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Abstract

We present a new near-global coupled biogeochemical ocean-circulation model configuration. The configuration features a

horizontal discretization with a grid spacing of less than 11km in the Southern Ocean and gradually coarsens in meridional

direction to more than 200 km at 64◦ N where the model is bounded by a solid wall. The underlying code framework is GFDL’s

Modular Ocean Model coupled to the Biology Light Iron Nutrients and Gasses (BLING) ecosystem model of Galbraith et al.5

(2010). The configuration is cutting-edge in that it features both a relatively equilibrated oceanic carbon inventory and a

realistic representation of eddy kinetic energy - a combination that has, to-date, been precluded by prohibitive computational

cost. Results from a simulation with climatological forcing and a sensitivity experiment with increasing winds suggest that

the configuration is suited to explore Southern Ocean Carbon uptake dynamics on decadal timescales. Further, the fidelity of

simulated bottom water temperatures off and on the Antarctic Shelf suggest that the configuration may be used to provide10

boundary conditions to ice-sheet models. The configuration is dubbed MOMSO a Modular Ocean Model Southern Ocean

configuration.

1 Introduction

The Southern Ocean, also known as the Antarctic Ocean, comprises the southernmost waters of the World Oceans. It’s southern

boundary is set by the Antarctic continent. As concerns its northern boundary to the Atlantic, Pacific and Indian Ocean,15

there is no consensus. One common definition is the location of the Subtropical Front (STF), which separates the relatively

saline subtropical waters from the fresher sub-Antarctic waters. This definition is straightforward because it characterizes the

transition from one oceanographic regime to another distinctly different one. However, because the position of the front varies

with time, the definition adds complexity to certain analysis such as oceanic inventories. A pragmatic solution is to define a

fixed latitude as the northern boundary. We choose 40◦S.20

The atmospheric conditions in the Southern Ocean are characterized by frequent cyclonic storms that travel eastward around

the Antarctic continent and high-pressure areas over the poles. This averages to a strong westerly wind belt between 40◦S
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and 60◦S and rather weak and irregular polar easterlies from 60◦S on southwards. The predominant low-frequency mode of

atmospheric variability is summarized by the Southern Annular Mode (Limpasuvan and Hartmann, 1999; Marshall, 2003)

which essentially describes the strength and position of the westerly wind belt.

The strong westerly wind belt drive the Antarctic Circumpolar Current (ACC), the ”mightiest current in the oceans” (Pickard

and Emery, 1990) which is unobstructed by continents. The ACC circumnavigates the globe zonally and, thus, links the5

Atlantic, Pacific, and Indian Oceans. A northward Ekman transport (also driven by the westerlies) drives up- and downwelling

(Marshall and Speer, 2012) and is part of a meridional overturning circulation, also known as Deacon Cell. The role of eddy

induced transports that oppose the strength of the Deacon Cell is still under discussion (e.g., Hallberg and Gnanadesikan, 2006;

Thompson et al., 2014; Tamsitt et al., 2017). Further complexity is added by sea-ice which modulates air-sea buoyancy fluxes

and thus effects and affects convection, a prerequisite for Antarctic Bottom Water (AABW) formation.10

Being one of the few places world-wide where deep water (such as AABW) is formed, the Southern Ocean plays a major role

in the global carbon budged. Convection events tap into the abyssal ocean and modulate the difference between atmospheric

and oceanic CO2 concentrations which drive net-air sea fluxes. A comprehensive quantitative understanding is still work in

progress but the consensus is that the variability in the extent, to which deep-water masses in the Southern Ocean are isolated

from the atmosphere, is among the major drivers regulating atmospheric CO2-variability (e.g., Anderson et al., 2009; van15

Heuven et al., 2014; Ritter et al., 2017). Consequently, the Southern Ocean has shifted into the limelight of climate research

(DeVries et al., 2017; Tamsitt et al., 2017; Langlais et al., 2017, and many more).

As for now we know that the Southern Ocean accounts for almost half of the global oceanic CO2 uptake from the atmosphere

(Takahashi et al., 2012). But, there is concern that anticipated climate change (e.g., via changes of atmospheric circulation and

sea-ice cover) may trigger substantial changes in the Southern Ocean carbon budget (e.g., Heinze et al., 2015; Abernathey20

et al., 2016) such that the current rate of uptake may well decline in decades to come. Indications for the existence of such

triggers have been revealed by observation-based atmospheric reanalysis products which show an ongoing strengthening and a

poleward shift of the southern westerly winds since the 1970s (Thompson and Solomon, 2002).

This observed trend is projected by climate scenarios to intensify (e.g., Simpkins and Karpechko, 2012) and it is straight-

forward to assume that the associated wind-driven circulation impinges on biogeochemical dynamics and, eventually, on the25

oceanic carbon budget. A comprehensive understanding of the link between changing winds and oceanic upwelling of carbon-

rich deep waters (which, in turn, affects surface saturation and net air-sea CO2 exchange) is, however, work in progress.

To this end, the role of mesoscale ocean eddies is especially uncertain: the current generation of coarse resolution (non-

mesoscale-resolving) models suggests that a poleward shift and an intensification of the Southern Ocean westerlies results

in a strengthening of the subpolar meridional overturning cell (e.g., Saenko et al., 2005; Hall and Visbeck, 2002; Getzlaff30

et al., 2016) and, consequently, in increased upwelling of deep water south of the circumpolar flow, which is rich in dissolved

inorganic carbon (e.g., Zickfeld et al., 2007; Lenton and Matear, 2007; Lovenduski et al., 2008; Verdy et al., 2007). The net

effect being here that changes of the atmospheric circulation reduce the capability of the Southern Ocean to sequester carbon

away from the atmosphere. Early on, however, there were indications (e.g., Böning et al., 2008; Hallberg and Gnanadesikan,

2006; Hogg et al., 2008; Screen et al., 2009; Thompson and Solomon, 2002) that this model-behavior is a spurious consequence35
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of the underlying eddy parameterization in coarse resolution models which can not afford to resolve mesoscale dynamics

explicitly. To date we know that very different state-of-the-art approaches to parameterize eddies yield surprisingly similar

sensitivities of oceanic carbon-inventories to changing winds Dietze et al. (2017). The question, however, as to how these

results compare to high resolution coupled biogeochemical ocean circulation which actually resolve eddies explicitly, has not

been answered yet. The main reason being the prohibitive computational cost that is associated to equilibrating simulated5

dissolved inorganic carbon concentrations at depth.

