!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!! !!
!! GNU General Public License !!
!! !!
!! This file is part of the Flexible Modeling System (FMS). !!
!! !!
!! FMS is free software; you can redistribute it and/or modify !!
!! it and are expected to follow the terms of the GNU General Public !!
!! License as published by the Free Software Foundation. !!
!! !!
!! FMS is distributed in the hope that it will be useful, !!
!! but WITHOUT ANY WARRANTY; without even the implied warranty of !!
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the !!
!! GNU General Public License for more details. !!
!! !!
!! You should have received a copy of the GNU General Public License !!
!! along with FMS; if not, write to: !!
!! Free Software Foundation, Inc. !!
!! 59 Temple Place, Suite 330 !!
!! Boston, MA 02111-1307 USA !!
!! or see: !!
!! http://www.gnu.org/licenses/gpl.txt !!
!! !!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
module ocean_nphysicsB_mod
!
! Stephen M. Griffies
!
!
! Russell Fiedler
!
!
!
! Thickness weighted and density weighted time tendency for tracer
! from Laplacian neutral diffusion + Laplacian GM skew-diffusion.
!
!
!
! This module computes the cell thickness weighted and density
! weighted tracer tendency from small angle Laplacian neutral diffusion
! plus Laplacian GM skew-diffusion. The methods here differ from
! ocean_nphysicsA in the treatment of fluxes in the boundary
! regions. This module is experimental, and should be used with caution.
!
!
!
!
!
! S.M. Griffies, A. Gnanadesikan, R.C. Pacanowski, V. Larichev,
! J.K. Dukowicz, and R.D. Smith
! Isoneutral diffusion in a z-coordinate ocean model
! Journal of Physical Oceanography (1998) vol 28 pages 805-830
!
!
!
! S.M. Griffies
! The Gent-McWilliams Skew-flux
! Journal of Physical Oceanography (1998) vol 28 pages 831-841
!
!
!
! R. Ferrari and J.C. McWilliams and Canuto and Dubovikov
! Parameterization of eddy fluxes near oceanic boundaries
! Journal of Climate (2008).
!
!
!
! Large etal (1997), Journal of Physical Oceanography,
! pages 2418-2447
!
!
!
! S.M. Griffies
! Fundamentals of Ocean Climate Models (2004)
! Princeton University Press
!
!
!
! S.M. Griffies, Elements of mom4p1 (2008)
!
!
!
! Revisions made for mom4p1 in Sept 2005, Jan/Feb 2006,
! and June 2008 by Stephen.Griffies@noaa.gov. The June 2008
! revision greatly simplified the boundary layer formulation
! from Ferrari and McWilliams, whereby the quadratic transition
! layer is eliminated, thus removing the need to match vertical
! derivatives of the streamfunction. The matching conditions
! implied by the transition zone added a tremendous amount
! of code that was not seen to be critical for the purpose
! of producing a reasonably smooth streamfunction.
!
!
!
! Numerical implementation of the flux components follows the triad
! approach documented in the references and implemented in MOM2 and MOM3.
! The MOM4 algorithm accounts for partial bottom cells and generalized
! orthogonal horizontal coordinates.
!
!
!
! Note: the option neutral_physics_simple is not supported in this
! module. Use nphysicA for that option.
!
!
!
!
!
!
!
! Must be true to use this module. Default is false.
!
!
! For printing starting and ending checksums for restarts
!
!
!
! Must be true to use GM skewsion. Set to false if wish to
! incorporate the "GM-effect" through form drag, as in
! ocean_form_drag module. Default use_gm_skew=.true.
!
!
!
! To compute all contributions from neutral diffusion explicitly in time, including
! the K33 diagonal piece. This approach is available only when have small time
! steps and/or running with just a single tracer. It is for testing purposes.
!
!
!
! When tracer falls outside a specified range, revert to horizontal
! diffusive fluxes at this cell. This is an ad hoc and incomplete attempt
! to maintain monotonicity with the neutral physics scheme.
! Default neutral_physics_limit=.true.
!
!
! If .true. then this logical reduces the neutral fluxes to
! horizontal/vertical diffusion next to boundaries.
! This approach has been found to reduce spurious
! extrema resulting from truncation of triads used to compute
! a neutral flux component. Default tmask_neutral_on=.false.
!
!
!
! Minimum number of k-levels in surface turbulent boundary
! layer used in the transition of the neutral physics fluxes
! to the surface. Default surf_turb_thick_min_k = 2.
!
!
! Minimum thickness of surface turbulent boundary layer
! used in the transition of the neutral physics fluxes
! to the surface. Default surf_turb_thick_min=20m.
!
!
!
! The damping time used for determining the effective surface
! boundary layer thickness from other portions of
! the model. Default neutral_damping_time=10days.
!
!
!
! For smoothing the neutral blayer fields. This is useful
! when aiming to produce a smooth quasi-stokes streamfunction
! within the boundary layers. Default is nblayer_smooth=.true.
!
!
! Velocity scale that is used for computing the MICOM Laplacian mixing
! coefficient used in the Laplacian smoothing of neutral blayer fields.
!
!
!
! The units for writing out the transport. Either in
! Sv (10^9 kg/s) or mks (kg/s). Note the mks unit is requested
! for CMIP5 purposes.
! Default transport_units = 'Sv'.
!
!
!
use constants_mod, only: epsln, pi, grav
use diag_manager_mod, only: register_diag_field, register_static_field, send_data, need_data
use fms_mod, only: FATAL, WARNING, NOTE
use fms_mod, only: file_exist
use fms_mod, only: open_namelist_file, check_nml_error, close_file, write_version_number
use fms_io_mod, only: register_restart_field, save_restart, restore_state
use fms_io_mod, only: restart_file_type
use mpp_domains_mod, only: mpp_update_domains
use mpp_domains_mod, only: CGRID_NE, WUPDATE, SUPDATE, EUPDATE, NUPDATE
use mpp_domains_mod, only: cyclic_global_domain, global_data_domain
use mpp_mod, only: mpp_error, mpp_chksum, stdout, stdlog
use mpp_mod, only: mpp_clock_id, mpp_clock_begin, mpp_clock_end, CLOCK_ROUTINE
use time_manager_mod, only: set_time, time_type, increment_time, operator ( + )
use ocean_domains_mod, only: get_local_indices, set_ocean_domain
use ocean_nphysics_util_mod, only: ocean_nphysics_coeff_init, ocean_nphysics_coeff_end
use ocean_nphysics_util_mod, only: neutral_slopes, tracer_derivs
use ocean_nphysics_util_mod, only: compute_eady_rate, compute_baroclinicity
use ocean_nphysics_util_mod, only: compute_rossby_radius, compute_bczone_radius
use ocean_nphysics_util_mod, only: compute_diffusivity, ocean_nphysics_util_restart
use ocean_nphysics_util_mod, only: transport_on_nrho_gm, transport_on_rho_gm, transport_on_theta_gm
use ocean_operators_mod, only: FAX, FAY, FMX, FMY, BDX_ET, BDY_NT, LAP_T
use ocean_parameters_mod, only: missing_value, onehalf, onefourth, oneeigth, DEPTH_BASED
use ocean_parameters_mod, only: rho0r, rho0, m3toSv
use ocean_sigma_transport_mod, only: tmask_sigma_on, tmask_sigma
use ocean_types_mod, only: ocean_grid_type, ocean_domain_type, ocean_density_type
use ocean_types_mod, only: ocean_prog_tracer_type, ocean_thickness_type
use ocean_types_mod, only: ocean_time_type, ocean_time_steps_type
use ocean_types_mod, only: tracer_2d_type, tracer_3d_0_nk_type, tracer_3d_1_nk_type
use ocean_util_mod, only: write_timestamp
use ocean_workspace_mod, only: wrk1, wrk3, wrk1_v
implicit none
public ocean_nphysicsB_init
public ocean_nphysicsB_end
public nphysicsB
public ocean_nphysicsB_restart
private fx_flux
private fy_flux
private fz_flux
private fz_terms
private neutral_blayer
private neutral_chksums
private
type(ocean_grid_type), pointer :: Grd => NULL()
type(ocean_domain_type), pointer :: Dom => NULL()
type(ocean_domain_type), save :: Dom_flux
integer :: num_prog_tracers = 0
! clock ids
integer :: id_clock_neutral_blayer
integer :: id_clock_fz_terms
integer :: id_clock_fx_flux
integer :: id_clock_fy_flux
integer :: id_clock_fz_flux
! diagnostic manager ids
logical :: used
integer :: id_k33_explicit =-1
integer :: id_tx_trans_gm =-1
integer :: id_ty_trans_gm =-1
integer :: id_surf_turb_thick =-1
integer :: id_surf_trans_thick =-1
integer :: id_depth_blayer_base =-1
integer :: id_full_turb_column =-1
integer :: id_slope_blayer_base =-1
integer :: id_grav_agm_dz_sx_drhodx =-1
integer :: id_grav_agm_dz_sy_drhody =-1
integer :: id_gm_eddy_ke_source =-1
integer :: id_slopex_drhodx =-1
integer :: id_slopey_drhody =-1
integer :: id_neutral_rho_nphysics
integer :: id_wdian_rho_nphysics
integer, dimension(:), allocatable :: id_neutral_physics
integer, dimension(:), allocatable :: id_k33_implicit
integer, dimension(:), allocatable :: id_flux_x ! for i-directed heat flux from neutral physics
integer, dimension(:), allocatable :: id_flux_y ! for j-directed heat flux from neutral physics
integer, dimension(:), allocatable :: id_flux_x_int_z ! for vertically integrated i-directed tracer flux
integer, dimension(:), allocatable :: id_flux_y_int_z ! for vertically integrated j-directed tracer flux
! for restart
type(restart_file_type), save :: NphysicsB_restart
#include
#ifdef MOM4_STATIC_ARRAYS
real, dimension(isd:ied,jsd:jed,nk,0:1) :: delqc !density weighted (kg/m^3) quarter cell thickness(m)
real, dimension(isd:ied,jsd:jed,0:nk) :: dzwtr !(1/dzwt)(m^-1)
real, dimension(isd:ied,jsd:jed,0:1) :: dtew !grid distances from T-point to cell faces (m)
real, dimension(isd:ied,jsd:jed,0:1) :: dtns !grid distances from T-point to cell faces (m)
real, dimension(isd:ied,jsd:jed,0:1) :: dtwedyt !horizontal areas (m^2) of quarter cell
real, dimension(isd:ied,jsd:jed,0:1) :: dxtdtsn !horizontal areas (m^2) of quarter cell
real, dimension(isd:ied,jsd:jed) :: smooth_lap !2D array of micom diffusivities (m^2/sec) for smoothing
real, dimension(isd:ied,jsd:jed) :: surf_bdlthick ! surface turbulent boundary layer thickness (m)
real, dimension(isd:ied,jsd:jed,nk) :: slopex_drhodx !3D array of slopex * drhodx for diagnostics
real, dimension(isd:ied,jsd:jed,nk) :: slopey_drhody !3D array of slopey * drhody for diagnostics
real, dimension(isd:ied,jsd:jed,nk) :: grav_agm_dz_sx_drhodx !3D array of grav*agm*dz*slopex*drhodx for diagnostics
real, dimension(isd:ied,jsd:jed,nk) :: grav_agm_dz_sy_drhody !3D array of grav*agm*dz*slopey*drhody for diagnostics
real, dimension(isd:ied,jsd:jed,nk) :: aredi_array !3D array of redi diffusivities (m^2/sec)
real, dimension(isd:ied,jsd:jed,nk) :: agm_array !3D array of gm diffusivities (m^2/sec)
real, dimension(isd:ied,jsd:jed) :: bczone_radius !bczone calculation (m)
real, dimension(isd:ied,jsd:jed) :: rossby_radius !first baroclinic Rossby radius (m)
real, dimension(isd:ied,jsd:jed) :: rossby_radius_raw !first baroclinic Rossby radius (m) without max/min
real, dimension(isd:ied,jsd:jed,nk) :: eady_termx !rho_z*(S_x)^2 for computing Eady growth rate
real, dimension(isd:ied,jsd:jed,nk) :: eady_termy !rho_z*(S_y)^2 for computing Eady growth rate
real, dimension(isd:ied,jsd:jed) :: baroclinic_termx !intermediate term for computing vert ave baroclinicity
real, dimension(isd:ied,jsd:jed) :: baroclinic_termy !intermediate term for computing vert ave baroclinicity
real, dimension(isd:ied,jsd:jed) :: grid_length !grid length scale (m)
real, dimension(isd:ied,jsd:jed,nk) :: drhodT !drho/dtheta (kg/m^3/C)
real, dimension(isd:ied,jsd:jed,nk) :: drhodS !drho/dsalinity (kg/m^3/psu)
real, dimension(isd:ied,jsd:jed,nk,0:1) :: drhodzb !vertical neutral density gradient (kg/m^3/m)
real, dimension(isd:ied,jsd:jed,nk,0:1) :: drhodzh !vertical neutral density gradient (kg/m^3/m)
real, dimension(isd:ied,jsd:jed,nk) :: K33_implicit !density weighted (kg/m^3) implicit in time
!diagonal term in redi tensor (m^2/sec)
real, dimension(isd:ied,jsd:jed,nk) :: K33_explicit !density weighted (kg/m^3) explicit in time
!diagonal term in redi tensor (m^2/sec)
real, dimension(isd:ied,jsd:jed,nk,0:1,0:1) :: tensor_31 !portion of mixing tensor
real, dimension(isd:ied,jsd:jed,nk,0:1,0:1) :: tensor_32 !portion of mixing tensor
real, dimension(isd:ied,jsd:jed,0:1,0:1) :: tensor_11 !portion of mixing tensor
real, dimension(isd:ied,jsd:jed,0:1,0:1) :: tensor_13 !portion of mixing tensor
real, dimension(isd:ied,jsd:jed,0:1,0:1) :: tensor_22 !portion of mixing tensor
real, dimension(isd:ied,jsd:jed,0:1,0:1) :: tensor_23 !portion of mixing tensor
real, dimension(isd:ied,jsd:jed,nk) :: tx_trans_gm !for diagnosing i-transport due to GM (Sv)
real, dimension(isd:ied,jsd:jed,nk) :: ty_trans_gm !for diagnosing j-transport due to GM (Sv)
integer, dimension(isd:ied,jsd:jed) :: ksurf_blayer ! k-value at base of surface nblayer
real, dimension(isd:ied,jsd:jed) :: surf_turb_thick ! thickness (m) of surface turbulent boundary layer
real, dimension(isd:ied,jsd:jed) :: surf_trans_thick ! thickness (m) of surface transition zone
real, dimension(isd:ied,jsd:jed) :: full_turb_column ! =1 if column fully turbulent, =0 if not.
