positive in this case), ! so this will conserve energy if you uncomment all the rele,vant lines. ! note omp: q_src should always be positive at this point. ! Adjust T and q, and conserve energy by draining the boundary layer by the ! required amount. if (q_src_up.gt.0.0) then ! upper troposphere is getting dryer if ( (q_src + q_src_up) .gt. precip(i,j)) then ! adjustment limited by temperature ratio_T = ratio ratio_q = (ratio * precip(i,j)) / (q_src + q_src_up) ratio_ML = ratio_q else ! adjustment limited by water supply ratio_q = ratio ratio_ML = ratio ratio_T = ratio * (q_src + q_src_up)/precip(i,j) end if else ! upper troposphere is getting more humid revap_eff = min(revap, -q_src_up/precip(i,j)) if (q_src .gt. (precip(i,j) * (1+revap_eff))) then ratio_T = ratio ratio_ML = ratio * precip(i,j) * (1+revap_eff) / q_src ratio_q = (ratio_T * precip(i,j) - ratio_ML * q_src )/ (q_src_up) else ratio_ML = ratio ratio_T = ratio *q_src / ( precip(i,j) * (1+revap_eff)) ratio_q = (ratio_T * precip(i,j) - ratio_ML * q_src )/ (q_src_up) end if end if !adjust the tendencies do k = klzb,klcl qdel(i,j,k)= qdel(i,j,k) * ratio_q tdel(i,j,k)= tdel(i,j,k) * ratio_T end do do k = klcl+1,kx qdel(i,j,k)= qdel(i,j,k) * ratio_ML tdel(i,j,k)= tdel(i,j,k) * ratio_T end do precip(i,j) = precip(i,j) * ratio_T else ! write(*,*) 'warning: precip < 0 in bm_omp' ! write(*,*) 'this should not happen!!! i = ',i,'j=',j ! write(*,*) 'cape = ',cape(i,j),'precip(i,j)',precip(i,j) !omp: This is Dargan's and not used in my version (put do_shallower and !do change_qref as .false. ! Shallow / non-precipitating adjustment from dargan. It has not been tested ! with this version of the deep convection scehme. Use do_shallower = .false. ! and do_changeqref = .false. to turn off. In this case, no convection occurs ! when the computed precipitation is 0. ! If precip < 0, then do the shallow conv routine. ! First option: do_shallower = true ! This chooses the depth of convection based on choosing the height that ! it can make precip zero, i.e., subtract off heights until that precip ! becomes positive. if (do_shallower) then ! ktop is the new top of convection. set this initially to klzb. ktop = klzb ! Work your way down until precip is positive again. do while ( (precip(i,j).lt.0) .and. (ktop.le.kx) ) precip(i,j) = precip(i,j) - qdel(i,j,ktop)* & (phalf(i,j,ktop) - phalf(i,j,ktop+1))/grav ktop = ktop + 1 end do ! since there will be an overshoot (precip is going to be greater than zero ! once we finish this), the actual new top of convection is somewhere between ! the current ktop, and one level above this. set ktop to the level above. ktop = ktop - 1 ! Adjust the tendencies in the places above back to zero, and the reference ! profiles back to the original t,q. if (ktop.gt.klzb) then qdel(i,j,klzb:ktop-1) = 0. q_ref(i,j,klzb:ktop-1) = qin(i,j,klzb:ktop-1) tdel(i,j,klzb:ktop-1) = 0. t_ref(i,j,klzb:ktop-1) = tin(i,j,klzb:ktop-1) end if ! Then make the change only a fraction of the new top layer so the precip is ! identically zero. ! Calculate the fractional penetration of convection through that top layer. ! This is the amount necessary to make precip identically zero. ptopfrac = precip(i,j)/(qdel(i,j,ktop)* & (phalf(i,j,ktop+1) - phalf(i,j,ktop))) ! Reduce qdel in the top layer by this fraction. qdel(i,j,ktop) = ptopfrac*qdel(i,j,ktop) ! Set precip to zero precip(i,j) = 0. ! A diagnostic which allows calculating precip to make sure it's zero. do k=ktop,kx precip(i,j)=precip(i,j)+qdel(i,j,k)* & (phalf(i,j,k) - phalf(i,j,k+1))/grav end do if (abs(precip(i,j)).gt.1.e-5) & write(6,*) 'doh! precip.ne.0' ! Now change the reference temperature in such a way to make the net ! heating zero. deltak = 0. if (ktop.lt.kx) then ! Integrate temperature tendency up to 1 level below top. do k=ktop+1,kx deltak = deltak + tdel(i,j,k)* & (phalf(i,j,k) - phalf(i,j,k+1)) end do ! Then for the top level, use only a fraction. deltak = deltak + ptopfrac*tdel(i,j,ktop)* & (phalf(i,j,ktop) - phalf(i,j,ktop+1)) ! Normalize by the pressure difference. deltak = deltak/(phalf(i,j,kx+1) - & phalf(i,j,ktop+1) + ptopfrac*(phalf(i,j,ktop+1) - & phalf(i,j,ktop))) ! Subtract this value uniformly from tdel, and make the according change to ! t_ref. do k=ktop,kx tdel(i,j,k) = tdel(i,j,k) + deltak t_ref(i,j,k) = t_ref(i,j,k) + deltak*tau_bm/dt end do end if else if(do_changeqref) then ! Change the reference profile of q by a certain fraction so that precip is ! zero. This involves calculating the total integrated q_ref dp (this is the ! quantity intqref), as well as the necessary change in q_ref (this is the ! quantity deltaq). Then the fractional change in q_ref at each level (the ! quantity deltaqfrac) is 1-deltaq/intqref. (have to multiply q_ref by ! 