In this study we present the model configuration MOMSO 1.0. The configuration features realistic levels and distributions of

eddy kinetic energy. This suggests that the configuration explicitly resolves a substantial part of mesoscale-related variability

rather than relying on parameterizing their effect. MOMSO is designed to explore the sensitivity Southern Ocean carbon uptake

to atmospheric changes on decadal scales. The configuration is rendered feasible by recent advances in compute hardware10

and, by chance, from its similarity with a spun-up coarse resolution model which delivered the initial conditions for the

biogeochemical module. More specifically, we will showcase that the "level-of-equilibration" of simulated deep dissolved

inorganic carbon allows to test the sensitivity of the Southern Ocean carbon budget to anticipated climate change patterns and

include a preliminary result of a comparison to the results of a similar, but coarse resolution, model.

In addition, we showcase that MOMSO is potentially suited to explore the effects of changing eddying circulation patterns on15

basal melting because it features a realistic representation of Antarctic Continental Shelf Bottom Water (ASBW) temperatures

at the seabed off Antarctica. The realistic seabed temperatures, in combination with its biogeochemical module, empowers

MOMSO to explore feedback loops such as: atmospherically-driven changes in ocean-circulation drive additional heat supply

which fuel basal melting. The buoyant lens of meltwater may, for one, suppress the AABW-formation (Williams et al., 2016).

This, in turn, effects oceanic carbon sequestration. Second, the meltwater carries bioavailable iron to the Southern Ocean -20

which affects oceanic primary productivity and the associated export of organic carbon to depth (Grotti et al., 2005; Lannuzel

et al., 2008, 2010; Raiswell et al., 2008; Smith et al., 2007; Smith and Nelson., 1986; van der Merwe et al., 2009).

In summary, this study aims to (1) describe and present a new eddying coupled ocean-circulation biogeochemical model

configuration, and (2) to depict potential applications and associated research questions. The project is dubbed MOMSO, a

configuration of GFDL’s Modular Ocean Model version 4p1 with enhanced resolution in the Southern Ocean. The naming is25

an homage to the underlying framework, the MOM4p1 release of NOAAs Geophysical Fluid Dynamics Laboratory (GFDL)

Modular Ocean Model (Griffies, 2009). The framework was chosen because of its exceptional documentation, maturity, mod-

ularity and user community. The ocean circulation model is coupled to a sea-ice model and the biogeochemical module. The

latter has been developed by Galbraith et al. (2010).

The configuration MOMSO is distributed, free of charge, in a joint effort of the biogeochemical modelling group at the30

Helmholtz Centre for Ocean Research, Kiel, Germany and the Institute of Geosciences of Kiel University.
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2 Model Setup

This study is based on simulations with the Modular Ocean Model (MOM), version MOM4p1 (Griffies, 2009). The configu-

ration is near-global, bounded by Antarctica and 64◦N. In the Southern Ocean the horizontal resolution is higher than 11km

up till 40◦S. The meridional grid resolution coarsens towards the North (Fig. 1). There are no open boundaries and there is no

tidal forcing.5

The biogeochmical model BLING, short for Biology Light Iron Nutrients and Gasses (Galbraith et al., 2010) is coupled online

to the ocean-sea ice model. Atmospheric CO2 concentrations are prescribed to a preindustrial level of 278ppmv. The respec-

tive carbon inventories and fluxes are referred to as natural carbon.

The remainder of this section provides more details.

2.1 Grid and Bathymetry10

The underlying bathymetry is ETOPO5 (c.f. Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth.

NOAA, National Geophysical Data Center, Boulder, Colorado, 1988). Using a bilinear scheme the bathymetry is interpolated

onto an Arakawa B-grid (Arakawa and Lamp, 1977) with 2400×482 tracer grid boxes in the horizontal. The ocean-circulation

and the sea-ice model share the same horizontal grid.

The vertical discretisation comprises a total of 55 levels. Fig. 1 shows the nominal depth and thickness of each level. The model15

bathymetry is smoothed with a filter similar to the Shapiro filter (Shapiro, 1970). The filter weights are 0.25, 0.5 and 0.25. The

filtering procedure can only decrease the bottom depth, i.e. essentially, it fills rough holes. The filter is applied three times

consecutively. The resulting bathymetry contained lakes which we filled after visual inspection. In addition, we filled narrow

inlets which had a width of less than three grid boxes. In total, MOMSO has 42.429.759 wet tracer grid boxes.

We use the zstar coordinate (Stacey et al., 1995; Adcroft and Campin, 2004) in the vertical, i.e., the depth and thickness of20

each level varies with time. zstar (z?) is calculated as a function of nominal depth (z), water depth (H) and the free sea surface

height (η) which varies with time:

z? =H

(
z− η

H + η

)
(1)

(equation 6.6 in Griffies, 2009). The approach overcomes the problem with vanishing surface grid boxes which appears in

generic z-level discretisation when sea surface height variations are of similar magnitude than the thickness of the uppermost25

grid box.

2.2 The Ocean Component

MOM4p1 is a z-coordinate, free surface ocean general circulation model which discretizes the ocean’s hydrostatic primi-

tive equations on a fixed Eulerian grid. The vertical mixing of momentum and scalars is parameterized with the K-Profile-

Parameterization approach of Large et al. (1994) with the same parameters applied in eddy-permitting global configurations of30

Dietze and Kriest (2012); Dietze and Löeptien (2013); Dietze et al. (2014), and Liu et al. (2010). The relevant parameters are

4



(1) a critical bulk Richardson number of 0.3 and (2) a constant vertical background diffusivity and viscosity of 10−5 m2/s.