real, dimension(isd:ied,jsd:jed) :: depth_blayer_base ! depth at interface between surf_trans zone and interior
real, dimension(isd:ied,jsd:jed) :: slope_blayer_base ! abs(slope) at base of neutral boundary layer
#else
real, dimension(:,:,:,:), allocatable :: delqc !density weighted (kg/m^3) quarter cell thickness(m)
real, dimension(:,:,:), allocatable :: dzwtr !(1/dzwt)(m^-1)
real, dimension(:,:,:), allocatable :: dtew !grid distances from T-point to cell faces (m)
real, dimension(:,:,:), allocatable :: dtns !grid distances from T-point to cell faces (m)
real, dimension(:,:,:), allocatable :: dtwedyt !horizontal areas (m^2) of quarter cell
real, dimension(:,:,:), allocatable :: dxtdtsn !horizontal areas (m^2) of quarter cell
real, dimension(:,:), allocatable :: smooth_lap !2D array of micom diffusivities (m^2/sec) for smoothing
real, dimension(:,:), allocatable :: surf_bdlthick !surface turbulent boundary layer thickness (m)
real, dimension(:,:,:), allocatable :: slopex_drhodx !3D array of slopex * drhodx for diagnostics
real, dimension(:,:,:), allocatable :: slopey_drhody !3D array of slopey * drhody for diagnostics
real, dimension(:,:,:), allocatable :: grav_agm_dz_sx_drhodx !3D array of grav*agm*dz*slopex*drhodx for diagnostics
real, dimension(:,:,:), allocatable :: grav_agm_dz_sy_drhody !3D array of grav*agm*dz*slopey*drhody for diagnostics
real, dimension(:,:,:), allocatable :: aredi_array !3D array of redi diffusivities (m^2/sec)
real, dimension(:,:,:), allocatable :: agm_array !3D array of gm diffusivities (m^2/sec)
real, dimension(:,:), allocatable :: bczone_radius !bczone calculation (m)
real, dimension(:,:), allocatable :: rossby_radius !first baroclinic Rossby radius (m)
real, dimension(:,:), allocatable :: rossby_radius_raw !first baroclinic Rossby radius (m) without max/min
real, dimension(:,:,:), allocatable :: eady_termx !rho_z*(S_x)^2 for computing Eady growth rate
real, dimension(:,:,:), allocatable :: eady_termy !rho_z*(S_y)^2 for computing Eady growth rate
real, dimension(:,:), allocatable :: baroclinic_termx !intermediate term for computing vert ave baroclinicity
real, dimension(:,:), allocatable :: baroclinic_termy !intermediate term for computing vert ave baroclinicity
real, dimension(:,:), allocatable :: grid_length !grid length scale (m)
real, dimension(:,:,:), allocatable :: drhodT !drho/dtheta (kg/m^3/C)
real, dimension(:,:,:), allocatable :: drhodS !drho/dsalinity (kg/m^3/psu)
real, dimension(:,:,:,:), allocatable :: drhodzb !vertical neutral density gradient (kg/m^3/m)
real, dimension(:,:,:,:), allocatable :: drhodzh !vertical neutral density gradient (kg/m^3/m)
real, dimension(:,:,:,:,:), allocatable :: tensor_31 !portion of mixing tensor
real, dimension(:,:,:,:,:), allocatable :: tensor_32 !portion of mixing tensor
real, dimension(:,:,:,:), allocatable :: tensor_11 !portion of mixing tensor
real, dimension(:,:,:,:), allocatable :: tensor_13 !portion of mixing tensor
real, dimension(:,:,:,:), allocatable :: tensor_22 !portion of mixing tensor
real, dimension(:,:,:,:), allocatable :: tensor_23 !portion of mixing tensor
real, dimension(:,:,:), allocatable :: K33_implicit !density weighted (kg/m^3) implicit in time
!diagonal term in redi tensor (m^2/sec)
real, dimension(:,:,:), allocatable :: K33_explicit !density weighted (kg/m^3) explicit in time
integer, dimension(:,:), allocatable :: ksurf_blayer ! k-value at base of surface nblayer
real, dimension(:,:), allocatable :: surf_turb_thick ! thickness (m) of surface turbulent boundary layer
real, dimension(:,:), allocatable :: surf_trans_thick ! thickness (m) of surface transition region
real, dimension(:,:), allocatable :: full_turb_column ! =1 if column fully turbulent, =0 if not.
real, dimension(:,:), allocatable :: depth_blayer_base ! depth at interface between surf_trans zone and interior
real, dimension(:,:), allocatable :: slope_blayer_base ! abs(slope) at base of neutral boundary layer
real, dimension(:,:,:), allocatable :: tx_trans_gm !for diagnosing i-transport due to GM (Sv)
real, dimension(:,:,:), allocatable :: ty_trans_gm !for diagnosing j-transport due to GM (Sv)
#endif
! use these derived types so that do not need to know num_prog_tracers at compile time
type(tracer_3d_1_nk_type), dimension(:), allocatable :: dTdx ! tracer partial derivative (tracer/m)
type(tracer_3d_1_nk_type), dimension(:), allocatable :: dTdy ! tracer partial derivative (tracer/m)
type(tracer_3d_0_nk_type), dimension(:), allocatable :: dTdz ! tracer partial derivative (tracer/m)
type(tracer_2d_type), dimension(:), allocatable :: fz1 ! z-flux component for tracers at particular k
type(tracer_2d_type), dimension(:), allocatable :: fz2 ! z-flux component for tracers at particular k
type(tracer_3d_1_nk_type), dimension(:), allocatable :: flux_x ! i-flux component for tracers for all k
type(tracer_3d_1_nk_type), dimension(:), allocatable :: flux_y ! j-flux component for tracers for all k
integer :: index_temp
integer :: index_salt
character(len=128) :: version=&
'$Id: ocean_nphysicsB.F90,v 1.1.2.27.12.7.18.2.18.1.32.1.4.1 2009/10/21 20:07:27 smg Exp $'
character (len=128) :: tagname = &
'$Name: mom4p1_pubrel_dec2009_nnz $'
logical :: module_is_initialized = .FALSE.
! some useful constants
real :: gravrho0r
real :: gravrho0r_buoyr
real :: fivedeg
real :: gamma_damp
! time step settings
real :: dtime
real :: two_dtime_inv
! vertical coordinate
integer :: vert_coordinate_class
! lower and upper depth for vertically averaging ocean properties.
! read into ocean_nphysics_util_nml
real :: agm_closure_upper_depth
real :: agm_closure_lower_depth
!**************nml settings**************
! for using form drag rather than GM-skewsion
! gm_skew=1.0 if use_gm_skew=.true.
! gm_skew=0.0 if use_gm_skew=.false.
logical :: use_gm_skew=.true.
real :: gm_skew=1.0
! time (days) to damp the evolution of the nonconstant diffusivity,
! as well as for updating the surface turbulent boundary
! layer thickness that is read into this module. This damping
! allows for the neutral physics module to use boundary layer thicknesses
! and diffusivities that are evolving on a slow (e.g., many days) time.
real :: neutral_damping_time=10.0
! for smoothing the neutral blayer fields
logical :: nblayer_smooth = .true.
real :: vel_micom_smooth = 0.2 ! m/sec
! for setting the slope tapering methods
real :: smax ! set in ocean_neutral_util_nml
real :: swidth ! set in ocean_neutral_util_nml
logical :: dm_taper=.true. ! tanh taper scheme of Danabasoglu/McWilliams (only one available here)
real :: dm_taper_const=1.0 ! internally set to unity when dm_taper=.true.
real :: swidthr ! inverse swidth
real :: smax_swidthr ! useful combination of terms
logical :: gkw_taper = .false. ! quadratic tapering of Gerdes, Koberle, and Willebrand
real :: gkw_taper_const = 0.0 ! internally set to unity when gkw_taper=.true.
! for determining the neutral blayer regimes
integer :: surf_turb_thick_min_k = 5 ! min klevel in surf_turb_thick_min
real :: surf_turb_thick_min = 50.0 ! metres
! to compute K33 explicitly in time.
! diffusion_all_explicit=.false. for realistic simulations.
logical :: diffusion_all_explicit=.false.
! revert to horizontal diffusion when tracer falls outside specified range
logical :: neutral_physics_limit=.true.
! to reduce neutral fluxes to horz/vert diffusion next to model boundaries
logical :: tmask_neutral_on=.false.
! for specifying transport units
! can either be Sv or mks
character(len=32) :: transport_units='Sv'
character(len=32) :: transport_dims ='Sv (10^9 kg/s)'
real :: transport_convert=1.0e-9
! for the module as a whole
logical :: use_this_module = .false.
logical :: debug_this_module = .false.
namelist /ocean_nphysicsB_nml/ &
use_this_module, debug_this_module, &
neutral_physics_limit, diffusion_all_explicit, &
tmask_neutral_on, use_gm_skew, &
surf_turb_thick_min, surf_turb_thick_min_k, &
nblayer_smooth, vel_micom_smooth, &
neutral_damping_time, &
dm_taper, gkw_taper, transport_units
contains
!#######################################################################
!
!
!
! Initialize the neutral physics module by registering fields for
! diagnostic output and performing some numerical checks to see
! that namelist settings are appropriate.
!
!
subroutine ocean_nphysicsB_init(Grid, Domain, Time, Time_steps, Thickness, T_prog,&
ver_coordinate_class, agm_closure_lower_dept, agm_closure_upper_dept, &
smx, swidt, debug)
type(ocean_grid_type), intent(in), target :: Grid
type(ocean_domain_type), intent(in), target :: Domain
type(ocean_time_type), intent(in) :: Time
type(ocean_time_steps_type), intent(in) :: Time_steps
type(ocean_thickness_type), intent(in) :: Thickness
type(ocean_prog_tracer_type), intent(inout) :: T_prog(:)
integer, intent(in) :: ver_coordinate_class
real, intent(in) :: agm_closure_lower_dept
real, intent(in) :: agm_closure_upper_dept
real, intent(in) :: smx
real, intent(in) :: swidt
logical, intent(in), optional :: debug
integer :: ioun, io_status, ierr
integer :: i, j, k, n
integer :: surf_turb_min_k
integer :: id_restart
real :: ah_array(isd:ied,jsd:jed)
character(len=64) :: file_name
integer :: stdoutunit,stdlogunit
stdoutunit=stdout();stdlogunit=stdlog()
if ( module_is_initialized ) then
call mpp_error(FATAL, &
'==>Error from ocean_nphysicsB_mod (ocean_nphysicsB_init):already initialized')
endif
module_is_initialized = .TRUE.
call write_version_number( version, tagname )
num_prog_tracers = size(T_prog(:))
dtime = Time_steps%dtime_t
Dom => Domain
Grd => Grid
vert_coordinate_class = ver_coordinate_class
agm_closure_lower_depth = agm_closure_lower_dept
agm_closure_upper_depth = agm_closure_upper_dept
smax = smx
swidth = swidt
! provide for namelist over-ride of default values
ioun = open_namelist_file()
read (ioun,ocean_nphysicsB_nml,IOSTAT=io_status)
write (stdoutunit,'(/)')
write (stdoutunit,ocean_nphysicsB_nml)
write (stdlogunit,ocean_nphysicsB_nml)
ierr = check_nml_error(io_status,'ocean_nphysicsB_nml')
call close_file (ioun)
#ifndef MOM4_STATIC_ARRAYS
call get_local_indices(Domain,isd,ied,jsd,jed,isc,iec,jsc,jec)
nk = Grid%nk
#endif
if(use_this_module) then
call mpp_error(NOTE, &
'==> from ocean_nphysicsB_mod: USING ocean_nphysicsB_mod.')