1-deltaq/intqref at every level) Then the change in qdel is ! -deltaq/intqref*q_ref*dt/tau_bm. ! Change the reference profile of T by a uniform amount so that precip is zero. deltak = 0. deltaq = 0. qrefint = 0. do k=klzb,kx ! deltaq = a positive quantity (since int qdel is positive). It's how ! much q_ref must be changed by, in an integrated sense. The requisite ! change in qdel is this without the factors of tau_bm and dt. deltaq = deltaq - qdel(i,j,k)*tau_bm/dt* & (phalf(i,j,k) - phalf(i,j,k+1)) ! deltak = the amount tdel needs to be changed deltak = deltak + tdel(i,j,k)* & (phalf(i,j,k) - phalf(i,j,k+1)) ! qrefint = integrated value of qref qrefint = qrefint - q_ref(i,j,k)* & (phalf(i,j,k) - phalf(i,j,k+1)) end do ! Normalize deltak by total pressure. deltak = deltak /(phalf(i,j,kx+1) - phalf(i,j,klzb)) ! multiplying factor for q_ref is 1 + the ratio deltaqfrac = 1. - deltaq/qrefint ! multiplying factor for qdel adds dt/tau_bm deltaqfrac2 = - deltaq/qrefint*dt/tau_bm ! let's check that the precip really is zero as in the shallower scheme precip(i,j) = 0.0 do k=klzb,kx qdel(i,j,k) = qdel(i,j,k) + deltaqfrac2*q_ref(i,j,k) q_ref(i,j,k) = deltaqfrac*q_ref(i,j,k) tdel(i,j,k) = tdel(i,j,k) + deltak t_ref(i,j,k) = t_ref(i,j,k) + deltak*tau_bm/dt precip(i,j) = precip(i,j) + qdel(i,j,k)* & (phalf(i,j,k) - phalf(i,j,k+1))/grav end do if (abs(precip(i,j)).gt.1.e-5) & write(6,*) 'doh! precip.ne.0)' else precip(i,j) = 0. tdel(i,j,:) = 0. qdel(i,j,:) = 0. end if end if else tdel(i,j,:) = 0.0 qdel(i,j,:) = 0.0 precip(i,j) = 0.0 q_ref(i,j,:) = qin(i,j,:) t_ref(i,j,:) = tin(i,j,:) end if end do end do rain = precip snow = 0. end subroutine bm_omp !####################################################################### subroutine capecalc(cpd, cpv, epsilo, nlev, pback, rback, rd, rl, rv, & tback, xcape, cin, tot, tpcback, rpcback, & klclback, klzbback) ! ! modif omp: klcl is an additional output ! Calculates convective available potential energy for a cloud whose ! temperature follows a saturated adiabat. ! ! On Input ! ! cpd specific heat of dry air at constant pressure (J/(kg K)) ! cpv specific heat of water vapor ! epsilo ratio of molecular weights of water vapor to dry air ! nlev number of levels ! p pressure (Pa) ! Index 1 refers to level nearest earth's surface. ! r mixing ratio (kg(H2O)/kg) ! Index 1 refers to level nearest earth's surface. ! rd gas constant for dry air (J/(kg K)) ! rl latent heat of vaporization (J/kg) ! rv gas constant for water vapor (J/(kg K)) ! t temperature (K) ! Index 1 refers to level nearest earth's surface. ! ! Output: ! ! tpc parcel temperature (K) ! Set to environment below istart. ! Index 1 refers to level nearest earth's surface. ! rpc parcel mixing ratio (kg(H2O)/kg) ! Set to environment below istart. ! Index 1 refers to level nearest earth's surface. ! cin convective inhibition (J/kg) ! energy required to lift parcel from level istart to ! level of free convection ! xcape convective available potential energy (J/kg) ! energy released as parcel moves from level of free ! convection to level of zero buoyancy ! tot xcape+cin (J/kg) ! klcl first level above the LCL ! klzb the level where you hit LZB ! ! For definitions of cin and xcape, see notes (4 Apr 95) (LAN Notes). ! implicit none integer, intent(in) :: nlev REAL, INTENT (IN), DIMENSION(:) :: pback, tback, rback real, intent (in) :: cpd, cpv, epsilo, rd, rl, rv integer, intent(out) :: klzbback, klclback real, intent (out) :: xcape, cin, tot real, intent (out), dimension(nlev) :: tpcback, rpcback integer :: istart, ieq, klcl, k, klzb, klfc, ieqa, nlevm logical :: capepos real, dimension(nlev) :: p, r, t, tpc, rpc real :: ro, tc, tp, plcl, es, rs, rlcl, tlcl, pb, tb, rb, q, cp, dp, & dt1, plzb, qe, tve, pc, qs, tv, rc, fact1, fact2, fact3, & dtdp, rbc, rbe, qc, tvc, delt !modif omp real :: rsb, tplcl ! parameter(nlev=25,nlevm=nlev-1) ! dimension t(nlev),r(nlev),p(nlev) ! dimension tpc(nlev),rpc(nlev) ! logical capepos ! capepos=.false. nlevm = nlev-1 do k=1,nlev t(k) = tback(nlev+1-k) r(k) = rback(nlev+1-k) p(k) = pback(nlev+1-k) tpc(k) = t(k) rpc(k) = r(k) end do ! ! Calculate LCL ! istart-index of level whose mixing ratio is conserved as a parcel ! leaves it undergoing dry adiabatic ascent ! istart=1 ro=r(istart) tc=t(istart) tp=tc plcl=0. do k=1,istart tpc(k)=t(k) rpc(k)=r(k) end do do k=istart,nlev call establ(es,tp) rs=epsilo*es/(p(k)+(epsilo-1.)