The background values apply also below the surface mixed layer throughout the water column. Both parameterizations of the

nonlocal and the double diffusive (vertical) scalar tracer fluxes are applied.

We apply a state-dependent horizontal Smagorinsky viscosity scheme (Griffies and Hallberg, 2000) to keep friction at the

minimal level demanded by numerical stability. We use the PPM advection scheme (Colella and Woodward, 1984) for active5

tracers and a flux-limited scheme following Sweby (1984) for biogeochemical tracers. We do not apply an explicit horizontal

background diffusivity other than the contribution that is implicit to the advection scheme.

Several decades into the spin-up the configuration became unstable in coarsely-resolved places where strong currents met rough

topography. Setting an additional horizontal isotropic Laplacian Viscosity of 600m2/s from 10◦S to 50◦N, of 1200m2/s

above 50◦N and 1800m2/s and above 60◦N until the northern boundary of the model domain kept the respective oscillations10

in check. In addition we added Laplacian Viscosity at the exit of Drake Passage (Fig. 2).

2.3 The Sea Ice Component

The ocean component is coupled to a dynamical sea ice module, the GFDL Sea Ice Simulator (SIS). SIS uses elatic-viscous-

plastic rheology adapted from Hunke and Dukowicz (1997). In the standard version, the simulated sea ice impacts sea surface

height. This led to a viscous cycle at some places where sea ice attracts ever more sea ice resulting in unrealistic anomalies in15

sea surface height. We solved this problem by switching to levitating sea ice (by applying a small change to the code).

2.4 The Biogeochemical Component

In our setup, the ocean component is coupled to the BLING ecosystem model of Galbraith et al. (2010). BLING is a prognostic

model that, in the basic version, explicitly resolves four biogeochemical tracers: dissolved inorganic phosphorous, dissolved

organic phosphorous, dissolved iron and dissolved oxygen. In this study we use BLING in conjunction with a carbon module20

that explicitly resolves dissolved inorganic carbon and alkalinity as described, e.g., in Bernadello et al. (2014).

The design idea behind the "reduced-tracer" model BLING is a low computational cost and yet, complex-enough, framework

to be utilized in high-resolution configurations. Our choice of BLING is motivated by it’s fidelity which is comparable to much

more complex (and computationally expensive) models (Galbreith et al., 2015). Further, the choice allows for a comparison

with the coarse-resolution setup described in Dietze et al. (2017) which uses the exact same BLING configuration.25

2.5 Initial Conditions and Spin-up Procedure

The circulation model starts from rest (i.e. initial velocities are nil) with initial values for temperature and salinity taken from

WOA2009 (Locarnini et al., 2010; Antonov et al., 2009, respectively). After 20 years of physics-only spin-up, the biogeochem-

ical model is hooked on. The initial conditions for the biogeochemical tracers are interpolated from the fully spun-up coarse

resolution configuration used by Dietze et al. (2017) (their "FMCD" simulation) which is, apart from the spacial discretization30

(and related parameters), identical to the MOMSO configuration. This procedure accelerates the equilibration of the carbon
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dynamics substantially compared to using observational products. After a subsequent 60 year-long spin-up with on-line bio-

geochemistry the model allows already (as we will put forward in Section 3.2) for an investigation of circulation-driven decadal

changes of the Southern Ocean Carbon Budget.

2.6 Boundary Conditions and Sponges

The boundaries towards the Arctic (i.e. the northern end of the model domain shown in Fig. 1) are closed (i.e. they are5

represented by solid and flat walls). Temperature and salinity are restored to climatological estimates (Locarnini et al., 2010;

Antonov et al., 2009) in so-called sponge zones located in the coarse-resolution domain. The sponge zones along with restoring

timescales are shown in Fig. 3. The purpose of these sponges is to ensure realistic deep-water characteristics even though

northern-hemisphere deep-water formation processes are handicapped by the combination of coarse resolution with the absence

of eddy-parameterizations.10

At the air-sea boundary we apply climatological atmospheric conditions taken from the Corrected Normal Year Forcing

(COREv2 Large and Yeager, 2004). In addition we apply a surface salinity restoring to climatological values (Antonov et al.,

2009) with a timescale of 1/2 year throughout the model domain.

Atmospheric CO2 concentrations are prescribed to a preindustrial level of 278ppmv. Thus the simulated oceanic carbon is

also referred to as natural carbon. Biogeochemical air-sea fluxes (of iron) are identical to the ones applied in Galbraith et al.15

(2010) and Dietze et al. (2017).

This paper describes output from two simulations dubbed REF and WIND. Both simulations share the same 80 year spin-up

described in Sect. 2.5. WIND branches off from REF during the nominal year 1980 and is exposed to ever increasing wind

speeds south of 40◦S. The increase is linear at a rate of 14% in 50 years, consistent with results from a reanalysis of the period

1958 to 2007 (Lovenduski et al., 2013).20

IO-related hardware problems caused data loss. REF covers the period from 1980 to 2024, WIND covers 1980 to 2022 only.

3 Results

In the following we evaluate our model (simulation REF) by comparing our climatological results from the nominal years 1980

- 2024 to observational data (Sec. 3.1). One problem is the tradeoff between data density and the length of the period the data is

representative for. For any given year data densities are typically insufficient to compile a comprehensive 3-dimensional gridded25

data product. Binning data of several years into one product closes spacial data gaps, but then, this blurs the referencing to an

ever (anthropogenically-driven) changing system state. This problem is especially pronounced in the Southern Ocean where

in-situ data acquisition is complicated by hostile environmental conditions.

The climatological atmospheric boundary conditions which drive our ocean model are representative for the period 1958-

2000. Climatological data products are typically biased in that they contain more recent data being the result of recent techno-30

logical advances (such as the development of autonomous platforms). Hence, a model evaluation is not straightforward and it

is difficult to define meaningful model-data misfit metrics. Our pragmatic approach to this problem is to put plots of observed
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and modeled properties which are typically found in respective publications side to side. Further, we make an effort to put our

climatological model results into the context of observed trends/interannual variability.