write(stdoutunit,'(1x,a)') &
'==> Note from ocean_nphysicsB_mod: USING ocean_nphysicsB.'
else
call mpp_error(NOTE, &
'==> from ocean_nphysicsB_mod: NOT using ocean_nphysicsB_mod.')
write(stdoutunit,'(1x,a)') &
'==> Note from ocean_nphysicsB_mod: NOT using ocean_nphysicsB.'
return
endif
if (PRESENT(debug) .and. .not. debug_this_module) then
debug_this_module = debug
endif
if(debug_this_module) then
write(stdoutunit,'(a)') &
'==>Note: running ocean_nphysicsB_mod with debug_this_module=.true.'
endif
write(stdoutunit,'(/1x,a,f10.2)') &
'==> Note from ocean_nphysicsB_mod: using forward time step of (secs)', dtime
if(transport_units=='Sv') then
transport_convert=1.0e-9
transport_dims = 'Sv (10^9 kg/s)'
else
transport_convert=1.0
transport_dims = 'kg/s'
endif
! Useful constants
two_dtime_inv = 0.5/dtime !for explicit piece of K33
swidthr = 1.0/(swidth + epsln) !for slope taper function with dm_taper
smax_swidthr = smax*swidthr !for slope taper function with dm_taper
gamma_damp = dtime/(86400.0*neutral_damping_time) !for damping blayers and diffusivities
if(use_gm_skew) then
gm_skew=1.0
write(stdoutunit,'(1x,a)')' ==> Note from ocean_nphysicsB_init: use_gm_skew=.true. so will use GM-skewsion.'
else
gm_skew=0.0
write(stdoutunit,'(1x,a)')' ==> Note from ocean_nphysicsB_init: use_gm_skew=.false. so will NOT use GM-skewsion.'
endif
if(dm_taper .and. .not. gkw_taper) then
write(stdoutunit,'(1x,a)') &
' ==>Note from ocean_nphysicsB_mod: dm_taper=.true. Will use the tanh scheme '
write(stdoutunit,'(7x,a)') &
'of Danabasoglu and McWilliams to taper neutral physics in steep sloped regions'
dm_taper_const =1.0
gkw_taper_const=0.0
endif
if(gkw_taper .and. .not. dm_taper) then
write(stdoutunit,'(1x,a)') &
' ==>Note from ocean_nphysicsB_mod: gkw_taper=.true. Will use the quadratic scheme'
write(stdoutunit,'(7x,a)') &
'of Gerdes, Koberle, and Willebrand to taper neutral physics in steep sloped regions'
dm_taper_const =0.0
gkw_taper_const=1.0
endif
if(gkw_taper .and. dm_taper) then
dm_taper_const =0.0
gkw_taper_const=0.0
call mpp_error(FATAL, &
'==>Error from ocean_nphysicsB_mod: gkw_taper and dm_taper cannot both be set true--choose only one.')
endif
if(neutral_physics_limit) then
write(stdoutunit,'(1x,a)') &
' ==>Note from ocean_nphysicsB_mod: neutral_physics_limit=.true.'
write(stdoutunit,'(7x,a)') &
'Will revert to horizontal diffusion for points where tracer is outside specified range.'
endif
if(dm_taper) then
write(stdoutunit,'(1x,a)') &
' ==>Note from ocean_nphysicsB_mod: dm_taper=.true. Will use the tanh scheme '
write(stdoutunit,'(7x,a)') &
'of Danabasoglu and McWilliams to taper neutral physics in steep sloped regions.'
write(stdoutunit,'(7x,a)') &
'This is the only tapering scheme available with ocean_nphysicsB_mod.'
endif
if(diffusion_all_explicit) then
write(stdoutunit,'(1x,a)') &
' ==> Warning: Running w/ diffusion_all_explicit=.true., which means compute K33 contribution'
write(stdoutunit,'(7x,a)') &
'to neutral diffusion explicitly in time. This method is stable only if taking'
write(stdoutunit,'(7x,a)') &
'very small time steps and/or running with just a single tracer.'
endif
do n=1,num_prog_tracers
T_prog(n)%neutral_physics_limit = neutral_physics_limit
enddo
allocate( dTdx(num_prog_tracers) )
allocate( dTdy(num_prog_tracers) )
allocate( dTdz(num_prog_tracers) )
allocate( fz1(num_prog_tracers) )
allocate( fz2(num_prog_tracers) )
allocate( flux_x(num_prog_tracers) )
allocate( flux_y(num_prog_tracers) )
call set_ocean_domain(Dom_flux, Grid, xhalo=Dom%xhalo, yhalo=Dom%yhalo, &
name='flux dom neutral',maskmap=Dom%maskmap)
#ifndef MOM4_STATIC_ARRAYS
allocate (dtew(isd:ied,jsd:jed,0:1))
allocate (dtns(isd:ied,jsd:jed,0:1))
allocate (dtwedyt(isd:ied,jsd:jed,0:1))
allocate (dxtdtsn(isd:ied,jsd:jed,0:1))
allocate (grid_length(isd:ied,jsd:jed))
allocate (delqc(isd:ied,jsd:jed,nk,0:1))
allocate (dzwtr(isd:ied,jsd:jed,0:nk))
allocate (aredi_array(isd:ied,jsd:jed,nk))
allocate (agm_array(isd:ied,jsd:jed,nk))
allocate (smooth_lap(isd:ied,jsd:jed))
allocate (surf_bdlthick(isd:ied,jsd:jed))
allocate (bczone_radius(isd:ied,jsd:jed))
allocate (rossby_radius(isd:ied,jsd:jed))
allocate (rossby_radius_raw(isd:ied,jsd:jed))
allocate (eady_termx(isd:ied,jsd:jed,nk))
allocate (eady_termy(isd:ied,jsd:jed,nk))
allocate (baroclinic_termx(isd:ied,jsd:jed))
allocate (baroclinic_termy(isd:ied,jsd:jed))
allocate (tx_trans_gm(isd:ied,jsd:jed,nk))
allocate (ty_trans_gm(isd:ied,jsd:jed,nk))
allocate (grav_agm_dz_sx_drhodx(isd:ied,jsd:jed,nk))
allocate (grav_agm_dz_sy_drhody(isd:ied,jsd:jed,nk))
allocate (slopex_drhodx(isd:ied,jsd:jed,nk))
allocate (slopey_drhody(isd:ied,jsd:jed,nk))
allocate (drhodT(isd:ied,jsd:jed,nk))
allocate (drhodS(isd:ied,jsd:jed,nk))
allocate (drhodzb(isd:ied,jsd:jed,nk,0:1))
allocate (drhodzh(isd:ied,jsd:jed,nk,0:1))
allocate (tensor_31(isd:ied,jsd:jed,nk,0:1,0:1))
allocate (tensor_32(isd:ied,jsd:jed,nk,0:1,0:1))
allocate (tensor_11(isd:ied,jsd:jed,0:1,0:1))
allocate (tensor_13(isd:ied,jsd:jed,0:1,0:1))
allocate (tensor_22(isd:ied,jsd:jed,0:1,0:1))
allocate (tensor_23(isd:ied,jsd:jed,0:1,0:1))
allocate (K33_implicit(isd:ied,jsd:jed,nk))
allocate (K33_explicit(isd:ied,jsd:jed,nk))
do n=1,num_prog_tracers
allocate ( dTdx(n)%field(isd:ied,jsd:jed,nk) )
allocate ( dTdy(n)%field(isd:ied,jsd:jed,nk) )
allocate ( dTdz(n)%field(isd:ied,jsd:jed,0:nk) )
allocate ( fz1(n)%field(isd:ied,jsd:jed) )
allocate ( fz2(n)%field(isd:ied,jsd:jed) )
allocate ( flux_x(n)%field(isd:ied,jsd:jed,nk) )
allocate ( flux_y(n)%field(isd:ied,jsd:jed,nk) )
enddo
allocate(ksurf_blayer(isd:ied,jsd:jed))
allocate(surf_turb_thick(isd:ied,jsd:jed))
allocate(surf_trans_thick(isd:ied,jsd:jed))
allocate(depth_blayer_base(isd:ied,jsd:jed))
allocate(full_turb_column(isd:ied,jsd:jed))
allocate(slope_blayer_base(isd:ied,jsd:jed))
#endif
do n=1,num_prog_tracers
dTdx(n)%field(:,:,:) = 0.0
dTdy(n)%field(:,:,:) = 0.0
dTdz(n)%field(:,:,:) = 0.0
fz1(n)%field(:,:) = 0.0
fz2(n)%field(:,:) = 0.0
flux_x(n)%field(:,:,:) = 0.0
flux_y(n)%field(:,:,:) = 0.0
enddo
! fields related to boundary layer regimes
do j=jsd,jed
do i=isd,ied
ksurf_blayer(i,j) = 1
surf_turb_thick(i,j) = Grd%tmask(i,j,1)*surf_turb_thick_min
surf_trans_thick(i,j) = 0.0
depth_blayer_base(i,j) = surf_turb_thick(i,j) + surf_trans_thick(i,j)
full_turb_column(i,j) = 0.0
slope_blayer_base(i,j) = 0.0
enddo
enddo
tx_trans_gm(:,:,:) = 0.0
ty_trans_gm(:,:,:) = 0.0
dtew(:,:,0) = Grd%dtw(:,:)
dtew(:,:,1) = Grd%dte(:,:)
dtns(:,:,0) = Grd%dts(:,:)
dtns(:,:,1) = Grd%dtn(:,:)
dtwedyt(:,:,:) = 0.0
dtwedyt(:,:,0) = Grd%dte(:,:)*Grd%dyt(:,:)
do i=isc-1,iec
dtwedyt(i,:,1) = Grd%dtw(i+1,:)*Grd%dyt(i+1,:)
enddo
dxtdtsn(:,:,:) = 0.0
dxtdtsn(:,:,0) = Grd%dxt(:,:)*Grd%dtn(:,:)
do j=jsc-1,jec
dxtdtsn(:,j,1) = Grd%dxt(:,j+1)*Grd%dts(:,j+1)
enddo
grid_length(:,:) = 2.0*Grd%dxt(:,:)*Grd%dyt(:,:)/(Grd%dxt(:,:)+Grd%dyt(:,:))
surf_bdlthick(:,:) = 0.0
smooth_lap(:,:) = vel_micom_smooth*grid_length(:,:)
eady_termx(:,:,:) = 0.0
eady_termy(:,:,:) = 0.0
baroclinic_termx(:,:) = 0.0
baroclinic_termy(:,:) = 0.0
grav_agm_dz_sx_drhodx(:,:,:) = 0.0
grav_agm_dz_sy_drhody(:,:,:) = 0.0
slopex_drhodx(:,:,:) = 0.0
slopey_drhody(:,:,:) = 0.0
rossby_radius(:,:) = 0.0
rossby_radius_raw(:,:) = 0.0
bczone_radius(:,:) = 0.0
aredi_array(:,:,:) = 0.0
agm_array(:,:,:) = 0.0
ah_array(:,:) = 0.0
call ocean_nphysics_coeff_init(Time, Thickness, rossby_radius, rossby_radius_raw, &
bczone_radius, agm_array, aredi_array, ah_array)
drhodT(:,:,:) = 0.0
drhodS(:,:,:) = 0.0
drhodzb(:,:,:,:) = 0.0
drhodzh(:,:,:,:) = 0.0
tensor_31(:,:,:,:,:) = 0.0
tensor_32(:,:,:,:,:) = 0.0
tensor_11(:,:,:,:) = 0.0
tensor_13(:,:,:,:) = 0.0
tensor_22(:,:,:,:) = 0.0
tensor_23(:,:,:,:) = 0.0
K33_implicit(:,:,:) = 0.0
K33_explicit(:,:,:) = 0.0
file_name = 'ocean_neutralB.res.nc'
! make mandatory=.false. to facilitate backward compatibility with older restart files.
id_restart = register_restart_field(NphysicsB_restart, file_name, "surf_turb_thick", surf_turb_thick, &
domain=Dom%domain2d, mandatory=.false.)
id_restart = register_restart_field(NphysicsB_restart, file_name, "surf_trans_thick", surf_trans_thick, &
domain=Dom%domain2d, mandatory=.false.)
if(.NOT.file_exist('INPUT/ocean_neutralB.res.nc')) then
if (.NOT. Time%init) then
call mpp_error(FATAL, &
'Expecting file INPUT/ocean_neutralB.res.nc to exist.&
&This file was not found and Time%init=.false.')
endif
else
call restore_state(NphysicsB_restart)
call mpp_update_domains(surf_turb_thick,Dom%domain2d)
call mpp_update_domains(surf_trans_thick,Dom%domain2d)
write(stdoutunit,*)' '
write(stdoutunit,*) 'From ocean_nphysicsB_init: initial neutral checksums'
call write_timestamp(Time%model_time)
call neutral_chksums
endif
index_temp=-1;index_salt=-1
do n=1,num_prog_tracers
if (T_prog(n)%name == 'temp') index_temp = n
if (T_prog(n)%name == 'salt') index_salt = n
enddo
if (index_temp == -1 .or. index_salt == -1) then
call mpp_error(FATAL, &
'==>Error: temp and/or salt not identified in call to ocean_nphysicsB_init')
endif
! minimum number of grid cells in surface turbulent boundary layer
write(stdoutunit,'(1x,a,f10.2)') &
'==>Note: Surface turb boundary layer for nphysicsB assumed to have min thick (m) =', &
surf_turb_thick_min
kturb_loop : do k=1,nk-1
surf_turb_min_k = k
if(Grd%zw(k) <= surf_turb_thick_min .and. Grd%zw(k+1) > surf_turb_thick_min) then
exit
endif
enddo kturb_loop
surf_turb_thick_min_k = max(surf_turb_thick_min_k,surf_turb_min_k)
write(stdoutunit,'(1x,a,i3,a)') &
'==>Note: Surface turb boundary layer assumed to have at least ',surf_turb_thick_min_k,' k-levels.'