*es) ! write(6,*) 'k,tp,rs= ',k,tp,rs ieq=iequ(rs,ro) if (ieq .eq. 0) then plcl=p(k) rlcl=r(k) tlcl=t(k) klcl=k go to 11 end if if (k .eq. istart) then if (ieq .lt. 0) then plcl=p(istart) tlcl=t(istart) rlcl=r(istart) ! omp: try this before, did not change much. ! (The lowest level should not be supersaturated.) ! rlcl=rs klcl=istart go to 11 else go to 13 end if end if if (k .gt. 1) then pb=(p(k)+p(k-1))/2. tb=(t(k)+t(k-1))/2. rb=(r(k)+r(k-1))/2. if (rs .lt. ro) then fact1 = (ro - rs)/(rsb-rs) fact2 = (rsb - ro)/(rsb-rs) plcl=fact1* p(k-1) + fact2 * p(k) tlcl=fact1* t(k-1) + fact2 * t(k) rlcl=rb tplcl = fact1* tpc(k-1) + fact2 * tpc(k) klcl=k go to 11 end if end if if (k .eq. nlev) go to 11 ! Convert mixing ratio to specific humidity. ! 13 continue q=ro/(1.+ro) cp=cpd*(1.+((cpv/cpd)-1.)*q) dp=p(k+1)-p(k) dtdp=rd*tp/cp ! write(6,*) 'dp,dtdp,pb= ',dp,dtdp,pb dt1=dtdp*alog((p(k)+dp)/p(k)) tp=tp+dt1 tpc(k+1)=tp rpc(k+1)=ro rsb = rs end do 11 continue ieq=iequ(plcl,0.) if (ieq .eq. 0) then xcape = 0. cin = 0. tot = 0. tpcback = tback rpcback = rback ! write(6,*) 'plcl=0' call error_mesg ('bm_omp:capecalc', 'ieq = 0', FATAL) ! stop end if ! ! Calculate temperature along saturated adiabat, starting at p(kLCL). ! ! write(6,*) 'plcl,klcl,tlcl,rlcl= ',plcl,klcl,tlcl,rlcl ! write(6,*) 'p(klcl)= ',p(klcl) !modif omp: first find saturated temp at level klcl ! In the previous version, the parcel temperature ! was obtained from a dry adiabat ascent all the way ! to the level k. tc = tplcl call establ(es,tc) pc = plcl rs=epsilo*es/(pc+(epsilo-1.)*es) qs=rs/(1.+rs) tv=tc*(1.+.61*qs) dp=p(klcl)-plcl rc=(1.-qs)*rd+qs*rv ! write(6,*) 'tv= ',tv pb=(p(klcl)+plcl)/2. fact1=rd/cpd fact2=tv+(rl*qs/rc) ! write(6,*) 'fact1,fact2,rc= ',fact1,fact2,rc fact1=fact1*fact2 fact3=epsilo*(rl**2)*es/(cpd*pb*rv*(tv**2)) ! write(6,*) 'fact1,fact3= ',fact1,fact3 fact3=1.+fact3 dtdp=fact1/fact3 ! write(6,*) 'dtdp= ',dtdp tc=tc+dtdp*alog((pc+dp)/pc) ! write(6,*) 'tc,t= ',tc,t(k+1) tpc(klcl)=tc rpc(klcl)=rs ! write(6,*) 'p,r,rs= ',p(k+1),r(k+1),rs ! tc=tpc(klcl) !end modif omp ! omp note: the adiabat is computed by a forward integeration of the ! lapse rate. Thiscould be improved at coarse resolution by implementing ! a 2nd or 3rd order Runge-Kunta scheme. plzb=0. do k=klcl,nlevm qe=r(k)/(1.+r(k)) tve=t(k)*(1.+.61*qe) call establ(es,tc) pc=p(k) rs=epsilo*es/(pc+(epsilo-1.)*es) qs=rs/(1.+rs) tv=tc*(1.+.61*qs) ! write(6,*) 'k,tv,tve= ',k,tv,tve ieq=iequ(tv,tve) if ((ieq .gt. 0) .and. (.not. capepos)) then capepos=.true. end if if ((ieq .lt. 0) .and. (capepos)) then klzb=k plzb=(p(k)+p(k-1))/2. ! write(6,*) 'klzb,plzb,p(klzb)= ',klzb,plzb,p(klzb) go to 12 end if dp=p(k+1)-p(k) rc=(1.-qs)*rd+qs*rv ! write(6,*) 'tv= ',tv pb=(p(k)+p(k+1))/2. fact1=rd/cpd fact2=tv+(rl*qs/rc) ! write(6,*) 'fact1,fact2,rc= ',fact1,fact2,rc fact1=fact1*fact2 fact3=epsilo*(rl**2)*es/(cpd*pb*rv*(tv**2)) ! write(6,*) 'fact1,fact3= ',fact1,fact3 fact3=1.+fact3 dtdp=fact1/fact3 ! write(6,*) 'dtdp= ',dtdp tc=tc+dtdp*alog((pc+dp)/pc) ! write(6,*) 'tc,t= ',tc,t(k+1) tpc(k+1)=tc rpc(k+1)=rs ! write(6,*) 'p,r,rs= ',p(k+1),r(k+1),rs end do 12 continue ieq=iequ(plzb,0.) if (ieq .eq. 0) then xcape = 0. cin = 0. tot = 0. tpcback = tback rpcback = rback ! write(6,*) 'plzb=0' return end if cin=0. xcape=0. tot=0. ! ! Calculate convective inhibition. ! klfc=0 do k=istart,nlevm ieq=iequ(p(k),plzb) if (ieq .le. 0) then ! write(6,*) 'cin= ',cin ! write(6,*) 'cape = 0 NO LFC' return end if rbc=(rpc(k)+rpc(k+1))/2. rbe=(r(k)+r(k+1))/2. qc=rbc/(1.+rbc) qe=rbe/(1.+rbe) tvc=tpc(k)*(1.+.61*qc) tve=t(k)*(1.+.61*qe) ! write(6,*) 'k,tvc,tve= ',k,tvc,tve ieq=iequ(tvc,tve) ieqa=iequ(p(k),plcl) if ((ieq .le. 0) .or. (ieqa .ge. 0)) then delt=rd*(tvc-tve)*alog(p(k)/p(k+1)) cin=cin-delt else klfc=k go to 14 end if end do 14 continue ! ! Calculate convective available potential energy. ! ! write(6,*) 'klfc,p(klfc)= ',klfc,p(klfc) ! ! omp note: CAPE is calculated using full levels. This can create a ! significant amount of flickering, espcially when the LCL and LZB ! switch from one model level to another. ! if (klfc .eq. 0) then xcape=0. ! write(6,*) 'klfc=0' return end if do k=klfc,klzb ieq=iequ(p(k+1),plzb) if (ieq .ge. 0) then rbc=(rpc(k)+rpc(k+1))/2. rbe=(r(k)+r(k+1))/2. qc=rbc/(1.+rbc) qe=rbe/(1.+rbe) tvc=tpc(k)*(1.+.61*qc) tve=t(k)*(1.