In addition to the observations being moving targets, unfortunately, the climatological simulation REF does also exhibit a

certain amount of drift. This drift is associated to a spin-up procedure that is of finite duration (i.e. starting from rest, it has

only been integrated for a finite number of model years). Subsection 3.2 puts this drift into perspective by comparing the5

drift in simulation REF with the temporal evolution of the simulation WIND which is driven by idealized (but realistic) wind

anomalies over the Southern Ocean.

Hence, by putting the configuration’s sensitivity in relation to its persistent drift Subsection 3.2 provides a measure of the

signal-to-noise ratio.

We close this Section in 3.3 with technical issues.10

3.1 Evaluation of the Climatological Simulation

The major aim of our model setup is to explore the role of mesoscale features, or, eddies in determining the CO2-uptake

of the Southern Ocean. One hypothesis this model is set-up to test is whether spatially-unresolved dynamics in IPCC-type

coarse resolution models biases their carbon uptake sensitivity. In order to come to a meaningful conclusion on this, our

high-resolution model has to perform with a fidelity similar or superior to that of IPCC-type coarse resolution models. In the15

following we list and explain our choice of model assessments which we deem relevant in this respect. Please note, that a

comprehensive coarse versus high resolution comparison is beyond the scope of this high-resolution model description.

– Ocean circulation (Sec. 3.1.1) which, e.g., effects the transport of carbon-rich deepwater to the surface, shapes the

locations of fronts and constitutes a major pathway for nutrients that are essential for phytoplankton growth. For the

evaluation of surface currents, we use exemplary snapshots showcasing main circulation paths and spacial variability20

along with climatological sea surface height which is indicative for the barotropic circulation. More quantitative measures

of transport characteristics are provided for the ACC (Drake Passage transport) and the Southern Ocean meridional

overturning circulation. Further, we assess the strength of the cyclonic Ross and Weddell polar gyres which are formed

by interactions between the ACC and the Antarctic continental shelf. Special emphasis is here on the larger Weddell

Gyre. This gyre entrains heat and salt from the ACC and carries them to the Antarctic continental shelves, where deep25

and bottom waters are produced and, thus, establish an intermittent connection between the atmosphere (surface ocean)

and the deep oceanic carbon (nutrient) pool.

– Eddy kinetic energy (EKE, Sec. 3.1.2), which is an important measure for the mesoscale activity and thus a key proxy

for realistically reproducing eddy-dynamics. At the surface the EKE can be derived from the variability of the sea surface

height (SSH), a measure that can be directly observed from space by satellite altimetry.30

– Temperatures (Sec. 3.1.3), which determines the rate of biological turn-over (like most chemical reactions), affects the

solubility pump of carbon and is related to the density of sea water. Cooling typically results in a reduction of buoyancy
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and causes convection. Spatial temperature gradients are associated to geostrophic circulation (if they are not salinity-

compensated). Further, sea surface temperature (SST) serves as a proxy for the realism of the surface mixed layer depth

whose dynamics is a major process involved in the supply of nutrients from depth to the sun-lit surface ocean. The sea

surface temperature (SST) can be directly observed from space and, therefore, is available in an unrivaled (compared

to in-situ measured properties) spacial and temporal resolution. Temperatures at depth are important for basal melting5

and, thus, are related to the formation rate of Antarctic Bottom Water (AABW). AABW formation, in turn, affects the

solubility and biotic pump of carbon.

– Salinity (Sec. 3.1.4) is related to the density of sea water. Saltening by brine rejection can cause convection, meltwater

on the other hand can build lenses thus increasing the local stability of the water column which prevents vertical mixing.

Spatial salinity gradients are associated to geostrophic circulation (if they are not temperature-compensated).10

– Sea Ice (Sec. 3.1.5) caps the direct exchange between atmosphere and ocean and thus controls the air-sea gas exchange

of CO2. It also modulates the air-sea buoyancy forcing by, e.g., insulating the surface from heat loss or by brine rejection

during ice formation. Further, it shields the surface water from solar irradiance and hampers the assimilation of CO2 by

autotrophic plankton.

– Nutrients (Sec. 3.1.6) which are essential to the growth of autotrophic plankton and whose availability exert major15

control on the biological pump. The most important macronutrient is bioavailable phosphorous such as phosphate (PO4)

because its availability is essential to all phytoplankton (and cyanobacteria). The distribution of PO4 is determined by

the interplay of ocean circulation transporting PO4 dissolved in sea water and marine biota which utilize phosphorous

to build biomass (typically at the surface) and release PO4 in the course of degradation of organic material (typically

at depth). In addition we assess simulated iron concentrations since, the Southern Ocean is well-known for being a site20

where this is limiting the growth of autotrophs (Boyd and Ellwood, 2010).

3.1.1 Ocean Circulation

Fig. 4 shows simulated climatological sea surface height (SSH) along with an estimate based on observations from space. The

remarkable similarity between the two showcases that the major (barotropic) circulation patterns are well represented by the

model - even in the coarse-resolution domain far north from the Southern Ocean.25

Fig.5 shows exemplary snapshots of the surface velocities as observed from space (left, AVISO) and simulated (right,

MOMSO). The boundary conditions of the model are not identical to the atmospheric boundary conditions on that specific

day and the highly non-linear characteristics of eddy-dynamics renders an "eddy-to-eddy" similarity without data assimilation

impossible. So the purpose of Fig.5 is to demonstrate the similarity of patterns and the major transport pathways which coincide

remarkably. The closeup into the Agulhas retroflection zone (Fig. 6) highlights that this remarkable similarity is sustained right30

up into the transition to coarser, non-eddy-resolving resolution.

