{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Analyse indiviudal events in Cape Verde" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np \n", "import matplotlib.pyplot as pyplot\n", "import xarray as xr\n", "import matplotlib.pyplot as plt\n", "import scipy.signal as sig" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/gxfs_work/geomar/smomw379/miniconda3/envs/py3_mhw/lib/python3.12/site-packages/distributed/node.py:182: UserWarning: Port 8787 is already in use.\n", "Perhaps you already have a cluster running?\n", "Hosting the HTTP server on port 35285 instead\n", " warnings.warn(\n" ] } ], "source": [ "import dask, dask_jobqueue \n", "import dask.distributed as dask_distributed\n", "\n", "cluster = dask_jobqueue.SLURMCluster(\n", " # Dask worker size\n", " cores=32, memory='80GB',\n", " processes=4, # Dask workers per job\n", " # SLURM job script things\n", " queue='base', walltime='03:00:00',\n", " # Dask worker network and temporary\n", " interface='ib0', local_directory='./dask_jobqueue_logs'\n", " )\n", "\n", "client = dask_distributed.Client(cluster)\n", "cluster.scale(jobs=1)\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)\n", " 17347135 base dask-wor smomw379 R 0:07 1 nesh-clk501\n" ] } ], "source": [ "!squeue -u smomw379" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "
\n", "
\n", "

Client

\n", "

Client-a4d4c88a-6e05-11f0-9721-74563c5ee57c

\n", " \n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "
Connection method: Cluster objectCluster type: dask_jobqueue.SLURMCluster
\n", " Dashboard: http://172.18.4.21:35285/status\n", "
\n", "\n", " \n", "\n", " \n", "
\n", "

Cluster Info

\n", "
\n", "
\n", "
\n", "
\n", "

SLURMCluster

\n", "

b02cc44e

\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " Dashboard: http://172.18.4.21:35285/status\n", " \n", " Workers: 4\n", "
\n", " Total threads: 32\n", " \n", " Total memory: 74.52 GiB\n", "
\n", "\n", "
\n", " \n", "

Scheduler Info

\n", "
\n", "\n", "
\n", "
\n", "
\n", "
\n", "

Scheduler

\n", "

Scheduler-07312363-e552-477b-9b2e-db62a4478e8b

\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
\n", " Comm: tcp://172.18.4.21:40461\n", " \n", " Workers: 4\n", "
\n", " Dashboard: http://172.18.4.21:35285/status\n", " \n", " Total threads: 32\n", "
\n", " Started: 5 minutes ago\n", " \n", " Total memory: 74.52 GiB\n", "
\n", "
\n", "
\n", "\n", "
\n", " \n", "

Workers

\n", "
\n", "\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: SLURMCluster-0-0

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://172.18.5.1:37409\n", " \n", " Total threads: 8\n", "
\n", " Dashboard: http://172.18.5.1:36181/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://172.18.5.1:43687\n", "
\n", " Local directory: /gxfs_home/geomar/smomw379/nb/viking20x-mhwdetection/ANALYSIS/Atlantic/dask_jobqueue_logs/dask-scratch-space/worker-xrl0dqh9\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: SLURMCluster-0-1

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://172.18.5.1:45715\n", " \n", " Total threads: 8\n", "
\n", " Dashboard: http://172.18.5.1:44507/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://172.18.5.1:34975\n", "
\n", " Local directory: /gxfs_home/geomar/smomw379/nb/viking20x-mhwdetection/ANALYSIS/Atlantic/dask_jobqueue_logs/dask-scratch-space/worker-55gp71ce\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: SLURMCluster-0-2

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://172.18.5.1:43349\n", " \n", " Total threads: 8\n", "
\n", " Dashboard: http://172.18.5.1:44049/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://172.18.5.1:37989\n", "
\n", " Local directory: /gxfs_home/geomar/smomw379/nb/viking20x-mhwdetection/ANALYSIS/Atlantic/dask_jobqueue_logs/dask-scratch-space/worker-je9t5h7r\n", "
\n", "
\n", "
\n", "
\n", " \n", "
\n", "
\n", "
\n", "
\n", " \n", "