! initialize clock ids
id_clock_neutral_blayer = mpp_clock_id('(Ocean neutral: neutral blayer)',grain=CLOCK_ROUTINE)
id_clock_fz_terms = mpp_clock_id('(Ocean neutral: fz-terms)' ,grain=CLOCK_ROUTINE)
id_clock_fx_flux = mpp_clock_id('(Ocean neutral: fx-flux)' ,grain=CLOCK_ROUTINE)
id_clock_fy_flux = mpp_clock_id('(Ocean neutral: fy-flux)' ,grain=CLOCK_ROUTINE)
id_clock_fz_flux = mpp_clock_id('(Ocean neutral: fz-flux)' ,grain=CLOCK_ROUTINE)
! register fields for diagnostic output
id_k33_explicit = -1
id_k33_explicit = register_diag_field ('ocean_model', 'k33_explicit', &
Grd%tracer_axes_wt(1:3), Time%model_time, &
'K33_explicit tensor element', 'm^2/sec', &
missing_value=missing_value, range=(/-10.0,1.e20/))
id_tx_trans_gm = -1
id_tx_trans_gm = register_diag_field ('ocean_model', 'tx_trans_gm', &
Grd%tracer_axes_flux_x(1:3), Time%model_time, &
'T-cell mass i-transport from GM',trim(transport_dims),&
missing_value=missing_value, range=(/-1e8,1.e8/))
id_ty_trans_gm = -1
id_ty_trans_gm = register_diag_field ('ocean_model', 'ty_trans_gm', &
Grd%tracer_axes_flux_y(1:3), Time%model_time, &
'T-cell mass j-transport from GM',trim(transport_dims),&
missing_value=missing_value, range=(/-1e8,1.e8/))
id_slope_blayer_base = -1
id_slope_blayer_base = register_diag_field ('ocean_model','slope_blayer_base', &
Grd%tracer_axes(1:2), Time%model_time, &
'abs(slope) at neutral physics bdy-layer base', 'dimensionless', &
missing_value=missing_value, range=(/-1.0,1.e8/))
id_surf_turb_thick = -1
id_surf_turb_thick = register_diag_field ('ocean_model','surf_turb_thick', &
Grd%tracer_axes(1:2), Time%model_time, &
'surface turbulent thickness for neutral physics', 'm', &
missing_value=missing_value, range=(/-1.0,1.e8/))
id_surf_trans_thick = -1
id_surf_trans_thick = register_diag_field ('ocean_model','surf_trans_thick', &
Grd%tracer_axes(1:2), Time%model_time, &
'Surface transition layer thickness', 'm', &
missing_value=missing_value, range=(/-1.0,1.e8/))
id_depth_blayer_base = -1
id_depth_blayer_base = register_diag_field ('ocean_model','depth_blayer_base', &
Grd%tracer_axes(1:2), Time%model_time, &
'Depth at bottom of neutral physics surface boundary layer', 'm',&
missing_value=missing_value, range=(/-1.0,1.e8/))
id_full_turb_column = -1
id_full_turb_column = register_diag_field ('ocean_model','full_turb_column', &
Grd%tracer_axes(1:2), Time%model_time, &
'regions deemed fully turbulent by neutral physics', 'dimensioness', &
missing_value=missing_value, range=(/-1.e8,1.e8/))
id_grav_agm_dz_sx_drhodx = -1
id_grav_agm_dz_sx_drhodx = register_diag_field ('ocean_model', 'grav_agm_dz_sx_drhodx', &
Grd%tracer_axes(1:3), Time%model_time, &
'grav*dz*agm*neutral x-slope times drho_dx', 'W/m^2', &
missing_value=missing_value, range=(/-1.e15,1.e15/))
id_grav_agm_dz_sy_drhody = -1
id_grav_agm_dz_sy_drhody = register_diag_field ('ocean_model', 'grav_agm_dz_sy_drhody', &
Grd%tracer_axes(1:3), Time%model_time, &
'grav*dz*agm*neutral y-slope times drho_dy', 'W/m^2', &
missing_value=missing_value, range=(/-1.e15,1.e15/))
id_gm_eddy_ke_source = -1
id_gm_eddy_ke_source = register_diag_field ('ocean_model', 'gm_eddy_ke_source',&
Grd%tracer_axes(1:3), Time%model_time, &
'rho0*dz*agm*(slope*N)^2 = eddy ke source from GM', 'W/m^2', &
missing_value=missing_value, range=(/-1.e1,1.e15/), &
standard_name='tendency_of_ocean_eddy_kinetic_energy_content_due_to_bolus_transport')
id_slopex_drhodx = -1
id_slopex_drhodx = register_diag_field ('ocean_model', 'slopex_drhodx', &
Grd%tracer_axes(1:3), Time%model_time, &
'neutral x-slope times drho_dx', 'kg/m^4', &
missing_value=missing_value, range=(/-1.e10,1.e10/))
id_slopey_drhody = -1
id_slopey_drhody = register_diag_field ('ocean_model', 'slopey_drhody', &
Grd%tracer_axes(1:3), Time%model_time, &
'neutral y-slope times drho_dy', 'kg/m^4', &
missing_value=missing_value, range=(/-1.e10,1.e10/))
id_neutral_rho_nphysics = -1
id_neutral_rho_nphysics = register_diag_field ('ocean_model', 'neutral_rho_nphysics', &
Grd%tracer_axes(1:3), Time%model_time, &
'update of neutral density from explicit in time nphysics', &
'rho*rho_dz/sec', missing_value=missing_value, range=(/-1.e10,1.e10/))
id_wdian_rho_nphysics = -1
id_wdian_rho_nphysics = register_diag_field ('ocean_model', 'wdian_rho_nphysics', &
Grd%tracer_axes(1:3), Time%model_time, &
'dianeutral velocity component due to explicit in time nphysics',&
'm/sec', missing_value=missing_value, range=(/-1.e10,1.e10/))
allocate (id_k33_implicit(num_prog_tracers))
allocate (id_neutral_physics(num_prog_tracers))
id_k33_implicit = -1
id_neutral_physics = -1
do n=1,num_prog_tracers
id_k33_implicit(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_k33_implicit', &
Grd%tracer_axes_wt(1:3), Time%model_time, &
'K33_implicit tensor element for '//trim(T_prog(n)%name), &
'm^2/sec', missing_value=missing_value, range=(/-10.0,1.e10/))
if (T_prog(n)%name == 'temp') then
id_neutral_physics(n) = register_diag_field ('ocean_model', 'neutral_'//trim(T_prog(n)%name), &
Grd%tracer_axes(1:3), Time%model_time, &
'rho*dzt*cp*explicit neutral tendency (heating)', &
trim(T_prog(n)%flux_units), missing_value=missing_value, range=(/-1.e10,1.e10/))
else
id_neutral_physics(n) = register_diag_field ('ocean_model', 'neutral_'//trim(T_prog(n)%name), &
Grd%tracer_axes(1:3), Time%model_time, &
'rho*dzt*explicit neutral tendency for '//trim(T_prog(n)%name), &
trim(T_prog(n)%flux_units), missing_value=missing_value, range=(/-1.e10,1.e10/))
endif
enddo
allocate (id_flux_x(num_prog_tracers))
allocate (id_flux_y(num_prog_tracers))
allocate (id_flux_x_int_z(num_prog_tracers))
allocate (id_flux_y_int_z(num_prog_tracers))
id_flux_x = -1
id_flux_y = -1
id_flux_x_int_z = -1
id_flux_y_int_z = -1
do n=1,num_prog_tracers
if(n == index_temp) then
id_flux_x(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_xflux_neutral', &
Grd%tracer_axes_flux_x(1:3), Time%model_time, 'cp*neutral_xflux*dyt*rho_dzt*temp', &
'Watt', missing_value=missing_value, range=(/-1.e18,1.e18/))
id_flux_y(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_yflux_neutral', &
Grd%tracer_axes_flux_y(1:3), Time%model_time, 'cp*neutral_yflux*dxt*rho_dzt*temp', &
'Watt', missing_value=missing_value, range=(/-1.e18,1.e18/))
id_flux_x_int_z(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_xflux_neutral_int_z', &
Grd%tracer_axes_flux_x(1:2), Time%model_time, 'z-integral cp*neutral_xflux*dyt*rho_dzt*temp', &
'Watt', missing_value=missing_value, range=(/-1.e18,1.e18/))
id_flux_y_int_z(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_yflux_neutral_int_z', &
Grd%tracer_axes_flux_y(1:2), Time%model_time, 'z-integral cp*neutral_yflux*dxt*rho_dzt*temp', &
'Watt', missing_value=missing_value, range=(/-1.e18,1.e18/))
else
id_flux_x(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_xflux_neutral', &
Grd%tracer_axes_flux_x(1:3), Time%model_time, &
'neutral_xflux*dyt*rho_dzt*tracer for'//trim(T_prog(n)%name), &
trim(T_prog(n)%units)//' kg/sec', missing_value=missing_value, range=(/-1.e18,1.e18/))
id_flux_y(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_yflux_neutral', &
Grd%tracer_axes_flux_y(1:3), Time%model_time, &
'neutral_yflux*dxt*rho_dzt*tracer for'//trim(T_prog(n)%name), &
trim(T_prog(n)%units)//' kg/sec', missing_value=missing_value, range=(/-1.e18,1.e18/))
id_flux_x_int_z(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_xflux_neutral_int_z', &
Grd%tracer_axes_flux_x(1:2), Time%model_time, &
'z-integral neutral_xflux*dyt*rho_dzt*tracer for'//trim(T_prog(n)%name), &
trim(T_prog(n)%units)//' kg/sec', missing_value=missing_value, range=(/-1.e18,1.e18/))
id_flux_y_int_z(n) = register_diag_field ('ocean_model', trim(T_prog(n)%name)//'_yflux_neutral_int_z', &
Grd%tracer_axes_flux_y(1:2), Time%model_time, &
'z-integral neutral_yflux*dxt*rho_dzt*tracer for'//trim(T_prog(n)%name), &
trim(T_prog(n)%units)//' kg/sec', missing_value=missing_value, range=(/-1.e18,1.e18/))
endif
enddo
end subroutine ocean_nphysicsB_init
! NAME="ocean_nphysicsB_init"
!#######################################################################
!
!
!
! This function computes the thickness weighted and density weighted
! time tendency for tracer from neutral physics. Full discussion
! and details are provided by Griffies (2004,2005).
!
! Here is a brief summary of the temporal treatment.
!
!---How the neutral diffusive flux components are computed:
!
! The vertical flux component is split into diagonal (3,3) and
! off-diagonal (3,1) and (3,2) terms. The off-diagonal (3,1) and (3,2)
! terms are included explicitly in time. The main contribution from the
! (3,3) term to the time tendency is included implicitly in time
! along with the usual contribution from diapycnal processes
! (vertical mixing schemes). This is the K33_implicit term.
! This approach is necessary with high vertical resolution, as
! noted by Cox (1987). However, splitting the vertical flux into
! an implicit and explicit piece compromises the
! integrity of the vertical flux component (see Griffies et al. 1998).
! So to minimize the disparity engendered by this split, the portion of
! K33 that can be stably included explicitly in time is computed along
! with the (3,1) and (3,2) terms.
!
! All other terms in the mixing tensor are included explicitly in time
! using a forward time step as required for temporal stability of
! numerical diffusive processes.
!
!