+.61*qe) ieq=iequ(tvc,tve) if (ieq .gt. 0) then delt=rd*(tvc-tve)*alog(p(k)/p(k+1)) ! write(6,*) 'cape k,delt,xcape= ',k,delt,xcape xcape=xcape+delt if (xcape .lt. 0.) then ! write(6,*) 'xcape error' call error_mesg ('bm_omp:capecalc', & 'xcape error', FATAL) ! stop end if end if end if end do tot=xcape-cin ! write(6,*) 'cin= ',cin,' J/kg' ! write(6,*) 'xcape= ',xcape,' J/kg' ! write(6,*) 'tot= ',tot,' J/kg' do k=1,nlev tpcback(k) = tpc(nlev+1-k) rpcback(k) = rpc(nlev+1-k) end do klzbback = nlev + 1 - klzb klclback = nlev + 1 - klcl return end subroutine capecalc !####################################################################### !all new cape calculation. subroutine capecalcnew(kx,p,phalf,Cp_air,rdgas,rvgas,hlv,kappa,tin,rin,& avgbl,cape,cin,tp,rp,klzb,klcl) ! ! Input: ! ! kx number of levels ! p pressure (index 1 refers to TOA, index kx refers to surface) ! phalf pressure at half levels ! Cp_air specific heat of dry air ! rdgas gas constant for dry air ! rvgas gas constant for water vapor (used in Clausius-Clapeyron, ! not for virtual temperature effects, which are not considered) ! hlv latent heat of vaporization ! kappa the constant kappa ! tin temperature of the environment ! rin specific humidity of the environment ! avgbl if true, the parcel is averaged in theta and r up to its LCL ! ! Output: ! cape Convective available potential energy ! cin Convective inhibition (if there's no LFC, then this is set ! to zero) ! tp Parcel temperature (set to the environmental temperature ! where no adjustment) ! rp Parcel specific humidity (set to the environmental humidity ! where no adjustment, and set to the saturation humidity at ! the parcel temperature below the LCL) ! klzb Level of zero buoyancy ! klcl Lifting condensation level ! ! Algorithm: ! Start with surface parcel. ! Calculate the lifting condensation level (uses an analytic formula and a ! lookup table). ! Average under the LCL if desired, if this is done, then a new LCL must ! be calculated. ! Calculate parcel ascent up to LZB. ! Calculate CAPE and CIN. implicit none integer, intent(in) :: kx logical, intent(in) :: avgbl real, intent(in), dimension(:) :: p, phalf, tin, rin real, intent(in) :: rdgas, rvgas, hlv, kappa, Cp_air integer, intent(out) :: klzb, klcl real, intent(out), dimension(:) :: tp, rp real, intent(out) :: cape, cin integer :: k, klfc, klcl2 logical :: nocape real, dimension(kx) :: theta real :: t0, r0, es, rs, theta0, pstar, value, tlcl, & a, b, dtdlnp, d2tdlnp2, thetam, rm, tlcl2, & plcl2, plcl, plzb pstar = 1.e5 nocape = .true. cape = 0. cin = 0. plcl = 0. plzb = 0. klfc = 0 klcl = 0 klzb = 0 tp(1:kx) = tin(1:kx) rp(1:kx) = rin(1:kx) ! start with surface parcel t0 = tin(kx) r0 = rin(kx) ! calculate the lifting condensation level by the following: ! are you saturated to begin with? ! call establ(es,t0) call escomp(t0,es) rs = rdgas/rvgas*es/p(kx) if (r0.ge.rs) then ! if youčre already saturated, set lcl to be the surface value. plcl = p(kx) ! the first level where youčre completely saturated. klcl = kx ! saturate out to get the parcel temp and humidity at this level ! first order (in delta T) accurate expression for change in temp tp(kx) = t0 + (r0 - rs)/(Cp_air/hlv + hlv*rs/rvgas/t0**2.) ! call establ(es,tp(kx)) call escomp(tp(kx),es) rp(kx) = rdgas/rvgas*es/p(kx) else ! if not saturated to begin with, use the analytic expression to calculate the ! exact pressure and temperature where youčre saturated. theta0 = tin(kx)*(pstar/p(kx))**kappa ! the expression that we utilize is log(r/theta**(1/kappa)*pstar*rvgas/rdgas) = ! log(es/T**(1/kappa)) ! The right hand side of this is only a function of temperature, therefore ! this is put into a lookup table to solve for temperature. if (r0.gt.0.) then value = log(theta0**(-1/kappa)*r0*pstar*rvgas/rdgas) call lcltabl(value,tlcl) plcl = pstar*(tlcl/theta0)**(1/kappa) ! just in case plcl is very high up if (plcl.lt.p(1)) then plcl = p(1) tlcl = theta0*(plcl/pstar)**kappa write (*,*) 'hi lcl' end if k = kx else ! if the parcel sp hum is zero or negative, set lcl to 2nd to top level plcl = p(2) tlcl = theta0*(plcl/pstar)**kappa ! write (*,*) 'zero r0', r0 do k=2,kx tp(k) = theta0*(p(k)/pstar)**kappa rp(k) = 0. ! this definition of CIN contains everything below the LCL cin = cin + rdgas*(tin(k) - tp(k))*log(phalf(k+1)/phalf(k)) end do go to 11 end if ! calculate the parcel temperature (adiabatic ascent) below the LCL. ! the mixing ratio stays the same !!! the right command?? do while (p(k).gt.plcl) tp(k) = theta0*(p(k)/pstar)**kappa ! call establ(es,tp(k)) call escomp(tp(k),es) rp(k) = rdgas/rvgas*es/p(k) ! this definition of CIN contains everything below the LCL cin = cin + rdgas*(tin(k) - tp(k))*log(phalf(k+1)/phalf(k)) k = k-1 end do ! first level where youčre saturated at the level klcl = k if (klcl.eq.1) klcl = 2 ! do a saturated ascent to get the parcel temp at the LCL. ! use your 2nd order equation up to the pressure above. ! moist adaibat derivatives: (use the lcl values for temp, humid, and ! pressure) a = kappa*tlcl + hlv/Cp_air*r0 b = hlv**2.