Worker: SLURMCluster-0-3

\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", " \n", "\n", " \n", "\n", "
\n", " Comm: tcp://172.18.5.1:35883\n", " \n", " Total threads: 8\n", "
\n", " Dashboard: http://172.18.5.1:41797/status\n", " \n", " Memory: 18.63 GiB\n", "
\n", " Nanny: tcp://172.18.5.1:33163\n", "
\n", " Local directory: /gxfs_home/geomar/smomw379/nb/viking20x-mhwdetection/ANALYSIS/Atlantic/dask_jobqueue_logs/dask-scratch-space/worker-ec4iw0ht\n", "
\n", "
\n", "
\n", "
\n", " \n", "\n", "
\n", "
\n", "\n", "
\n", "
\n", "
\n", "
\n", " \n", "\n", "
\n", "
" ], "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "client" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MHW mask" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "\n", "MHW_WMO = np.zeros((15706, 46))\n", "\n", "for zz in range(0,46):\n", " if zz<10:\n", " zr=f'0{zz}'\n", " MHW_WMO[:,zz] = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-WMO-{zr}.nc').mhw_mask\n", " else:\n", " MHW_WMO[:,zz] = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-WMO-{zz}.nc').mhw_mask" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "\n", "MHW_detrend = np.zeros((15706, 46))\n", "\n", "for zz in range(0,46):\n", " if zz<10:\n", " zr=f'0{zz}'\n", " MHW_detrend[:,zz] = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-detrend-{zr}.nc').mhw_mask\n", " else:\n", " MHW_detrend[:,zz] = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-detrend-{zz}.nc').mhw_mask" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Climatology function" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "def daily_clim(temp, doy): \n", "\n", " ## for each day of the year get list of indices from full timeseries \n", " doys = np.arange(doy-5,doy+6) # Hobday et al. (2016): take +- 5 days\n", "\n", " doys[doys<1] = 366 + doys[doys<1] # include last/first days of year at beginning/end of year\n", " doys[doys>366] = doys[doys>366] - 366\n", " # get the indices in a sorted array\n", " ind_doy = np.array([])\n", " for xx in range(0,11):\n", " ind_doy = np.append(ind_doy, np.where(time_counter.dt.dayofyear == doys[xx])[0])\n", " ind_doy = np.sort(ind_doy).astype(int)\n", "\n", " ## temperature at doy from all years\n", " T_doy = temp.sel(time_counter=tsel).isel(time_counter=ind_doy)\n", " if doy==0:\n", " print(T_doy.time_counter[[0,-1]].values)\n", "\n", " ## average temperature for doy\n", " T_clim = T_doy.mean('time_counter').compute()\n", "\n", " ## standard deviation temperature for doy\n", " T_std = T_doy.std('time_counter').compute()\n", "\n", " return T_clim, T_std" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Heat content" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### fixed baseline" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "dsOHC = xr.open_mfdataset(path+'1_VIKING20X.L46-KFS003-6th_1d_*_OHC_CapeVerde.nc', chunks={'time_counter':1}).load()\n", "\n", "tsel = slice('1980','2009') # baseline period\n", "time_counter = dsOHC.time_counter.sel(time_counter=tsel)\n", "dpt = dsOHC.deptht" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['1980-01-01T12:00:00.000000000' '2009-12-31T12:00:00.000000000']\n" ] } ], "source": [ "OHC_clim = xr.DataArray(np.zeros((366,46))).rename('seas').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "OHC_std = xr.DataArray(np.zeros((366,46))).rename('std').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "\n", "for doy in range(0,366):\n", " OHC_clim[doy,:], OHC_std[doy,:] = daily_clim(dsOHC.OHC, doy)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "## anomaly from daily climatology\n", "OHC_ano = np.zeros((15706,46)); \n", "tc=0\n", "\n", "for yr in range(1980,2022+1):\n", " OHC_yr = dsOHC.OHC.groupby('time_counter.year')[yr]\n", "\n", " if len(OHC_yr)==366:\n", " \n", " OHC_ano[tc:tc+366,:] = (OHC_yr.groupby('time_counter.dayofyear') \n", " - OHC_clim.rename({'doy':'dayofyear'})).compute() \n", " tc+=366\n", " else:\n", " OHC_ano[tc:tc+365,:] = (OHC_yr.groupby('time_counter.dayofyear') \n", " - OHC_clim[0:-1].rename({'doy':'dayofyear'})).compute() \n", " tc+=365\n", "\n", "OHC_ano = xr.DataArray(OHC_ano).rename({'dim_0':'time_counter', 'dim_1':'deptht'})" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_218913/4217206456.py:4: DeprecationWarning: dropping variables using `drop` is deprecated; use drop_vars.