!
subroutine nphysicsB (Time, Thickness, Dens, rho, T_prog, &
surf_blthick, gm_diffusivity, baroclinic_rossby_radius)
type(ocean_time_type), intent(in) :: Time
type(ocean_thickness_type), intent(in) :: Thickness
type(ocean_density_type), intent(in) :: Dens
real, dimension(isd:,jsd:,:), intent(in) :: rho
real, dimension(isd:,jsd:), intent(in) :: surf_blthick
type(ocean_prog_tracer_type), intent(inout) :: T_prog(:)
real, dimension(isd:,jsd:,:), intent(inout) :: gm_diffusivity
real, dimension(isd:,jsd:), intent(inout) :: baroclinic_rossby_radius
real, dimension(isd:ied,jsd:jed) :: tmp_flux
integer :: i, j, k, n, nn
integer :: tau, taum1
real :: temporary
if (.not. use_this_module) return
if ( .not. module_is_initialized ) then
call mpp_error(FATAL, &
'==>Error from ocean_nphysicsB (nphysicsB): needs initialization')
endif
if (size(T_prog(:)) /= num_prog_tracers) then
call mpp_error(FATAL, &
'==>Error from ocean_nphysicsB (nphysicsB): inconsistent size of T_prog')
endif
taum1 = Time%taum1
tau = Time%tau
! time dependent delqc geometric factor
do k=1,nk
delqc(:,:,k,0) = Grd%fracdz(k,0)*Thickness%rho_dzt(:,:,k,tau)
delqc(:,:,k,1) = Grd%fracdz(k,1)*Thickness%rho_dzt(:,:,k,tau)
enddo
! time dependent inverse dzwt
do k=0,nk
dzwtr(:,:,k) = 1.0/Thickness%dzwt(:,:,k)
enddo
! boundary layer thicknesses read from other
! modules are needed here on the data domain
surf_bdlthick = 0.0
do j=jsc,jec
do i=isc,iec
surf_bdlthick(i,j) = surf_blthick(i,j)
enddo
enddo
call mpp_update_domains(surf_bdlthick(:,:), Dom%domain2d)
do k=1,nk
do j=jsd,jed
do i=isd,ied
drhodT(i,j,k) = Dens%drhodT(i,j,k)
drhodS(i,j,k) = Dens%drhodS(i,j,k)
enddo
enddo
enddo
call tracer_derivs(Time, taum1, dtime, drhodT, drhodS, T_prog, dzwtr, &
dTdx, dTdy, dTdz, drhodzb, drhodzh)
call neutral_slopes(Time, dTdx, dTdy, drhodT, drhodS, drhodzb, tensor_31, tensor_32)
call neutral_blayer(Time, Thickness)
call fz_terms(Time, Thickness, Dens, T_prog, rho)
do n=1,num_prog_tracers
fz1(n)%field(:,:) = 0.0
fz2(n)%field(:,:) = 0.0
flux_x(n)%field(:,:,:) = 0.0
flux_y(n)%field(:,:,:) = 0.0
T_prog(n)%wrk1(:,:,:) = 0.0
enddo
do k=1,nk
call fx_flux(Time, Thickness, T_prog, k)
call fy_flux(Time, Thickness, T_prog, k)
enddo
if (Grd%tripolar) then
do nn=1,num_prog_tracers
call mpp_update_domains(flux_x(nn)%field(:,:,:), flux_y(nn)%field(:,:,:), Dom_flux%domain2d, &
gridtype=CGRID_NE, complete=T_prog(nn)%complete)
enddo
endif
do k=1,nk
call mpp_clock_begin(id_clock_fz_flux)
call fz_flux(T_prog,k)
call mpp_clock_end(id_clock_fz_flux)
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc,iec
T_prog(nn)%wrk1(i,j,k) = &
Grd%tmask(i,j,k) &
*(fz1(nn)%field(i,j)-fz2(nn)%field(i,j) &
+( flux_x(nn)%field(i,j,k)-flux_x(nn)%field(i-1,j,k) &
+flux_y(nn)%field(i,j,k)-flux_y(nn)%field(i,j-1,k) )*Grd%datr(i,j) &
)
T_prog(nn)%th_tendency(i,j,k) = T_prog(nn)%th_tendency(i,j,k) + T_prog(nn)%wrk1(i,j,k)
fz1(nn)%field(i,j) = fz2(nn)%field(i,j)
enddo
enddo
enddo
enddo
! compute Eady growth rate for use in next time step
call compute_eady_rate(Time, Thickness, T_prog, Dens, eady_termx, eady_termy)
! compute baroclinicity for use in next time step
call compute_baroclinicity(Time%model_time, baroclinic_termx, baroclinic_termy)
! compute rossby radius for use in next time step.
! rossby radius is needed for diffusivity
! calculation and transition layer calculation.
call compute_rossby_radius(Thickness, dTdz, Time%model_time, drhodT, drhodS, &
rossby_radius, rossby_radius_raw)
baroclinic_rossby_radius(:,:) = rossby_radius_raw(:,:)
! compute width of baroclinic zone for use in next time step
call compute_bczone_radius(Time%model_time, bczone_radius)
! update closure-based diffusivity for next time step
call compute_diffusivity(Time%model_time, ksurf_blayer, Dens%drhodz_zt, rossby_radius, &
bczone_radius, agm_array, aredi_array)
! diagnostic output
do nn=1,num_prog_tracers
if(id_neutral_physics(nn) > 0) then
used = send_data (id_neutral_physics(nn), T_prog(nn)%wrk1(:,:,:)*T_prog(nn)%conversion, &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
! send fluxes to diag_manager
! minus sign is due to a MOM-convention for physics fluxes
if(id_flux_x(nn) > 0) then
used = send_data (id_flux_x(nn), -1.0*T_prog(nn)%conversion*flux_x(nn)%field(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if(id_flux_y(nn) > 0) then
used = send_data (id_flux_y(nn), -1.0*T_prog(nn)%conversion*flux_y(nn)%field(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if(id_flux_x_int_z(nn) > 0) then
tmp_flux = 0.0
do k=1,nk
tmp_flux(isc:iec,jsc:jec) = tmp_flux(isc:iec,jsc:jec) + flux_x(nn)%field(isc:iec,jsc:jec,k)
enddo
used = send_data (id_flux_x_int_z(nn), -1.0*T_prog(nn)%conversion*tmp_flux(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
if(id_flux_y_int_z(nn) > 0) then
tmp_flux = 0.0
do k=1,nk
tmp_flux(isc:iec,jsc:jec) = tmp_flux(isc:iec,jsc:jec) + flux_y(nn)%field(isc:iec,jsc:jec,k)
enddo
used = send_data (id_flux_y_int_z(nn), -1.0*T_prog(nn)%conversion*tmp_flux(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
enddo
! more diagnostic output
if(id_neutral_rho_nphysics > 0) then
wrk1(:,:,:) = 0.0
do k=1,nk
do j=jsc,jec
do i=isc,iec
wrk1(i,j,k) = Grd%tmask(i,j,k)* &
(drhodT(i,j,k)*T_prog(index_temp)%wrk1(i,j,k) &
+drhodS(i,j,k)*T_prog(index_salt)%wrk1(i,j,k))
enddo
enddo
enddo
used = send_data (id_neutral_rho_nphysics, wrk1(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if(id_wdian_rho_nphysics > 0) then
wrk1(:,:,:) = 0.0
do k=1,nk
do j=jsc,jec
do i=isc,iec
temporary = Dens%drhodz_zt(i,j,k)*Thickness%rho_dzt(i,j,k,tau)
wrk1(i,j,k) = Grd%tmask(i,j,k)* &
(drhodT(i,j,k)*T_prog(index_temp)%wrk1(i,j,k) &
+drhodS(i,j,k)*T_prog(index_salt)%wrk1(i,j,k)) &
/(epsln+temporary)
enddo
enddo
enddo
used = send_data (id_wdian_rho_nphysics, wrk1(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if (id_k33_explicit > 0) used = send_data (id_k33_explicit, rho0r*K33_explicit(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
! gm_diffusivity passed to neutral_physics for computing form drag viscosity
gm_diffusivity(:,:,:) = 0.0
do k=1,nk
do j=jsd,jed
do i=isd,ied
gm_diffusivity(i,j,k) = agm_array(i,j,k)
enddo
enddo
enddo
end subroutine nphysicsB
! NAME="nphysicsB"
!#######################################################################
!
!
!
!
! This subroutine computes the "neutral boundary layers" based on
! the formulation of Ferrari and McWilliams (2006). See full
! details and discussion in Elements of mom4p1 by Griffies (2006).
!
! Five vertical regions are identified by Ferrari and McWilliams:
! We simplify these regimes by melding the turbulent and transition
! regimes into an overall neutral boundary layer regime, within which
! the streamfunction is linearly tapers to zero moving towards the
! boundary. We also ignore the bottom regimes, as these are poorly
! resolved in most models, and the neutral physics fluxes are
! typically small at the bottom.
!
! (1) Surface turbulent region:
! Depth ("h" in Ferrari and McWilliams notation) dominated by
! 3d turbulent processes. This depth is taken from surf_blthick,
! as set by the KPP scheme or another mixed layer scheme.
! A minimum is set as surf_turb_thick_min and is specified
! as a nml parameter in ocean_nphysicsB_nml.
!
! In order to use a low frequency version of the boundary layer
! thickness, we damp its evolution with a damping time scale
! neutral_damping_time (days).
!
! In the code, "h_surf"= surf_turb_thick
!
! (2) Surface transition region:
! Thickness ("D" in Ferrari and McWilliams notation)
! between the turbulent surface boundary layer and the interior.
! This transition layer thickness is determined by the product of the
! neutral slope and first baroclinic Rossby radius. This specification
! is ad hoc, and more fundamental theories are welcome.
!
! In the code, "D_surf"= surf_trans_thick
!
!!!!!!
! Within a "boundary layer" region set by the sum of
! surf_turb_thick plus surf_trans_thick, the eddy
! induced velocity is assumed to have zero vertical shear,
! which means the quasi-Stokes streamfunction is linear with
! depth. The neutral diffusive fluxes are reduced to horizontal
! downgradient diffusion, with "horizontal" defined according
! to surfaces of constant vertical coordinate.
!!!!!!
!
! (3) Interior region:
! Where neutral diffusion and GM skew-diffusion are taken
! from their unmodified form.
!
! Only use the 31 and 32 triads for this computation since the
! 13 and 23 triads require extra slope calculations, and
! so will add lots of computational cost. It is felt that the
! 31 and 32 triads are sufficient for this calculation, in
! a similar manner that they are used for the calculation of
! the non-constant diffusivities.
!
! Scheme coded for mom4p1 by Stephen.Griffies@noaa.gov
! Version: March2006
! Simplified version: June2008
!
!
!
subroutine neutral_blayer(Time, Thickness)
type(ocean_time_type), intent(in) :: Time
type(ocean_thickness_type), intent(in) :: Thickness
real, dimension(isd:ied,jsd:jed) :: tmp_ksurf_blayer
logical :: below_blayer
logical :: within_interior
integer :: i, j, k, tau
integer :: kkp1, kkp2, kkp3
integer :: kb, kk
real :: tmp_thickness(4)
real :: region_thickness(4)
real :: tmp_surf_turb_thick
real :: tmp_thick_surf
call mpp_clock_begin(id_clock_neutral_blayer)
tau = Time%tau
! save the max of abs(slope) in wrk1. this array is
! needed to define the surface turb region and transition
! region.
wrk1(:,:,:) = 0.0
do k=1,nk
do j=jsc,jec
do i=isc,iec
wrk1(i,j,k) = max( abs(tensor_31(i,j,k,0,0)),abs(tensor_31(i,j,k,0,1)), &
abs(tensor_31(i,j,k,1,0)),abs(tensor_31(i,j,k,1,1)), &
abs(tensor_32(i,j,k,0,0)),abs(tensor_32(i,j,k,0,1)), &
abs(tensor_32(i,j,k,1,0)),abs(tensor_32(i,j,k,1,1)) )
enddo
enddo
enddo
! Update thickness of the surface turbulent region for use
! in the neutral_blayer calculation. This thickness is damped relative
! to that available from the mixed layer physics, as we are interested
! here in the slowly varying form of this thickness.
do j=jsd,jed
do i=isd,ied
kb=Grd%kmt(i,j)
if(kb>1) then
tmp_surf_turb_thick = &
Grd%tmask(i,j,1)*max(surf_turb_thick_min,surf_bdlthick(i,j))
surf_turb_thick(i,j) = &
surf_turb_thick(i,j) - gamma_damp*(surf_turb_thick(i,j)-tmp_surf_turb_thick)
endif
enddo
enddo
! spatially smooth surface boundary layer thickness
if(nblayer_smooth) then
call mpp_update_domains(surf_turb_thick(:,:), Dom%domain2d)
surf_turb_thick(:,:) = surf_turb_thick(:,:) + dtime*LAP_T(surf_turb_thick(:,:),smooth_lap(:,:))
endif
! flag for case when full column is turbulent
! (e.g., shallow shelves or deep convection)
do j=jsc,jec
do i=isc,iec
kb=max(1,Grd%kmt(i,j))
full_turb_column(i,j) = 0.0
if(kb>1 .and. surf_turb_thick(i,j) >= Thickness%depth_zwt(i,j,kb)) then
full_turb_column(i,j) = 1.0
endif
enddo
enddo
! Determine surface transition region.