*r0/Cp_air/rvgas/tlcl**2. dtdlnp = a/(1. + b) ! first order in p ! tp(klcl) = tlcl + dtdlnp*log(p(klcl)/plcl) ! second order in p (RK2) ! first get temp halfway up tp(klcl) = tlcl + dtdlnp*log(p(klcl)/plcl)/2. if ((tp(klcl).lt.173.16).and.nocape) go to 11 call escomp(tp(klcl),es) rp(klcl) = rdgas/rvgas*es/(p(klcl) + plcl)*2. a = kappa*tp(klcl) + hlv/Cp_air*rp(klcl) b = hlv**2./Cp_air/rvgas*rp(klcl)/tp(klcl)**2. dtdlnp = a/(1. + b) ! second half of RK2 tp(klcl) = tlcl + dtdlnp*log(p(klcl)/plcl) ! d2tdlnp2 = (kappa + b - 1. - b/tlcl*(hlv/rvgas/tlcl - & ! 2.)*dtdlnp)/ (1. + b)*dtdlnp - hlv*r0/Cp_air/ & ! (1. + b) ! second order in p ! tp(klcl) = tlcl + dtdlnp*log(p(klcl)/plcl) + .5*d2tdlnp2*(log(& ! p(klcl)/plcl))**2. ! call establ(es,tp(klcl)) call escomp(tp(klcl),es) rp(klcl) = rdgas/rvgas*es/p(klcl) ! write (*,*) 'tp, rp klcl:kx, new', tp(klcl:kx), rp(klcl:kx) ! CAPE/CIN stuff if ((tp(klcl).lt.tin(klcl)).and.nocape) then ! if youčre not yet buoyant, then add to the CIN and continue cin = cin + rdgas*(tin(klcl) - & tp(klcl))*log(phalf(klcl+1)/phalf(klcl)) else ! if youčre buoyant, then add to cape cape = cape + rdgas*(tp(klcl) - & tin(klcl))*log(phalf(klcl+1)/phalf(klcl)) ! if itčs the first time buoyant, then set the level of free convection to k if (nocape) then nocape = .false. klfc = klcl endif end if end if ! then average the properties over the boundary layer if so desired. to give ! a new "parcel". this may not be saturated at the LCL, so make sure you get ! to a level where it is before moist adiabatic ascent! !!!! take out all the below (between the exclamation points) if no avgbl !!!! if (avgbl) then theta(klcl:kx) = tin(klcl:kx)*(pstar/p(klcl:kx))**kappa thetam = 0. rm = 0. do k=klcl,kx thetam = thetam + theta(k)*(phalf(k+1) - phalf(k)) rm = rm + rin(k)*(phalf(k+1) - phalf(k)) end do thetam = thetam/(phalf(kx+1) - phalf(klcl)) rm = rm/(phalf(kx+1) - phalf(klcl)) ! check if youčre saturated at the top level. if not, then get a new LCL tp(klcl) = thetam*(p(klcl)/pstar)**kappa ! call establ(es,tp(klcl)) call escomp(tp(klcl),es) rs = rdgas/rvgas*es/p(klcl) ! if youčre not saturated, get a new LCL if (rm.lt.rs) then ! reset CIN to zero. cin = 0. ! again, use the analytic expression to calculate the exact pressure and ! temperature where youčre saturated. ! the expression that we utilize is log(r/theta**(1/kappa)*pstar*rvgas/rdgas)= ! log(es/T**(1/kappa)) ! The right hand side of this is only a function of temperature, therefore ! this is put into a lookup table to solve for temperature. value = log(thetam**(-1/kappa)*rm*pstar*rvgas/rdgas) call lcltabl(value,tlcl2) plcl2 = pstar*(tlcl2/thetam)**(1/kappa) ! just in case plcl is very high up if (plcl2.lt.p(1)) then plcl2 = p(1) end if k = kx ! calculate the parcel temperature (adiabatic ascent) below the LCL. ! the mixing ratio stays the same !!! the right command?? do while (p(k).gt.plcl2) tp(k) = thetam*(p(k)/pstar)**kappa ! call establ(es,tp(k)) call escomp(tp(k),es) rp(k) = rdgas/rvgas*es/p(k) ! this definition of CIN contains everything below the LCL cin = cin + rdgas*(tin(k) - tp(k))*log(phalf(k+1)/phalf(k)) k = k-1 end do ! first level where you're saturated at the level klcl2 = k if (klcl2.eq.1) klcl2 = 2 ! do a saturated ascent to get the parcel temp at the LCL. ! use your 2nd order equation up to the pressure above. ! moist adaibat derivatives: (use the lcl values for temp, humid, and ! pressure) a = kappa*tlcl2 + hlv/Cp_air*rm b = hlv**2.*rm/Cp_air/rvgas/tlcl2**2. dtdlnp = a/(1. + b) ! first order in p ! tp(klcl2) = tlcl2 + dtdlnp*log(p(klcl2)/plcl2) ! second order in p (RK2) ! first get temp halfway up tp(klcl2) = tlcl2 + dtdlnp*log(p(klcl2)/plcl2)/2. if ((tp(klcl2).lt.173.16).and.nocape) go to 11 call escomp(tp(klcl2),es) rp(klcl2) = rdgas/rvgas*es/(p(klcl2) + plcl2)*2. a = kappa*tp(klcl2) + hlv/Cp_air*rp(klcl2) b = hlv**2./Cp_air/rvgas*rp(klcl2)/tp(klcl2)**2. dtdlnp = a/(1. + b) ! second half of RK2 tp(klcl2) = tlcl2 + dtdlnp*log(p(klcl2)/plcl2) ! d2tdlnp2 = (kappa + b - 1. - b/tlcl2*(hlv/rvgas/tlcl2 - & ! 2.)