Fig. 7 shows a more quantitative circulation measure for the Drake Passage transport. (Here we refer to the reference

simulation only; simulation WIND is discussed in Section 3.2.) The simulated Drake Passage transport averages at 99 Sv
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(nominal years 1980–2023). This is biased low compared to observational estimates that range from 110 to 170Sv (Withworth

(1983) for 1979; Cunningham et al. (2003) for 1993–2000; Chidichima et al. (2014) for 2007–2011). Similar biases have

been reported in other high-resolution configurations and may, according to Dufour et al. (2015), be related to a deficient

representation of the overflow of dense waters, formed along the Antarctic coasts. If so, the ACC bias may well be endemic to

z-level models which struggle to represent complex topography (in comparison to more elaborate numerical approaches such5

as, e.g., finite elements). A comprehensive investigation is beyond the scope of this manuscript. But, still, the problem is an

intriguing one – especially since, historically, (coarse resolution) models started out from an opposing bias dubbed Hidaka’s

Dilemma (Hidaka and Tsuchiya, 1953), where an excessive ACC transport could, only by application of unrealistically high

friction, be fenced into realistic bounds.

In terms of meridional overturning in the Southern Ocean our model values are consistent with the Southern Ocean State10

Estimate of Mazloff et al. (2010): Mazloff et al. (2010) find a surface meridional overturning cell across 32◦S of 12± 12Sv

and an abyssal cell of 13±6Sv. We find a climatological mean value for the upper cell of 12±4Sv and 8±3Sv for the lower

cell.

In terms of transports of the Weddell and Ross gyre our simulation is slightly biased high. In the Weddell gyre we simulate

70Sv while published estimates range from 40±8Sv (Southern Ocean State Estimate, Mazloff et al., 2010) to 56± 10Sv15

(recent SODA estimate Yongliang et al., 2016) 55.9 ±9.8Sv and 61− 66Sv (Schröder and Fahrbach, 1999). In the Ross gyre

we simulate 35Sv while published estimates range from 20± 5Sv (Mazloff et al., 2010) to 15− 30Sv (Chu and Fan, 2007)

and 37± 6Sv (Yongliang et al., 2016).

3.1.2 Eddy kinetic energy and sea surface height

Fig. 8 shows that the simulated climatological EKE reproduces the observed amplitudes and spatial patterns. Overall we20

conclude that the energetics of simulated mesoscale has realistic levels and we see no evidence of a general low bias. This

suggests that our spacial resolution in the Southern Ocean is high enough to allow for a meaningful investigation of eddy-

driven processes. A caveat here is that the observed EKE may be biased low as suggested by, e.g., Fratantoni (2001).

3.1.3 Temperature

Fig. 9 shows a comparison of the simulated SST with WOA09 (Locarnini et al., 2010) and ARGO float-based (Roemmich25

and Gilson, 2009) observations. The overall pattern is well reproduced - an exception being a local unusual high bias of about

3◦C close to the Antarctic coast (between 120◦E and 160◦E) which we relate to an underestimation in sea ice coverage (c.f.,

Sect. 3.1.5).

On average, however, the simulated Southern Ocean SSTs (Fig. 10) are within the observational range (although at at the

lower edge) of the years 1960 to 2010 (Fig. 11 - calculated from HadISST, Rayner et al., 2003)), which is another indication30

of an overall good representation of the modelled SST.

Fig. 12 shows the simulated and observed (Schmidtko et al., 2014) temperatures of the Antarctic Continental Shelf Bottom

Water (ASBW). The simulated temperatures are generally in good agreement with the observations.
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3.1.4 Sea Surface Salinity

Fig. 13 shows a comparison of the simulated climatological mean sea surface salinity (SSS) with three observation-based

products (WOA09 (Antonov et al., 2009), ARGO (Roemmich and Gilson, 2009) and SMOS (Köhler et al., 2015)). Within the

spatially highly-resolved Southern Ocean the simulated sea surface salinity is in very good agreement with the observations.

Towards the north, where the resolution coarsens the model fidelity disintegrates; particularly in the Atlantic, and Indic sector,5

the model is biased low.

On average the simulated Southern Ocean SSS is biased low (compare reference in Fig. 14) compared to recent observational

estimates during 2005 – 2017 (Fig. 15). The underlying reason is subject to current investigation. For know, Fig. 14 suggests

that increasing winds can increase simulated SSSs up to observed values. This could be interpreted as a mismatch between

climatological forcing and observation period. In any case, Fig. 14 suggests that the surface salinity restoring (c.f. Section 2.6)10

is weak enough to allow for substantial SSS dynamics.

3.1.5 Sea Ice

Figure 16 shows a comparison of the simulated number of sea ice-covered months per year with an observation estimate

(HadISST Rayner et al., 2003). Overall the agreement is good with the following exception: (1) The Weddell and Ross Sea

the ice coverage is underestimated by two months. We speculate that this triggers elevated air-sea momentum fluxes and,15

eventually, biases the respective gyre strengths high (c.f. Section 3.1.1). (2) Overall the simulated ice extent is biased high

(compare Fig. 17, black line to Fig. 18). This may (or may not) be associated with a mismatch between climatological forcing

and observation period. In any case Fig. 17 suggests that increasing the wind speeds to levels being more representative for the

time period of observations shown in Fig. 18 alleviates the model bias.