! Thise region is determined by the thickness over
! which mesoscale eddies feel the turbulent surface layer.
! This thickness is a function of the neutral slope
! times the Rossby radius. The algorithm for computing
! this depth is taken from the appendix to Large etal,
! (1997) JPO, pages 2418-2447. It is also described
! in Ferrari and McWilliams (2006) and Griffies (2004).
! The thickness of this region is always set > 0.
!
! NOTE: We examine more than one slope*rossby in the vertical
! since generally there can be regions of small slopes intermixed
! within the large slopes present in the transition layer.
! The non-local examination allows for a smoother transition out
! of the boundary layer into the interior.
!
! Also note we take the max from the 8-surrounding triad slopes,
! so to maximize the transition layer thicknesses.
do j=jsc,jec
do i=isc,iec
kb = Grd%kmt(i,j)
below_blayer = .false.
tmp_thick_surf = 0.0
! only compute transition regions if there are enough
! vertical cells, and if the column is not fully turbulent.
if(kb>surf_turb_thick_min_k+2 .and. full_turb_column(i,j)==0.0) then
! surface region
kkloop_surf: do kk=surf_turb_thick_min_k+1,kb-1
kkp1=min(kk+1,kb)
kkp2=min(kk+2,kb)
kkp3=min(kk+3,kb)
! to ensure we have captured the boundary layer,
! we check kk, kkp1, kkp2 and kkp3 for good measure.
! this is a bit arbitrary...but useful.
region_thickness(1) = rossby_radius(i,j)*wrk1(i,j,kk)
region_thickness(2) = rossby_radius(i,j)*wrk1(i,j,kkp1)
region_thickness(3) = rossby_radius(i,j)*wrk1(i,j,kkp2)
region_thickness(4) = rossby_radius(i,j)*wrk1(i,j,kkp3)
tmp_thickness(1) = region_thickness(1) + surf_turb_thick(i,j)
tmp_thickness(2) = region_thickness(2) + surf_turb_thick(i,j)
tmp_thickness(3) = region_thickness(3) + surf_turb_thick(i,j)
tmp_thickness(4) = region_thickness(4) + surf_turb_thick(i,j)
if(tmp_thickness(1) <= Thickness%depth_zwt(i,j,kk) .and. &
tmp_thickness(2) <= Thickness%depth_zwt(i,j,kk) .and. &
tmp_thickness(3) <= Thickness%depth_zwt(i,j,kk) .and. &
tmp_thickness(4) <= Thickness%depth_zwt(i,j,kk) .and. &
.not. below_blayer) then
below_blayer = .true.
tmp_thick_surf = Thickness%depth_zwt(i,j,kk)-surf_turb_thick(i,j)
exit kkloop_surf
endif
enddo kkloop_surf
! never got below the surface transition layer.
! this typically means the slopes are huge or the
! column is very shallow. so column is "fully turbulent".
if(.not. below_blayer) then
full_turb_column(i,j) = 1.0
endif
endif
! column is too small, or is fully turbulent.
if(kb>1 .and. (full_turb_column(i,j)==1.0 .or. kb<=surf_turb_thick_min_k+2)) then
tmp_thick_surf = 0.0
full_turb_column(i,j) = 1.0
endif
! time damping to smooth the field
surf_trans_thick(i,j) = surf_trans_thick(i,j) - gamma_damp*(surf_trans_thick(i,j) -tmp_thick_surf)
! end of j,i loops
enddo
enddo
! apply spatial smoothing to the boundary field...smoothing may
! be needed in space, even with the temporal smoothing used above.
if(nblayer_smooth) then
call mpp_update_domains(surf_trans_thick(:,:), Dom%domain2d)
surf_trans_thick(:,:) = surf_trans_thick(:,:) &
+ dtime*LAP_T(surf_trans_thick(:,:),smooth_lap(:,:))
endif
! compute boundary layer depth
do j=jsc,jec
do i=isc,iec
kb=Grd%kmt(i,j)
if(kb>1) then
depth_blayer_base(i,j) = surf_trans_thick(i,j) + surf_turb_thick(i,j)
endif
enddo
enddo
call mpp_update_domains(depth_blayer_base, Dom%domain2d)
! save the k-level surface transition layer.
! initialize ksurf_blayer to 1 rather than 0, to avoid
! accessing the zeroth element of an array.
ksurf_blayer(:,:) = 1
tmp_ksurf_blayer(:,:) = 0.0
do j=jsd,jed
do i=isd,ied
kb=Grd%kmt(i,j)
within_interior=.false.
ksurf_blayer_loop: do k=surf_turb_thick_min_k,kb
if(Thickness%depth_zwt(i,j,k) > depth_blayer_base(i,j)) then
ksurf_blayer(i,j) = k
tmp_ksurf_blayer(i,j) = float(k)
exit ksurf_blayer_loop
endif
enddo ksurf_blayer_loop
enddo
enddo
! save abs(slope) at base of the surface boundary layer for use in
! computing the streamfunction at this point and then linear
! tapering to the surface. It is important to place a limit
! on slope_blayer_base, since in some regions the blayer_base
! could still have infinite slopes...
do j=jsc,jec
do i=isc,iec
k = ksurf_blayer(i,j)
if(k > 1) then
slope_blayer_base(i,j) = &
(abs(tensor_31(i,j,k,0,0)) + &
abs(tensor_31(i,j,k,1,0)) + &
abs(tensor_31(i,j,k,0,1)) + &
abs(tensor_31(i,j,k,1,1)) + &
abs(tensor_32(i,j,k,0,0)) + &
abs(tensor_32(i,j,k,0,1)) + &
abs(tensor_32(i,j,k,1,0)) + &
abs(tensor_32(i,j,k,1,1)))*oneeigth
slope_blayer_base(i,j) = min(smax,slope_blayer_base(i,j))
endif
enddo
enddo
call mpp_update_domains(slope_blayer_base, Dom%domain2d)
! diagnostics
if (id_slope_blayer_base > 0) then
used = send_data (id_slope_blayer_base, slope_blayer_base(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
if (id_surf_turb_thick > 0) then
used = send_data (id_surf_turb_thick, surf_turb_thick(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
if (id_surf_trans_thick > 0) then
used = send_data (id_surf_trans_thick, surf_trans_thick(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
if (id_depth_blayer_base > 0) then
used = send_data (id_depth_blayer_base, depth_blayer_base(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
if (id_full_turb_column > 0) then
used = send_data (id_full_turb_column, full_turb_column(:,:), &
Time%model_time, rmask=Grd%tmask(:,:,1), &
is_in=isc, js_in=jsc, ie_in=iec, je_in=jec)
endif
call mpp_clock_end(id_clock_neutral_blayer)
end subroutine neutral_blayer
! NAME="neutral_blayer"
!#######################################################################
!
!
!
! Subroutine computes the tracer independent pieces of the vertical
! flux component. As a result of this routine,
! Array tensor_31 = x-diffusivity*slope (m^2/sec) for fz
! Array tensor_32 = y-diffusivity*slope (m^2/sec) for fz
!
! K33 is the (3,3) term in small angle Redi diffusion tensor.
! It is broken into an explicit in time piece and implicit
! in time piece. It is weighted by density for non-Boussinesq
! and rho0 for Boussinesq.
!
! K33 has units (kg/m^3)*m^2/sec.
!
! Also will compute the squared Eady growth rate, with the maximum
! slope contributing to this growth rate set by smax.
!
!
subroutine fz_terms(Time, Thickness, Dens, T_prog, rho)
type(ocean_time_type), intent(in) :: Time
type(ocean_thickness_type), intent(in) :: Thickness
type(ocean_density_type), intent(in) :: Dens
type(ocean_prog_tracer_type), intent(inout) :: T_prog(num_prog_tracers)
real, dimension(isd:,jsd:,:), intent(in) :: rho
integer :: i, j, k, n, ip, jq, kr, tau
real :: baroclinic_triad, K33, K33_crit
real :: sumx(0:1), sumy(0:1)
real :: slope, absslope, depth_ratio
real :: taperA, taperB
real :: taper_slope, taper_slope2, gm_taper_slope
real :: aredi_scalar, agm_scalar, aredi_plus_agm
real :: absdrhodzb(0:1)
real :: mindelqc(0:1,0:1), delqc_ijk_1, delqc_ijkp1_0
call mpp_clock_begin(id_clock_fz_terms)
tau = Time%tau
eady_termx(:,:,:) = 0.0
eady_termy(:,:,:) = 0.0
baroclinic_termx(:,:) = 0.0
baroclinic_termy(:,:) = 0.0
tx_trans_gm(:,:,:) = 0.0
ty_trans_gm(:,:,:) = 0.0
! Main loop. Short ip,jq,kr loops are explicitly unrolled
! in order to expose independence and allow vectorisation
do k=1,nk-1
do j=jsc,jec
do i=isc,iec
aredi_scalar = aredi_array(i,j,k)
agm_scalar = gm_skew*agm_array(i,j,k)
aredi_plus_agm = aredi_scalar + agm_scalar
absdrhodzb(0) = abs(drhodzb(i,j,k,0))
absdrhodzb(1) = abs(drhodzb(i,j,k,1))
delqc_ijk_1 = delqc(i,j,k,1)
delqc_ijkp1_0 = delqc(i,j,k+1,0)
!mindelqc(ip,kr) = min(delqc(i-1+ip,j,k+kr,1-kr),delqc(i+ip,j,k+kr,1-kr))
ip=0 ; kr=0
mindelqc(ip,kr) = min(delqc(i-1,j,k,1),delqc_ijk_1)
ip=0 ; kr=1
mindelqc(ip,kr) = min(delqc(i-1,j,k+1,0),delqc_ijkp1_0)
ip=1 ; kr=0
mindelqc(ip,kr) = min(delqc_ijk_1,delqc(i+1,j,k,1))
ip=1 ; kr=1
mindelqc(ip,kr) = min(delqc_ijkp1_0,delqc(i+1,j,k+1,0))
tx_trans_gm(i,j,k) = 0.0
baroclinic_triad = 0.0
ip=0
sumx(ip) = 0.0
kr=0
slope = tensor_31(i,j,k,ip,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
tx_trans_gm(i,j,k) = tx_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_31(i,j,k,ip,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumx(ip) = sumx(ip) + mindelqc(ip,kr)*taper_slope2
eady_termx(i,j,k) = eady_termx(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
kr=1
slope = tensor_31(i,j,k,ip,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
tx_trans_gm(i,j,k) = tx_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_31(i,j,k,ip,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumx(ip) = sumx(ip) + mindelqc(ip,kr)*taper_slope2
eady_termx(i,j,k) = eady_termx(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
sumx(ip) = sumx(ip)*dtew(i,j,ip)
ip=1
sumx(ip) = 0.0
kr=0
slope = tensor_31(i,j,k,ip,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
tx_trans_gm(i,j,k) = tx_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_31(i,j,k,ip,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumx(ip) = sumx(ip) + mindelqc(ip,kr)*taper_slope2
eady_termx(i,j,k) = eady_termx(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
kr=1
slope = tensor_31(i,j,k,ip,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
tx_trans_gm(i,j,k) = tx_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_31(i,j,k,ip,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumx(ip) = sumx(ip) + mindelqc(ip,kr)*taper_slope2
eady_termx(i,j,k) = eady_termx(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
sumx(ip) = sumx(ip)*dtew(i,j,ip)
if(Thickness%depth_zt(i,j,k) >= agm_closure_upper_depth .and. &
Thickness%depth_zt(i,j,k) <= agm_closure_lower_depth) then
baroclinic_termx(i,j) = baroclinic_termx(i,j) + baroclinic_triad*Thickness%dzwt(i,j,k)
endif
tx_trans_gm(i,j,k) = 0.25*tx_trans_gm(i,j,k)*Grd%dyu(i,j)
!mindelqc(jq,kr) = min(delqc(i,j-1+jq,k+kr,1-kr),delqc(i,j+jq,k+kr,1-kr))
jq=0 ; kr=0
mindelqc(jq,kr) = min(delqc(i,j-1,k,1),delqc_ijk_1)
jq=0 ; kr=1
mindelqc(jq,kr) = min(delqc(i,j-1,k+1,0),delqc_ijkp1_0)
jq=1 ; kr=0
mindelqc(jq,kr) = min(delqc_ijk_1,delqc(i,j+1,k,1))
jq=1 ; kr=1
mindelqc(jq,kr) = min(delqc_ijkp1_0,delqc(i,j+1,k+1,0))
ty_trans_gm(i,j,k) = 0.0
baroclinic_triad = 0.0
jq=0
sumy(jq) = 0.0
kr=0
slope = tensor_32(i,j,k,jq,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
ty_trans_gm(i,j,k) = ty_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_32(i,j,k,jq,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumy(jq) = sumy(jq) + mindelqc(jq,kr)*taper_slope2
eady_termy(i,j,k) = eady_termy(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
kr=1
slope = tensor_32(i,j,k,jq,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
ty_trans_gm(i,j,k) = ty_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_32(i,j,k,jq,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumy(jq) = sumy(jq) + mindelqc(jq,kr)*taper_slope2
eady_termy(i,j,k) = eady_termy(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
sumy(jq) = sumy(jq)*dtns(i,j,jq)
jq=1
sumy(jq) = 0.0
kr=0
slope = tensor_32(i,j,k,jq,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
ty_trans_gm(i,j,k) = ty_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_32(i,j,k,jq,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumy(jq) = sumy(jq) + mindelqc(jq,kr)*taper_slope2
eady_termy(i,j,k) = eady_termy(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
kr=1
slope = tensor_32(i,j,k,jq,kr)
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
taper_slope2 = slope*taper_slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
ty_trans_gm(i,j,k) = ty_trans_gm(i,j,k) + agm_scalar*gm_taper_slope
tensor_32(i,j,k,jq,kr) = aredi_scalar*taper_slope + agm_scalar*gm_taper_slope
sumy(jq) = sumy(jq) + mindelqc(jq,kr)*taper_slope2
eady_termy(i,j,k) = eady_termy(i,j,k) + absdrhodzb(kr)*absslope*absslope
baroclinic_triad = baroclinic_triad + absdrhodzb(kr)*abs(taper_slope)
sumy(jq) = sumy(jq)*dtns(i,j,jq)
if(Thickness%depth_zt(i,j,k) >= agm_closure_upper_depth .and. &
Thickness%depth_zt(i,j,k) <= agm_closure_lower_depth) then
baroclinic_termy(i,j) = baroclinic_termy(i,j) + baroclinic_triad*Thickness%dzwt(i,j,k)
endif
ty_trans_gm(i,j,k) = 0.25*ty_trans_gm(i,j,k)*Grd%dxu(i,j)
K33 = aredi_scalar*Grd%tmask(i,j,k+1)*(Grd%dxtr(i,j)*(sumx(0)+sumx(1)) &
+ Grd%dytr(i,j)*(sumy(0)+sumy(1)))*dzwtr(i,j,k)
! determine part of K33 included explicitly in time and that part implicitly.