*dtdlnp)/ (1. + b)*dtdlnp - hlv*rm/Cp_air/ & ! (1. + b) ! second order in p ! tp(klcl2) = tlcl2 + dtdlnp*log(p(klcl2)/plcl2) + & ! .5*d2tdlnp2*(log(p(klcl2)/plcl2))**2. ! call establ(es,tp(klcl2)) call escomp(tp(klcl2),es) rp(klcl2) = rdgas/rvgas*es/p(klcl2) ! CAPE/CIN stuff if ((tp(klcl2).lt.tin(klcl2)).and.nocape) then ! if youčre not yet buoyant, then add to the CIN and continue cin = cin + rdgas*(tin(klcl2) - & tp(klcl2))*log(phalf(klcl2+1)/phalf(klcl2)) else ! if youčre buoyant, then add to cape cape = cape + rdgas*(tp(klcl) - & tin(klcl))*log(phalf(klcl+1)/phalf(klcl)) ! if itčs the first time buoyant, then set the level of free convection to k if (nocape) then nocape = .false. klfc = klcl2 endif end if end if end if !!!! take out all of the above (within the exclamations) if no avgbl !!!! ! then, start at the LCL, and do moist adiabatic ascent by the first order ! scheme -- 2nd order as well do k=klcl-1,1,-1 a = kappa*tp(k+1) + hlv/Cp_air*rp(k+1) b = hlv**2./Cp_air/rvgas*rp(k+1)/tp(k+1)**2. dtdlnp = a/(1. + b) ! first order in p ! tp(k) = tp(k+1) + dtdlnp*log(p(k)/p(k+1)) ! second order in p (RK2) ! first get temp halfway up tp(k) = tp(k+1) + dtdlnp*log(p(k)/p(k+1))/2. if ((tp(k).lt.173.16).and.nocape) go to 11 call escomp(tp(k),es) rp(k) = rdgas/rvgas*es/(p(k) + p(k+1))*2. a = kappa*tp(k) + hlv/Cp_air*rp(k) b = hlv**2./Cp_air/rvgas*rp(k)/tp(k)**2. dtdlnp = a/(1. + b) ! second half of RK2 tp(k) = tp(k+1) + dtdlnp*log(p(k)/p(k+1)) ! d2tdlnp2 = (kappa + b - 1. - b/tp(k+1)*(hlv/rvgas/tp(k+1) - & ! 2.)*dtdlnp)/(1. + b)*dtdlnp - hlv/Cp_air*rp(k+1)/(1. + b) ! second order in p ! tp(k) = tp(k+1) + dtdlnp*log(p(k)/p(k+1)) + .5*d2tdlnp2*(log( & ! p(k)/p(k+1)))**2. ! if you're below the lookup table value, just presume that there's no way ! you could have cape and call it quits if ((tp(k).lt.173.16).and.nocape) go to 11 ! call establ(es,tp(k)) call escomp(tp(k),es) rp(k) = rdgas/rvgas*es/p(k) if ((tp(k).lt.tin(k)).and.nocape) then ! if youčre not yet buoyant, then add to the CIN and continue cin = cin + rdgas*(tin(k) - tp(k))*log(phalf(k+1)/phalf(k)) elseif((tp(k).lt.tin(k)).and.(.not.nocape)) then ! if you have CAPE, and itčs your first time being negatively buoyant, ! then set the level of zero buoyancy to k+1, and stop the moist ascent klzb = k+1 go to 11 else ! if youčre buoyant, then add to cape cape = cape + rdgas*(tp(k) - tin(k))*log(phalf(k+1)/phalf(k)) ! if itčs the first time buoyant, then set the level of free convection to k if (nocape) then nocape = .false. klfc = k endif end if end do 11 if(nocape) then ! this is if you made it through without having a LZB ! set LZB to be the top level. plzb = p(1) klzb = 0 klfc = 0 cin = 0. tp(1:kx) = tin(1:kx) rp(1:kx) = rin(1:kx) end if ! write (*,*) 'plcl, klcl, tlcl, r0 new', plcl, klcl, tlcl, r0 ! write (*,*) 'tp, rp new', tp, rp ! write (*,*) 'tp, new', tp ! write (*,*) 'tin new', tin ! write (*,*) 'klcl, klfc, klzb new', klcl, klfc, klzb end subroutine capecalcnew ! lookup table with e_s(T) using the new analytic expression subroutine establ2(es,t) ! Table of es values as a function of temperature. ! Uses the analytic expression for e_s which assumes fixed latent heat ! coefficient. ! Gives the values from -100 to 60 Celsius in 1 degree increments. implicit none real, intent(in) :: t real, intent(out) :: es integer :: it real, dimension(161) :: table real :: t1, t2 data table / 6.4876769e-03, 7.7642650e-03, 9.2730105e-03, & 1.1052629e-02, 1.3147696e-02, 1.5609446e-02, 1.8496657e-02, & 2.1876647e-02, 2.5826384e-02, 3.0433719e-02, 3.5798760e-02, & 4.2035399e-02, 4.9272997e-02, 5.7658264e-02, 6.7357319e-02, & 7.8557979e-02, 9.1472273e-02, 1.0633921e-01, 1.2342784e-01, & 1.4304057e-01, 1.6551683e-01, 1.9123713e-01, 2.2062738e-01, & 2.5416374e-01, 2.9237778e-01, 3.3586224e-01, 3.8527718e-01, & 4.4135673e-01, 5.0491638e-01, 5.7686092e-01, 6.5819298e-01, & 7.5002239e-01, 8.5357615e-01, 9.7020925e-01, 1.1014164e+00, & 1.2488446e+00, 1.4143067e+00, 1.5997959e+00, 1.8075013e+00, & 2.0398249e+00, 2.2993996e+00, 2.5891082e+00, 2.9121041e+00, & 3.2718336e+00, 3.6720588e+00, 4.1168837e+00, 4.6107798e+00, & 5.1586157e+00, 5.7656865e+00, 6.4377468e+00, 7.1810447e+00, & 8.0023579e+00, 8.9090329e+00, 9.9090255e+00, 1.1010944e+01, & 1.2224096e+01, 1.3558536e+01, 1.5025116e+01, 1.6635542e+01, & 1.8402429e+01, 2.0339361e+01, 2.2460955e+01, 2.4782931e+01, & 2.7322176e+01, 3.0096824e+01, 3.3126327e+01, 3.6431545e+01, & 4.0034823e+01, 4.3960087e+01, 4.8232935e+01, 5.2880735e+01, & 5.7932732e+01, 6.3420149e+01, 6.9376307e+01, 7.5836738e+01, & 8.2839310e+01, 