3.1.6 Nutrients20

Simulated Southern Ocean PO4 surface concentrations are biased low by down to 0.6 mmolP/m2 locally (Fig. 19 a, c). The

reason is not straightforward to identify because it could be associated to a deficient physical module, a deficient biogeochem-

ical module, or both. In the following we will present an indication that the problem is associated to a deficient formulation of

iron limitation, argue why the formulation of light-limitation is unlikely to be the main problem, voice a caveat, and, finally,

put the model-data misfit into perspective.25

The uptake of PO4 at the sun-lit surface by autotrophic phytoplankton is known to be limited by the availability of light and

the availability of the micronutrient iron (in the Southern Ocean). Fig. 20 features a comparison of simulated iron concentra-

tions with observations. Even though the spacial and temporal coverage of iron measurements is still sparse (because iron is

expensive to measure) the emerging pattern is one where the simulated biotic iron-drawdown at the surface appears to be too

strong. Surface iron concentrations are biased low, just like the PO4 concentrations and they appear so throughout an annual30

cycle. Such deficient model behavior can be caused by insufficient throttling of phytoplankton growth by both iron and light

limitation. Looking closer in seasonal model-data misfits, however, suggests that a deficient iron limitation is more likely to
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be the cause: The dependency of growth (and associated micro- and macronutrient drawdown at the surface) is known to be

a highly nonlinear function of environmental drivers. We find that the bias in surface PO4 concentrations is almost constant

over the course of a seasonal cycle (Fig. 19 d), even though the photosynthetically available radiation varies dramatically from

season to season in the respective latitudes (also because radiation experienced by phytoplankton cells dispersed in surface wa-

ters, is a function of the seasonally varying surface mixed layer depth). By chance, this could be the result of nonlinear forcing5

modulating a deficient nonlinear formulation of PO4-limitation such that the model bias stays constant over a wide range of

environmental conditions (here seasons). But this is unlikely. Looking into the seasonal bias of simulated iron concentrations

(Fig. 20 d) we find that it varies substantially from season to season compared to the respective PO4 variability (Fig. 19 d) –

just as is expected when a deficient nonlinear model formulation is exposed to substantial variations in driving environmental

conditions.10

A caveat remains. Simulated phosphate concentrations at depth (Fig. 19) are also biased low. This may be associated to a

biological pump that is controlled by a deficient iron module. Equally likely, however, is that the biases at depth are caused by

a deficient representation of ocean physics and associated abyssal circulation pathways.

In summary, the model’s fidelity in reproducing observed patterns of biogeochemical properties is state-of-the-art (being non-

judgmental here). It is comparable to the coarse resolution twin (with twin referring to the biogeochemical model) configuration15

described in Dietze et al. (2017).

3.2 Sensitivity Experiment (WIND) versus (Reference) model drift

In the following we analyze the results of a sensitivity experiment. Simulation WIND differs from REF in that it branches off

from REF while being driven by linearly increasing winds (c.f. Section 2.6). The prescribed rate of increase is comparable to

observed rates in the last decades. For this reasons we have referred to some of the WIND results in Section 3.1 already. The20

purpose there being to relate model-data mismatches to potentially mismatching (climatological) model forcing.

In the following the focus differs. We aim to showcase that the sensitivity of our model-configuration to a typical decadal

change in boundary conditions is high relative to persistent model drift.

As the winds increase, the Southern Ocean overturning increases Fig. 21. The respective trend in the maximum overturning

is clearly distinguishable from the very weak drift of the reference simulation (Fig. 22). Locally, the wind-induced increase25

in overturning exceeds 0.3Svyr−1 (Fig. 23). Averaged over the Southern Ocean, the overturning results in a surface cooling

and saltening (Fig. 10). Both, the cooling and the saltening signals are clearly distinguishable from the very weak trend of the

reference simulation.

Close to Antarctica the winds transport warmer waters to the surface where they melt (prevent) ice (formation). Fig. 17

shows that this trend is clearly distinguishable from the variability in the reference simulation.30

Surprisingly, this does also apply to simulated trends in the temperature of the Antarctic Continental Shelf Bottom Water

(ASBW) which, naturally, take much longer to equilibrate than surface processes. Fig. 24 compares the remaining model

drift (panel a) to the drift-corrected trend in the sensitivity experiment WIND (panel b). The emerging pattern corresponds in

amplitude well to observed values, while the sign is reversed. We thus speculate that observed changes of ASWB temperatures
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can not only be attributed to the recent increases in wind-strength. In any case, Fig. 24 suggests that the equilibration of the

model has set in sufficiently so that model responses to decadal forcing variability are detectable.

A caveat here is the ACC transport through Drake passage. Both simulations WIND and the reference feature a comparable

and relatively strong drift (Fig.7).

The above mentioned trends in ocean (circulation) physics and changes in the sensitivity experiment WIND have their5

counterparts in the dynamics of biogeochemical processes. Some of these equilibrate quickly, such as surface nutrients or

biomass while others are associated with long timescales. Carbon dynamics is notorious in that respect and this, for decades,

has hindered the interpretation (and development) of eddy-resolving coupled ocean-circulation biogeochemical carbon models.

To this end the results summarized in Fig. 25 are exceptional: the remaining drift in the MOMSO reference simulation is only

1.0PgC/(1000yr2) which allows for a clear detection of the effect of increasing winds in simulation WIND which yields a10

substantially larger decline of 5.0PgC/(1000yr2).

MOMSO is very similar to the model configurations in Dietze et al. (2017). Further, Dietze et al. (2017) features the same

simulations (i.e. a reference and WIND). This allows for a comparison of the high-resolution MOMSO simulations with coarse

resolution, non-eddying simulations. Surprisingly, the two configurations yield very similar results: Dietze et al. (2017) find

a decreasing trend between 4.2 and 5.4PgC/(1000yr2) depending on the underlying eddy-parameterization while MOMSO15

yields a drift-corrected 5PgC/(1000yr2−1PgC/(1000yr2) = 4PgC/(1000yr2)). A comprehensive comparison is a natu-

ral application of MOMSO but beyond the scope of this manuscript.

3.3 Computational cost

Initial development, testing and spin-up of the physical configuration was carried out on two 32-core workstations, based

on a 6320 AMD Opteron (Abu Dhabi) (8-core CPU, 2.80 GHz, 16MB L3 Cache, DDR3 1600) interconnected with a QDR20

InfiniBand. As of 2013 the system cost ≈ Euros 10.000,-. The fully coupled ocean-circulation biogeochemical model has

been run at a supercomputing centre (project shk00027 at the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen,

HLRN). Fig. 26 documents excellent parallel performance up to 500 tasks - a setting which optimized our throughput on the

machine/queueing system. On 500 Intel Xeon CPU E5-2670 cores (Sandy Bridge) it takes 10 hours to simulate one year.