! explicit calculation is more accurate than implicit, so aim to compute as much
! as stably possible via the explicit method.
K33_explicit(i,j,k) = K33
K33_implicit(i,j,k) = 0.0
if(.not. diffusion_all_explicit) then
K33_crit = two_dtime_inv*Thickness%rho_dzt(i,j,k,tau)*Thickness%dzt(i,j,k)
if(K33 >= K33_crit) then
K33_explicit(i,j,k) = K33_crit
K33_implicit(i,j,k) = K33-K33_crit
endif
endif
enddo
enddo
enddo
if(tmask_sigma_on) then
do j=jsc,jec
do i=isc,iec
if(tmask_sigma(i,j) > 0.0) then
k = Grd%kmt(i,j)-1
K33_implicit(i,j,k) = K33_implicit(i,j,k)*(1.0-tmask_sigma(i,j))
K33_explicit(i,j,k) = K33_explicit(i,j,k)*(1.0-tmask_sigma(i,j))
endif
enddo
enddo
endif
if(tmask_neutral_on) then
do j=jsc,jec
do i=isc,iec
K33_implicit(i,j,1) = 0.0
K33_explicit(i,j,1) = 0.0
tx_trans_gm(i,j,1) = 0.0
ty_trans_gm(i,j,1) = 0.0
if(Grd%kmt(i,j) > 1) then
k = Grd%kmt(i,j)-1
K33_implicit(i,j,k) = 0.0
K33_explicit(i,j,k) = 0.0
tx_trans_gm(i,j,k) = 0.0
ty_trans_gm(i,j,k) = 0.0
endif
enddo
enddo
endif
do n=1,num_prog_tracers
T_prog(n)%K33_implicit(:,:,:) = K33_implicit(:,:,:)
enddo
if(neutral_physics_limit) then
do n=1,num_prog_tracers
do k=1,nk
do j=jsc,jec
do i=isc,iec
if(T_prog(n)%tmask_limit(i,j,k)==1.0) T_prog(n)%K33_implicit(i,j,k) = 0.0
enddo
enddo
enddo
enddo
endif
do n=1,num_prog_tracers
if (id_k33_implicit(n) > 0) then
used = send_data (id_k33_implicit(n), rho0r*T_prog(n)%K33_implicit(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
enddo
! rho factor to get mass transport.
if(vert_coordinate_class==DEPTH_BASED) then
do k=1,nk
do j=jsc,jec
do i=isc,iec
tx_trans_gm(i,j,k) = tx_trans_gm(i,j,k)*rho0
ty_trans_gm(i,j,k) = ty_trans_gm(i,j,k)*rho0
enddo
enddo
enddo
else
do k=1,nk
do j=jsc,jec
do i=isc,iec
tx_trans_gm(i,j,k) = tx_trans_gm(i,j,k)*rho(i,j,k)
ty_trans_gm(i,j,k) = ty_trans_gm(i,j,k)*rho(i,j,k)
enddo
enddo
enddo
endif
call transport_on_rho_gm (Time, Dens, &
transport_convert*tx_trans_gm(:,:,:), transport_convert*ty_trans_gm(:,:,:))
call transport_on_nrho_gm(Time, Dens, &
transport_convert*tx_trans_gm(:,:,:), transport_convert*ty_trans_gm(:,:,:))
call transport_on_theta_gm(Time, Dens, T_prog(index_temp), &
transport_convert*tx_trans_gm(:,:,:), transport_convert*ty_trans_gm(:,:,:))
! transport_convert converts kg/s to chosen dimensions (either kg/s or Sv (10^9 kg/s))
if(id_tx_trans_gm > 0) then
call mpp_update_domains(tx_trans_gm, Dom%domain2d,flags=EUPDATE)
do k=1,nk-1
do j=jsc,jec
do i=isc,iec
tx_trans_gm(i,j,k) = transport_convert*Grd%dxuer(i,j)* &
(tx_trans_gm(i+1,j,k)*Grd%due(i,j) + &
tx_trans_gm(i,j,k) *Grd%duw(i+1,j))
enddo
enddo
enddo
used = send_data (id_tx_trans_gm, tx_trans_gm(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
! transport_convert converts kg/s to chosen dimensions (either kg/s or Sv (10^9 kg/s))
if(id_ty_trans_gm > 0) then
call mpp_update_domains(ty_trans_gm, Dom%domain2d,flags=NUPDATE)
do k=1,nk-1
do j=jsc,jec
do i=isc,iec
ty_trans_gm(i,j,k) = transport_convert*Grd%dyunr(i,j)* &
(ty_trans_gm(i,j+1,k)*Grd%dun(i,j) + &
ty_trans_gm(i,j,k) *Grd%dus(i,j+1))
enddo
enddo
enddo
used = send_data (id_ty_trans_gm, ty_trans_gm(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
call mpp_clock_end(id_clock_fz_terms)
end subroutine fz_terms
! NAME="fz_terms"
!#######################################################################
!
!
!
! Subroutine computes the zonal neutral physics tracer flux component.
! Compute this component for all tracers at level k.
!
! fx has physical dimensions (area*diffusivity*density*tracer gradient)
!
!
!
subroutine fx_flux(Time, Thickness, T_prog, k)
type(ocean_time_type), intent(in) :: Time
type(ocean_thickness_type), intent(in) :: Thickness
type(ocean_prog_tracer_type), intent(in) :: T_prog(num_prog_tracers)
integer, intent(in) :: k
integer :: nn, i, j, ip, tau
integer :: kr, kpkr
real :: triad_weight(isd:ied,jsd:jed)
real :: tensor_11(isd:ied,jsd:jed,0:1,0:1)
real :: tensor_13(isd:ied,jsd:jed,0:1,0:1)
real :: sumz(isd:ied,jsd:jed,0:1)
real :: taperA, taperB
real :: slope, absslope, taper_slope, gm_taper_slope
real :: depth_ratio
real :: drhodx, drhodz
call mpp_clock_begin(id_clock_fx_flux)
tau = Time%tau
! initialize arrays to zero
tensor_11(:,:,:,:) = 0.0
tensor_13(:,:,:,:) = 0.0
grav_agm_dz_sx_drhodx(:,:,k) = 0.0
slopex_drhodx(:,:,k) = 0.0
triad_weight(:,:) = 0.0
! tracer-independent part of the calculation
do kr=0,1
kpkr = min(k+kr,nk)
do ip=0,1
do j=jsc,jec
do i=isc-1,iec
drhodz = drhodzh(i+ip,j,k,kr)
drhodx = Grd%tmask(i+ip,j,kpkr) &
*( drhodT(i+ip,j,k)*dTdx(index_temp)%field(i,j,k) &
+drhodS(i+ip,j,k)*dTdx(index_salt)%field(i,j,k))
slope = -drhodx/drhodz
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
! for diagnosing slope dot grad rho
triad_weight(i,j) = triad_weight(i,j) + Grd%tmask(i+ip,j,kpkr)
slopex_drhodx(i,j,k) = slopex_drhodx(i,j,k) + gm_taper_slope*drhodx
! fill tensor components
tensor_11(i,j,ip,kr) = aredi_array(i,j,k)
tensor_13(i,j,ip,kr) = aredi_array(i,j,k)*taper_slope-gm_skew*agm_array(i,j,k)*gm_taper_slope
enddo
enddo
enddo
enddo
! tracer-dependent part of the calculation
do nn=1,num_prog_tracers
sumz(:,:,:) = 0.0
do kr=0,1
do ip=0,1
do j=jsc,jec
do i=isc-1,iec
sumz(i,j,kr) = sumz(i,j,kr) + dtwedyt(i,j,ip)*Grd%tmask(i,j,k)*Grd%tmask(i+1,j,k) &
*(tensor_11(i,j,ip,kr)*dTdx(nn)%field(i,j,k) + tensor_13(i,j,ip,kr)*dTdz(nn)%field(i+ip,j,k-1+kr)) &
* min(delqc(i,j,k,kr),delqc(i+1,j,k,kr))
enddo
enddo
enddo
enddo
do j=jsc,jec
do i=isc-1,iec
flux_x(nn)%field(i,j,k) = Grd%dxter(i,j)*(sumz(i,j,0)+sumz(i,j,1))
enddo
enddo
enddo
! apply some masks
if(tmask_neutral_on) then
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc-1,iec
if(k==Grd%kmt(i,j)) then
flux_x(nn)%field(i,j,k) = aredi_array(i,j,k)*dTdx(nn)%field(i,j,k)*Grd%dyte(i,j)* &
min(Thickness%rho_dzt(i,j,k,tau),Thickness%rho_dzt(i+1,j,k,tau))
endif
enddo
enddo
enddo
if(k==1) then
do nn=1,num_prog_tracers
flux_x(nn)%field(:,:,k) = aredi_array(:,:,k)*dTdx(nn)%field(:,:,k)*Grd%dyte(:,:) &
*FMX(Thickness%rho_dzt(:,:,k,tau))
enddo
endif
endif
if(tmask_sigma_on) then
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc-1,iec
if(k==Grd%kmt(i,j)) flux_x(nn)%field(i,j,k) = flux_x(nn)%field(i,j,k)*(1.0-tmask_sigma(i,j))
enddo
enddo
enddo
endif
if(neutral_physics_limit) then
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc-1,iec
if(T_prog(nn)%tmask_limit(i,j,k)==1.0) then
flux_x(nn)%field(i,j,k) = aredi_array(i,j,k)*dTdx(nn)%field(i,j,k)*Grd%dyte(i,j) &
*min(Thickness%rho_dzt(i,j,k,tau),Thickness%rho_dzt(i+1,j,k,tau))
endif
enddo
enddo
enddo
endif
! for diagnosing slopex_drhodx and grav_agm_dz_sx_drhodx
do j=jsc,jec
do i=isc,iec
if(triad_weight(i,j) > 0.0) then
triad_weight(i,j) = 1.0/(epsln + triad_weight(i,j))
slopex_drhodx(i,j,k) = triad_weight(i,j)*slopex_drhodx(i,j,k)
grav_agm_dz_sx_drhodx(i,j,k) = slopex_drhodx(i,j,k) &
*grav*agm_array(i,j,k)*Thickness%dzt(i,j,k)
else
slopex_drhodx(i,j,k) = 0.0
grav_agm_dz_sx_drhodx(i,j,k) = 0.0
endif
enddo
enddo
if(k==nk) then
if(id_grav_agm_dz_sx_drhodx > 0) then
used = send_data (id_grav_agm_dz_sx_drhodx, grav_agm_dz_sx_drhodx(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if(id_slopex_drhodx > 0) then
used = send_data (id_slopex_drhodx, slopex_drhodx(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
endif
call mpp_clock_end(id_clock_fx_flux)
end subroutine fx_flux
! NAME="fx_flux"
!#######################################################################
!
!
!
! Subroutine computes the meridional neutral physics tracer flux component.
! Compute this component for all tracers at level k.
!
! fy has physical dimensions (area*diffusivity*density*tracer gradient)
!
!