9.0424352e+01, 9.8634795e+01, 1.0751630e+02, & 1.1711742e+02, 1.2748974e+02, 1.3868802e+02, 1.5077039e+02, & 1.6379851e+02, 1.7783773e+02, 1.9295728e+02, 2.0923048e+02, & 2.2673493e+02, 2.4555268e+02, 2.6577049e+02, 2.8748004e+02, & 3.1077813e+02, 3.3576694e+02, 3.6255429e+02, 3.9125382e+02, & 4.2198536e+02, 4.5487511e+02, 4.9005594e+02, 5.2766770e+02, & 5.6785749e+02, 6.1078000e+02, 6.5659776e+02, 7.0548154e+02, & 7.5761062e+02, 8.1317317e+02, 8.7236659e+02, 9.3539788e+02, & 1.0024840e+03, 1.0738523e+03, 1.1497408e+03, 1.2303987e+03, & 1.3160868e+03, 1.4070779e+03, 1.5036572e+03, 1.6061228e+03, & 1.7147860e+03, 1.8299721e+03, 1.9520206e+03, 2.0812857e+03, & 2.2181372e+03, 2.3629602e+03, 2.5161565e+03, 2.6781448e+03, & 2.8493609e+03, 3.0302589e+03, 3.2213112e+03, 3.4230097e+03, & 3.6358656e+03, 3.8604109e+03, 4.0971982e+03, 4.3468019e+03, & 4.6098188e+03, 4.8868684e+03, 5.1785938e+03, 5.4856626e+03, & 5.8087673e+03, 6.1486259e+03, 6.5059830e+03, 6.8816104e+03, & 7.2763077e+03, 7.6909031e+03, 8.1262545e+03, 8.5832496e+03, & 9.0628075e+03, 9.5658788e+03, 1.0093447e+04, 1.0646529e+04, & 1.1226176e+04, 1.1833474e+04, 1.2469546e+04, 1.3135552e+04, & 1.3832687e+04, 1.4562188e+04, 1.5325331e+04, 1.6123432e+04, & 1.6957848e+04, 1.7829980e+04, 1.8741270e+04, 1.9693207e+04, 2.0687323e+04, 2.1725199e+04 / t1 = t if (t.lt.173.16) t1 = 173.16 if (t.gt.333.16) t1 = 333.16 it = floor(t1 - 173.16) t2 = 173.16 + it es = (t2 + 1.0 - t1)*table(it+1) + (t1 - t2)*table(it+2) end subroutine establ2 ! lookup table for the analytic evaluation of LCL subroutine lcltabl(value,tlcl) ! ! Table of values used to compute the temperature of the lifting condensation ! level. ! ! the expression that we utilize is log(r/theta**(1/kappa)*pstar*rvgas/rdgas) = ! log(es/T**(1/kappa)) ! ! Gives the values of the temperature for the following range: ! starts with -23, is uniformly distributed up to -10.4. There are a ! total of 127 values, and the increment is .1. ! implicit none real, intent(in) :: value real, intent(out) :: tlcl integer :: ival real, dimension(127) :: lcltable real :: v1, v2 data lcltable/ 1.7364512e+02, 1.7427449e+02, 1.7490874e+02, & 1.7554791e+02, 1.7619208e+02, 1.7684130e+02, 1.7749563e+02, & 1.7815514e+02, 1.7881989e+02, 1.7948995e+02, 1.8016539e+02, & 1.8084626e+02, 1.8153265e+02, 1.8222461e+02, 1.8292223e+02, & 1.8362557e+02, 1.8433471e+02, 1.8504972e+02, 1.8577068e+02, & 1.8649767e+02, 1.8723077e+02, 1.8797006e+02, 1.8871561e+02, & 1.8946752e+02, 1.9022587e+02, 1.9099074e+02, 1.9176222e+02, & 1.9254042e+02, 1.9332540e+02, 1.9411728e+02, 1.9491614e+02, & 1.9572209e+02, 1.9653521e+02, 1.9735562e+02, 1.9818341e+02, & 1.9901870e+02, 1.9986158e+02, 2.0071216e+02, 2.0157057e+02, & 2.0243690e+02, 2.0331128e+02, 2.0419383e+02, 2.0508466e+02, & 2.0598391e+02, 2.0689168e+02, 2.0780812e+02, 2.0873335e+02, & 2.0966751e+02, 2.1061074e+02, 2.1156316e+02, 2.1252493e+02, & 2.1349619e+02, 2.1447709e+02, 2.1546778e+02, 2.1646842e+02, & 2.1747916e+02, 2.1850016e+02, 2.1953160e+02, 2.2057364e+02, & 2.2162645e+02, 2.2269022e+02, 2.2376511e+02, 2.2485133e+02, & 2.2594905e+02, 2.2705847e+02, 2.2817979e+02, 2.2931322e+02, & 2.3045895e+02, 2.3161721e+02, 2.3278821e+02, 2.3397218e+02, & 2.3516935e+02, 2.3637994e+02, 2.3760420e+02, 2.3884238e+02, & 2.4009473e+02, 2.4136150e+02, 2.4264297e+02, 2.4393941e+02, & 2.4525110e+02, 2.4657831e+02, 2.4792136e+02, 2.4928053e+02, & 2.5065615e+02, 2.5204853e+02, 2.5345799e+02, 2.5488487e+02, & 2.5632953e+02, 2.5779231e+02, 2.5927358e+02, 2.6077372e+02, & 2.6229310e+02, 2.6383214e+02, 2.6539124e+02, 2.6697081e+02, & 2.6857130e+02, 2.7019315e+02, 2.7183682e+02, 2.7350278e+02, & 2.7519152e+02, 2.7690354e+02, 2.7863937e+02, 2.8039954e+02, & 2.8218459e+02, 2.8399511e+02, 2.8583167e+02, 2.8769489e+02, & 2.8958539e+02, 2.9150383e+02, 2.9345086e+02, 2.9542719e+02, & 2.9743353e+02, 2.9947061e+02, 3.0153922e+02, 3.0364014e+02, & 3.0577420e+02, 3.0794224e+02, 3.1014515e+02, 3.1238386e+02, & 3.1465930e+02, 3.1697246e+02, 3.1932437e+02, 3.2171609e+02, & 3.2414873e+02, 3.2662343e+02, 3.2914139e+02, 3.3170385e+02 / v1 = value if (value.lt.-23.0) v1 = -23.0 if (value.gt.-10.4) v1 = -10.4 ival = floor(10.*(v1 + 23.0)) v2 = -230. + ival v1 = 10.*v1 tlcl = (v2 + 1.0 - v1)*lcltable(ival+1) + (v1 - v2)*lcltable(ival+2) end subroutine lcltabl !