Referring to pricing published by HLRN in 2018 this amounts to ≈ Euros 250,- per integrated model year. We use compiler25

settings that optimize for computational efficiency. They violate computational reproducibility. A description of the associated

computational uncertainty is provided in Section 3.8 of Dietze et al. (2014) which use the same code (applied to a different

domain).

4 Summary and conclusions

We set out to develop a near-global coupled ocean-circulation biogeochemical model which explicitly resolves – in contrast30

to relying on respective parameterizations – effects of mesoscale eddy-dynamics on the uptake of carbon in the Southern

Ocean. The setup is dubbed MOMSO with MOM referring to the underlying framework (GFDL’s modular ocean model
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version MOM4p1) and SO referring to the Southern Ocean. We use the biogeochemical/carbon module BLING developed by

Galbraith et al. (2010).

Overall, we find in a climatological simulation (REF) an impressively eddying surface circulation that is in good agreement

with observations from space. Further, simulated temperatures and sea surface salinity show a close agreement with observa-

tions. Sea-ice cover is biased high but is still in the range of observed values during particularly cold winters. A remaining5

caveat is a low bias in the Drake Passage (99Sv compared to observational estimates ranging from 110 to 170Sv).

The simulated biogeochemistry is also biased. Surface phosphate concentrations are too low in the Southern Ocean which is

indicative of a deficient formulation of the limitation of phytoplankton growth. Seasonally varying biases in simulated surface

iron concentrations suggest that the problem is associated to an, up-to-date, uncomprehensive quantitative understanding of

iron-dynamics. The model performance with respect to biogeochemistry is similar to what is state-of-the-art in coarse resolution10

models (e.g., Dietze et al., 2017).

MOMSO is a quantum leap in the field of eddying coupled ocean-circulation biogeochemical carbon modeling in that it

allows to investigate the effects of decadal changes in atmospheric boundary conditions on the oceanic carbon uptake. Previous

attempts have been hindered by the computational cost that is associated to run simulations into a semi-equilibrated state which

features trends considerably lower than the climate signals (as effected by prescribed anomalies in boundary conditions) under15

investigation. To this end MOMSO benefitted from: (1) an ever increasing ease of access to computing power that is associated

to Moore’s law and (2) the fortunate coincidence that the spun-up coarse resolution restart from Dietze et al. (2017) was close

enough to the equilibrated high-resolution state of MOMSO.

In this study we showcased that the remaining drift in MOMSO’s Southern Ocean carbon uptake is substantially lower than

changes driven by typical decadal variability of atmospheric variations. We illustrate that the respective sensitivity experiment20

is suitable for a comparison to coarser-resolution model versions and present a first impression in Fig. 25. Similarly we find

that the drift in simulated temperatures of the Antarctic Continental Shelf Bottom Water is small enough to allow to link

atmospheric decadal variability to oceanic temperature variations at the boundary to ice shelves around Antarctica.

We illustrate that the respective sensitivity experiment is suitable for a comparison to coarser resolution model versions and

present a first impression in Fig. 25.25

On a final note, the computational cost associated with integrating MOMSO is substantial. With present-day hardware

full spin-ups are in the 5-figure Euro range so that extensive tuning of the biogeochemical model, which still features some

substantial misfits to observations, is uneconomical. Starting from the already spun-up state presented here, however, is in the

reasonable range of 2500,- Euros per decade. The corresponding energy needs (operation only) are of the order of 1000kWh

per decade. Using a carbon intensity of 450gCO2/kWh (e.g., Moro and Lonza, 2018) this yields an emission of around 0.530

tons of CO2 per simulated decade.

Code and data availability. The circulation model code MOM4p1 is distributed by NOAA’s Geophysical Fluid Dynamics Laboratory (http:

//www.gfdl.noaa.gov/fms). We use the original code without applying any changes to it apart from very minor changes (≈ 10 lines of code)
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which levitate sea ice (c.f., Sect. 2.3) and increase local viscosity (c.f., Sect. 2.2 and 2.5). The respective code, initial conditions, forcing,
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Figure 1. MOMSO model domain and spacial (finite differences) discretization. Panel (a) shows the model bathymetry. Panel (b), (c) and

(d) show the vertical, meridional and zonal resolution, respectively. In total, there are 2400× 482× 55 grid boxes in zonal, meridional and

vertical direction, respectively.
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Figure 2. Closeup of MOMSO bathymetry in the Drake Passage. The color denotes depths in meters. The red rectangle denotes the area

where, from 3250 m down to the bottom, an additional Laplacian horizontal viscosity of 1000m2/s is applied for stability reasons.

Figure 3. MOMSO domains where temperature and salinity are restored to observed climatological values (Locarnini et al., 2010; Antonov

et al., 2009, , respectively) throughout the water column. The red and blue patch denote e-folding restoring timescales of 10 and 5 years,

respectively.
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Figure 4. Climatological mean sea surface height in units cm. The left panel shows a 1993 to 1998 climatological average observed from

space (MADT AVISO data). The right panel shows a 6-year average (nominal years 1993 to 1998) simulated with the reference simulation.