!
subroutine fy_flux(Time, Thickness, T_prog, k)
type(ocean_time_type), intent(in) :: Time
type(ocean_thickness_type), intent(in) :: Thickness
type(ocean_prog_tracer_type), intent(in) :: T_prog(num_prog_tracers)
integer, intent(in) :: k
integer :: nn, i, j, jq, tau
integer :: kr, kpkr
real :: triad_weight(isd:ied,jsd:jed)
real :: tensor_22(isd:ied,jsd:jed,0:1,0:1)
real :: tensor_23(isd:ied,jsd:jed,0:1,0:1)
real :: sumz(isd:ied,jsd:jed,0:1)
real :: taperA, taperB
real :: slope, absslope, taper_slope, gm_taper_slope
real :: depth_ratio
real :: drhody, drhodz
call mpp_clock_begin(id_clock_fy_flux)
tau = Time%tau
! initialize arrays to zero
tensor_22(:,:,:,:) = 0.0
tensor_23(:,:,:,:) = 0.0
grav_agm_dz_sy_drhody(:,:,k) = 0.0
slopey_drhody(:,:,k) = 0.0
triad_weight(:,:) = 0.0
! tracer-independent part of the calculation
do kr=0,1
kpkr = min(k+kr,nk)
do jq=0,1
do j=jsc-1,jec
do i=isc,iec
drhodz = drhodzh(i,j+jq,k,kr)
drhody = Grd%tmask(i,j+jq,kpkr) &
*( drhodT(i,j+jq,k)*dTdy(index_temp)%field(i,j,k) &
+drhodS(i,j+jq,k)*dTdy(index_salt)%field(i,j,k))
slope = -drhody/drhodz
absslope = abs(slope)
! taper for steep slope regions
if(absslope > smax) then
taperA = 0.5*(1.0 + tanh(smax_swidthr-absslope*swidthr))
taperA = dm_taper_const*taperA + gkw_taper_const*(smax/absslope)**2
else
taperA = 1.0
endif
! taper for grid depths shallower than depth_blayer_base
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
depth_ratio = Thickness%depth_zt(i,j,k)/(epsln+depth_blayer_base(i,j))
taperB = 0.5*(1.0 + sin(pi*(depth_ratio-0.5)))
else
taperB = 1.0
endif
! taper times slope for use with neutral diffusion
taper_slope = taperA*taperB*slope
! taper times slope for use with GM skewsion
if(depth_blayer_base(i,j) >= Thickness%depth_zt(i,j,k)) then
gm_taper_slope = (Thickness%depth_zt(i,j,k)/depth_blayer_base(i,j)) &
*slope_blayer_base(i,j)*sign(1.0,slope)
else
gm_taper_slope = taper_slope
endif
! for diagnosing slope dot grad rho
triad_weight(i,j) = triad_weight(i,j) + Grd%tmask(i,j+jq,kpkr)
slopey_drhody(i,j,k) = slopey_drhody(i,j,k) + gm_taper_slope*drhody
! fill tensor components
tensor_22(i,j,jq,kr) = aredi_array(i,j,k)
tensor_23(i,j,jq,kr) = aredi_array(i,j,k)*taper_slope-gm_skew*agm_array(i,j,k)*gm_taper_slope
enddo
enddo
enddo
enddo
! tracer-dependent part of the calculation
do nn=1,num_prog_tracers
sumz(:,:,:) = 0.0
do kr=0,1
do jq=0,1
do j=jsc-1,jec
do i=isc,iec
sumz(i,j,kr) = sumz(i,j,kr) + dxtdtsn(i,j,jq)*Grd%tmask(i,j,k)*Grd%tmask(i,j+1,k) &
*(tensor_22(i,j,jq,kr)*dTdy(nn)%field(i,j,k) + tensor_23(i,j,jq,kr)*dTdz(nn)%field(i,j+jq,k-1+kr)) &
* min(delqc(i,j,k,kr),delqc(i,j+1,k,kr))
enddo
enddo
enddo
enddo
do j=jsc-1,jec
do i=isc,iec
flux_y(nn)%field(i,j,k) = Grd%dytnr(i,j)*(sumz(i,j,0)+sumz(i,j,1))
enddo
enddo
enddo
! apply some masks
if(tmask_neutral_on) then
do nn=1,num_prog_tracers
do j=jsc-1,jec
do i=isc,iec
if(k==Grd%kmt(i,j)) then
flux_y(nn)%field(i,j,k) = aredi_array(i,j,k)*dTdy(nn)%field(i,j,k)*Grd%dxtn(i,j) &
*min(Thickness%rho_dzt(i,j,k,tau),Thickness%rho_dzt(i,j+1,k,tau))
endif
enddo
enddo
enddo
if(k==1) then
do nn=1,num_prog_tracers
flux_y(nn)%field(:,:,k) = &
aredi_array(:,:,k)*dTdy(nn)%field(:,:,k)*Grd%dxtn(:,:)*FMY(Thickness%rho_dzt(:,:,k,tau))
enddo
endif
endif
if(tmask_sigma_on) then
do nn=1,num_prog_tracers
do j=jsc-1,jec
do i=isc,iec
if(k==Grd%kmt(i,j)) flux_y(nn)%field(i,j,k) = flux_y(nn)%field(i,j,k)*(1.0-tmask_sigma(i,j))
enddo
enddo
enddo
endif
if(neutral_physics_limit) then
do nn=1,num_prog_tracers
do j=jsc-1,jec
do i=isc,iec
if(T_prog(nn)%tmask_limit(i,j,k)==1.0) then
flux_y(nn)%field(i,j,k) = aredi_array(i,j,k)*dTdy(nn)%field(i,j,k)*Grd%dxtn(i,j) &
*min(Thickness%rho_dzt(i,j,k,tau),Thickness%rho_dzt(i,j+1,k,tau))
endif
enddo
enddo
enddo
endif
! for diagnosing slopey_drhody and grav_agm_dz_sy_drhody
do j=jsc,jec
do i=isc,iec
if(triad_weight(i,j) > 0.0) then
triad_weight(i,j) = 1.0/(epsln + triad_weight(i,j))
slopey_drhody(i,j,k) = triad_weight(i,j)*slopey_drhody(i,j,k)
grav_agm_dz_sy_drhody(i,j,k) = slopey_drhody(i,j,k) &
*grav*agm_array(i,j,k)*Thickness%dzt(i,j,k)
else
slopey_drhody(i,j,k) = 0.0
grav_agm_dz_sy_drhody(i,j,k) = 0.0
endif
enddo
enddo
if(k==nk) then
if(id_grav_agm_dz_sy_drhody > 0) then
used = send_data (id_grav_agm_dz_sy_drhody, grav_agm_dz_sy_drhody(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if(id_slopey_drhody > 0) then
used = send_data (id_slopey_drhody, slopey_drhody(:,:,:), &
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
if(id_gm_eddy_ke_source > 0) then
used = send_data (id_gm_eddy_ke_source, grav_agm_dz_sx_drhodx(:,:,:) &
+grav_agm_dz_sy_drhody(:,:,:),&
Time%model_time, rmask=Grd%tmask(:,:,:), &
is_in=isc, js_in=jsc, ks_in=1, ie_in=iec, je_in=jec, ke_in=nk)
endif
endif
call mpp_clock_end(id_clock_fy_flux)
end subroutine fy_flux
! NAME="fy_flux"
!#######################################################################
!
!
!
! Subroutine computes the vertical neutral physics tracer flux component.
! Compute this component for all tracers at level k.
! Surface and bottom boundary condition fz(k=0)=fz(k=kmt(i,j))=0
!
! fz has physical dimensions (density*diffusivity*tracer gradient)
!
!
!
subroutine fz_flux(T_prog, k)
type(ocean_prog_tracer_type), intent(in) :: T_prog(num_prog_tracers)
integer, intent(in) :: k
integer :: nn, i, j, ip, jq, kr
real :: sumx_0, sumx_1, sumy_0, sumy_1
real :: temparray31(isc:iec,jsc:jec,0:1,0:1)
real :: temparray32(isc:iec,jsc:jec,0:1,0:1)
integer :: stdoutunit
stdoutunit=stdout()
if(tmask_neutral_on .and. k==1) then
do nn = 1, num_prog_tracers
fz2(nn)%field(:,:) = 0.0
enddo
return
endif
if(k==nk) then
do nn = 1, num_prog_tracers
do j=jsc,jec
do i=isc,iec
fz2(nn)%field(i,j) = 0.0
enddo
enddo
enddo
return
elseif(k < nk) then
! tracer-independent part of the calculation
do kr=0,1
do ip=0,1
do j=jsc,jec
do i=isc,iec
temparray31(i,j,ip,kr) = tensor_31(i,j,k,ip,kr)*dtew(i,j,ip) &
*min(delqc(i-1+ip,j,k+kr,1-kr),delqc(i+ip,j,k+kr,1-kr))
enddo
enddo
enddo
do jq=0,1
do j=jsc,jec
do i=isc,iec
temparray32(i,j,jq,kr) = tensor_32(i,j,k,jq,kr)*dtns(i,j,jq) &
*min(delqc(i,j-1+jq,k+kr,1-kr),delqc(i,j+jq,k+kr,1-kr))
enddo
enddo
enddo
enddo
! tracer-dependent part of the calculation
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc,iec
sumx_0 = temparray31(i,j,0,0)*dTdx(nn)%field(i-1,j,k) &
+ temparray31(i,j,0,1)*dTdx(nn)%field(i-1,j,k+1)
sumx_1 = temparray31(i,j,1,0)*dTdx(nn)%field(i,j,k) &
+ temparray31(i,j,1,1)*dTdx(nn)%field(i,j,k+1)
sumy_0 = temparray32(i,j,0,0)*dTdy(nn)%field(i,j-1,k) &
+ temparray32(i,j,0,1)*dTdy(nn)%field(i,j-1,k+1)
sumy_1 = temparray32(i,j,1,0)*dTdy(nn)%field(i,j,k) &
+ temparray32(i,j,1,1)*dTdy(nn)%field(i,j,k+1)
! compute time explicit portion of the vertical flux
fz2(nn)%field(i,j) = Grd%tmask(i,j,k+1) &
*( Grd%dxtr(i,j)*(sumx_0+sumx_1) &
+Grd%dytr(i,j)*(sumy_0+sumy_1)) &
*dzwtr(i,j,k) &
+ K33_explicit(i,j,k)*dTdz(nn)%field(i,j,k)
enddo
enddo
enddo
if(tmask_neutral_on) then
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc,iec
if(k==(Grd%kmt(i,j)-1)) fz2(nn)%field(i,j) = 0.0
enddo
enddo
enddo
endif
if(tmask_sigma_on) then
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc,iec
if(tmask_sigma(i,j) > 0.0 .and. k==(Grd%kmt(i,j)-1) ) then
fz2(nn)%field(i,j) = fz2(nn)%field(i,j)*(1.0-tmask_sigma(i,j))
endif
enddo
enddo
enddo
endif
if(neutral_physics_limit) then
do nn=1,num_prog_tracers
do j=jsc,jec
do i=isc,iec
if(T_prog(nn)%tmask_limit(i,j,k)==1.0) fz2(nn)%field(i,j) = 0.0
enddo
enddo
enddo
endif
endif !if-test for k-level
end subroutine fz_flux
! NAME="fz_flux"
!#######################################################################
!
!
!
! Write some checksums.
!
!
subroutine neutral_chksums
integer :: stdoutunit,stdlogunit
stdoutunit=stdout();stdlogunit=stdlog()
write (stdoutunit, *) &
'chksum for surf_turb_thick = ',mpp_chksum(surf_turb_thick(isc:iec,jsc:jec)*Grd%tmask(isc:iec,jsc:jec,1))
write (stdoutunit, *) &
'chksum for surf_trans_thick = ',mpp_chksum(surf_trans_thick(isc:iec,jsc:jec)*Grd%tmask(isc:iec,jsc:jec,1))
end subroutine neutral_chksums
! NAME="neutral_chksums"
!#######################################################################
!
!
! Write out restart files registered through register_restart_file
!
subroutine ocean_nphysicsB_restart(time_stamp)
character(len=*), intent(in), optional :: time_stamp
if(.not. use_this_module) return
call save_restart(NphysicsB_restart, time_stamp)
call ocean_nphysics_util_restart(time_stamp)
end subroutine ocean_nphysicsB_restart
! NAME="ocean_nphysicsB_restart"
!#######################################################################
!
!
!
! Write to restart.
!
!
subroutine ocean_nphysicsB_end(Time)
type(ocean_time_type), intent(in) :: Time
integer :: stdoutunit
stdoutunit=stdout()
if(.not. use_this_module) return
call ocean_nphysics_coeff_end(Time, agm_array, aredi_array, rossby_radius, rossby_radius_raw, bczone_radius)
write(stdoutunit,*)' '
write(stdoutunit,*) 'From ocean_nphysicsB_end: ending neutral checksums'
call write_timestamp(Time%model_time)
call neutral_chksums
end subroutine ocean_nphysicsB_end
! NAME="ocean_nphysicsB_end"
end module ocean_nphysicsB_mod