####################################################################### SUBROUTINE ESTABL(ES,TP) ! ! TABLE OF ES FROM -100 TO +60 C IN ONE-DEGREE INCREMENTS(ICE). ! ! RAT GIVES THE RATIO OF ES(ICE)/ES(LIQUID) ! ! es refers to liquid above 273, ice below 273 ! ! implicit none real, intent(in) :: TP real, intent(out) :: ES integer :: it real, dimension(161) :: table real :: ft, t2, r1, r2, rat, tp1, es1 ! DIMENSION TABLE(161) DATA TABLE/.01403,.01719,.02101,.02561,.03117,.03784, & .04584,.05542,.06685,.08049,.09672,.1160,.1388,.1658, & .1977,.2353,.2796,.3316,.3925,.4638,.5472,.6444,.7577, & .8894,1.042,1.22,1.425,1.622,1.936,2.252,2.615,3.032, & 3.511,4.06,4.688,5.406,6.225,7.159,8.223,9.432,10.80, & 12.36,14.13,16.12,18.38,20.92,23.80,27.03,30.67,34.76, & 39.35,44.49,50.26,56.71,63.93,71.98,80.97,90.98,102.1, & 114.5,128.3,143.6,160.6,179.4,200.2,223.3,248.8,276.9, & 307.9,342.1,379.8,421.3,466.9,517.0,572.0,632.3,698.5, & 770.9,850.2,937.0,1032.0,1146.6,1272.0,1408.1,1556.7, & 1716.9,1890.3,2077.6,2279.6,2496.7,2729.8,2980.,3247.8, & 3534.1,3839.8,4164.8,4510.5,4867.9,5265.1,5675.2,6107.8, & 6566.2,7054.7,7575.3,8129.4,8719.2,9346.5,10013.,10722., & 11474.,12272.,13119.,14017.,14969.,15977.,17044.,18173., & 19367.,20630.,21964.,23373.,24861.,26430.,28086.,29831., & 31671.,33608.,35649.,37796.,40055.,42430.,44927.,47551., & 50307.,53200.,56236.,59422.,62762.,66264.,69934.,73777., & 77802.,82015.,86423.,91034.,95855.,100890.,106160., & 111660.,117400.,123400.,129650.,136170.,142980.,150070., & 157460.,165160.,173180.,181530.,190220.,199260./ ! DATA TABLE/.01403,.01719,.02101,.02561,.03117,.03784, ! A .04584,.05542,.06685,.08049,.09672,.1160,.1388,.1658, ! B .1977,.2353,.2796,.3316,.3925,.4638,.5472,.6444,.7577, ! C .8894,1.042,1.22,1.425,1.622,1.936,2.252,2.615,3.032, ! D 3.511,4.06,4.688,5.406,6.225,7.159,8.223,9.432,10.80, ! E 12.36,14.13,16.12,18.38,20.92,23.80,27.03,30.67,34.76, ! F 39.35,44.49,50.26,56.71,63.93,71.98,80.97,90.98,102.1, ! G 114.5,128.3,143.6,160.6,179.4,200.2,223.3,248.8,276.9, ! H 307.9,342.1,379.8,421.3,466.9,517.0,572.0,632.3,698.5, ! I 770.9,850.2,937.0,1032.0,1146.6,1272.0,1408.1,1556.7, ! J 1716.9,1890.3,2077.6,2279.6,2496.7,2729.8,2980.,3247.8, ! K 3534.1,3839.8,4164.8,4510.5,4867.9,5265.1,5675.2,6107.8, ! L 6566.2,7054.7,7575.3,8129.4,8719.2,9346.5,10013.,10722., ! M 11474.,12272.,13119.,14017.,14969.,15977.,17044.,18173., ! N 19367.,20630.,21964.,23373.,24861.,26430.,28086.,29831., ! O 31671.,33608.,35649.,37796.,40055.,42430.,44927.,47551., ! P 50307.,53200.,56236.,59422.,62762.,66264.,69934.,73777., ! Q 77802.,82015.,86423.,91034.,95855.,100890.,106160., ! R 111660.,117400.,123400.,129650.,136170.,142980.,150070., ! S 157460.,165160.,173180.,181530.,190220.,199260./ ! tp1 = tp IF (TP1 .LT. 173.16) GO TO 1 IF (TP1 .LE. 333.16) GO TO 2 TP1=333.16 GO TO 2 1 TP1=173.16 2 IT= floor(TP1-173.16) FT= IT T2=173.16+FT ES=(T2+1.0-TP1)*TABLE(IT+1)+(TP1-T2)*TABLE(IT+2) ES=ES*.1 ! ! CONVERT FROM ES(LIQUID) TO ES(ICE) ! ! R1=EXP(28.92-(6142./TP1)) ! R2=EXP(26.27-(5421./TP1)) ! RAT=R1/R2 ! RAT=1. ! ES=ES*R1/R2 RETURN END subroutine establ !####################################################################### integer function iequ(x,y) ! ! Checks for equality of two variable, within a tolerance eps. ! ! On Input: ! ! x first variable ! y second variable ! ! On Output: ! ! equ flag, equal to zero if x=y within eps ! equal to 10 if x greater than y ! equal to -10, if x less than y ! real, intent(in) :: x, y real :: eps, epsm, d iequ=0 eps=1.e-10 epsm=-eps d=x-y if (d .gt. eps) iequ=10 if (d .lt. epsm) iequ=-10 return end function iequ !####################################################################### subroutine bm_omp_init () !----------------------------------------------------------------------- ! ! initialization for bm_omp ! !----------------------------------------------------------------------- integer unit,io,ierr, logunit !----------- read namelist --------------------------------------------- if (file_exist('input.nml')) then unit = open_namelist_file ( ) ierr=1; do while (ierr /= 0) read (unit, nml=bm_omp_nml, iostat=io, end=10) ierr = check_nml_error (io,'bm_omp_nml') enddo 10 call close_file (unit) endif !---------- output namelist -------------------------------------------- call write_version_number( version, tagname ) if ( mpp_pe() == mpp_root_pe() ) then logunit = stdlog() write (logunit,nml=bm_omp_nml) endif call close_file (unit) module_is_initialized =.true. end subroutine bm_omp_init !####################################################################### subroutine bm_omp_end() module_is_initialized =.false. end subroutine bm_omp_end !####################################################################### end module bm_omp_mod