White patches in the left and right panel indicate missing data and (spurious) model land mask, respectively.
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Figure 5. Magnitude of surface velocities. The left and right panel show typical snapshots as observed from space (AVISO, 3rd of May 1995)

and as simulated (MOMSO, 3rd of May of nominal year 2020), respectively.
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Figure 6. Magnitude of surface velocities. The left and right panel show typical snapshots as observed from space (AVISO, 3rd of May

1995) and as simulated (MOMSO, 3rd of May of nominal year 2020), respectively. This is a closeup from Fig. 5, focussing on those latitudes

where the meridional resolution transitions from eddy-permitting in the South to eddy-prohibiting in the North.
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Figure 7. Simulated volume transport of the Antarctic Circumpolar Current through Drake Passage in units 106m3 s−1. The black (red) line

refers to the reference (increasing-wind) simulation.
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Figure 8. Eddy kinetic energy. The left panel is calculated from 1993-1998 satellite altimetry (MSLA AVISO data) observations. The right

panel corresponds to a 6-year average (nominal years 1993 to 1998) calculated from daily-averaged surface velocities from the reference

simulation. White patches in the left and right panel indicate missing data and (spurious) model land mask, respectively.
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Figure 9. Climatological mean sea surface temperature. WOA09 and ARGO (2004-2017 period) refer to observations compiled by Locarnini

et al. (2010), and Roemmich and Gilson (2009), respectively. MOMSO refers to an average over the nominal 1993-1998 period of the

reference simulation. The upper (lower) panels show sea surface temperature (differences).
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Figure 10. Simulated sea surface temperature averaged over the Southern Ocean (i.e. south of 40◦S). The black (red) line refers to the

reference (increasing-wind) simulation.

Figure 11. Observational estimate of annual mean sea surface temperatures south of 40◦S calculated from HadISST (Rayner et al., 2003).
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Figure 12. Temperature of Antarctic Continental Shelf Bottom Water (ASBW) at the seabed for depths shallower than 1500 m. Panel (a) and

(b) refer to the simulated 1993 to 1998 climatology and observations compiled by Schmidtko et al. (2014), respectively.
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Figure 13. Climatological mean sea surface salinity in units PSU . WOA09, ARGO (2004-2017 period) and SMOS in the upper panels refer

to observations compiled by Antonov et al. (2009), Roemmich and Gilson (2009) and Köhler et al. (2015), respectively. MOMSO in the

lower panel refers to an average over the nominal 1993-1998 period of the reference simulation. MOMSO-WOA09 and MOMSO-ARGO

refer to sea surface salinity differences between the reference simulation and respective observations.
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reference

Figure 14. Simulated sea surface salinity averaged over the Southern Ocean (i.e. south of 40◦S) for the nominal years 1980 – 2024. The

black (red) line refers to the reference (increasing-wind) simulation.

Figure 15. Observed sea surface salinity averaged over the Southern Ocean (i.e. south of 40◦S) based on ARGO data (Roemmich and Gilson,

2009).
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HadISST reference increasing	wind

Figure 16. Ice-covered months in a year. The left panel refers to a 1980 to 2000 average based on the HadISST observational estimate (Rayner

et al., 2003). The middle and right panel refer to the nominal year 2022 of the reference and increasing-wind simulation, respectively.

reference

Figure 17. Simulated annual mean sea ice cover south of 40◦S in units 107 km2. The black (red) line refers to the reference (increasing-wind)

simulation.
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Figure 18. Observational estimate of annual mean sea ice cover south of 40◦S in units 107 km2 calculated from HadISST (Rayner et al.,

2003).
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Figure 19. Comparison of simulated and observed phosphate concentrations. Panel (a) refers to simulated surface phosphate concentrations

(reference simulation, averaged over nominal years 1993 to 1998). The colorbar denotes phosphate concentrations in units mmolP m−3.

Panel (b) shows simulated (blue line) and observed (black line) phosphate concentrations averaged horizontally in the Southern Ocean

(i.e. south of 40◦S) along with their respective spatial standard deviations (grey and blue horizontal bars). Pannel (c) shows the difference

between simulated and observed (Garcia et al., 2010) surface concentrations. Panel (d) shows the simulated (blue line) and observed (black

line) seasonal cycle of dissolved phosphate concentration at the surface calculated as monthly means averaged over the Southern Ocean.

33



0 1 2
dissolved Fe [nM]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

de
pt

h 
  [

m
]

(a)

2 4 6 8 10 12
month of year

0

0.5

1

1.5

di
ss

ol
ve

d 
Fe

 [n
M

]

(c)

(d)

(b)

Figure 20. Comparison of simulated with observed dissolved iron concentrations. Panel (a) refers to simulated surface iron concentrations

(reference simulation, averaged over nominal years 1993 to 1998). The colorbar denotes iron concentrations in units nM Fe. Panel (b) shows

simulated (blue line) and observed (black line) concentrations averaged horizontally in the Southern Ocean (i.e. south of 40◦S) along with

their respective spatial standard deviations (grey and blue horizontal bars). Panel (c) refers to observed surface iron concentrations (compiled

by Tagliabue et al. (2012) & Mawji, E., et al. (2014)). (The colorbar matches Panel a). Panel (d) depicts the simulated (blue line) and observed

(black line) seasonal cycle of dissolved iron concentration at the surface calculated as monthly means averaged over the Southern Ocean.

34



De
pt
h	
[m

]

Figure 21. Simulated Southern Ocean meridional overturning circulation in units 106m3 s−1 averaged over nominal year 2024. The left

(right) panel refers to the reference (increasing WIND) simulation.
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Figure 22. Maximum Southern Ocean meridional overturning circulation south of 40◦S in units 106m3 s−1. The black (red) line refers to

the reference (increasing-wind) simulation.
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Figure 23. noetig? Simulated linear trend of Southern Ocean meridional overturning circulation effected by increasing winds during nominal

years 1980 to 2024 in units 106m3 s−1 yr−1. Positive values denote increasing overturning.
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Figure 24. Temporal trend in the temperature of the Antarctic Continental Shelf Bottom Water (ASBW) at the seabed for depths shallower

than 1500 m. Panel (a) refers to the drift that is still persistent in the reference simulation during nominal years 1980 to 2024. (b) refers to

the trend in simulation in the simulation with increasing winds corrected by the drift that still persists in the reference. Panel (c) refers to an

observational estimate compiled by Schmidtko et al. (2014).

36



reference

Pg
C/
ye
ar

Figure 25. Simulated oceanic uptake of natural carbon south of 40◦S. The black (red) line refers to the reference (increasing-wind) simula-

tion.
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Figure 26. Computational performance as a function of CPU cores put to work simultaneously. On 500 Intel Xeon CPU E5-2670 cores it

takes 10 hours to simulate one year.
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