\n", " dOHC = dsOHC.OHC.drop('time_counter').differentiate('time_counter')/(24*3600)\n" ] } ], "source": [ "# calculate heat content change\n", "dOHC_ano = OHC_ano.differentiate('time_counter')/(24*3600)\n", "\n", "dOHC = dsOHC.OHC.drop('time_counter').differentiate('time_counter')/(24*3600)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### detrended baseline" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "dsOHC = xr.open_mfdataset(path+'1_VIKING20X.L46-KFS003-6th_1d_*_OHC_CapeVerde.nc', chunks={'time_counter':1}).load()\n", "OHC_detr = xr.DataArray(sig.detrend(dsOHC.OHC, axis=0)).rename({'dim_0':'time_counter','dim_1':'deptht'}).assign_coords({'time_counter':dsOHC.time_counter, 'deptht':dpt})\n", "\n", "tsel = slice('1980','2022') # baseline period\n", "time_counter = dsOHC.time_counter.sel(time_counter=tsel)\n", "dpt = dsOHC.deptht" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['1980-01-01T12:00:00.000000000' '2022-12-31T12:00:00.000000000']\n" ] } ], "source": [ "OHCd_clim = xr.DataArray(np.zeros((366,46))).rename('seas').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "OHCd_std = xr.DataArray(np.zeros((366,46))).rename('std').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "\n", "for doy in range(0,366):\n", " OHCd_clim[doy,:], OHCd_std[doy,:] = daily_clim(OHC_detr, doy)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "## anomaly from daily climatology\n", "OHCd_ano = np.zeros((15706,46)); \n", "tc=0\n", "\n", "for yr in range(1980,2022+1):\n", " OHC_yr = OHC_detr.groupby('time_counter.year')[yr]\n", "\n", " if len(OHC_yr)==366:\n", " \n", " OHCd_ano[tc:tc+366,:] = (OHC_yr.groupby('time_counter.dayofyear') \n", " - OHCd_clim.rename({'doy':'dayofyear'})).compute() \n", " tc+=366\n", " else:\n", " OHCd_ano[tc:tc+365,:] = (OHC_yr.groupby('time_counter.dayofyear') \n", " - OHCd_clim[0:-1].rename({'doy':'dayofyear'})).compute() \n", " tc+=365\n", "\n", "OHCd_ano = xr.DataArray(OHCd_ano).rename({'dim_0':'time_counter', 'dim_1':'deptht'})" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Heat budget term profiles " ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "yCV = range(1002,1107)\n", "xCV = range(1447,1532)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Surface heat flux" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "path ='/gxfs_work/geomar/smomw355/model_data/ocean-only/VIKING20X.L46-KFS003/nemo/suppl/1_mesh_mask.nc'\n", "dsM = xr.open_dataset(path).squeeze().rename({'z':'deptht'}).isel(x=xCV, y=yCV)\n", "\n", "## grid cell area\n", "A = (dsM.e1t * dsM.e2t).where(dsM.tmask==1).compute()" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "calc_HFX = False\n", "\n", "if calc_HFX:\n", " path = '/gxfs_work/geomar/smomw355/model_data/ocean-only/VIKING20X.L46-KFS003-6th/nemo/output/1d_compressed/'\n", " HFX_mn = np.zeros((15706))\n", "\n", " tc=0\n", " for yr in range(1980,2023):\n", " dsT = xr.open_dataset(path + f'1_VIKING20X.L46-KFS003-6th_1d_{yr}0101_{yr}1231_grid_T.nc').isel(x=xCV_N,y=yCV_N)\n", "\n", " ## heat flux integrated over the area\n", " lt = len(dsT.time_counter)\n", " HFX = dsT.sohefldo\n", " HFX_mn[tc:tc+lt] = (HFX * dsM.e1t * dsM.e2t).sum(('x','y')).compute()\n", " tc+=lt\n", "\n", " print(yr, end=' ')\n", "\n", " ## save output\n", " HFX_mn = xr.DataArray(HFX_mn).rename({'dim_0':'time_counter'}).assign_coords({'time_counter':time_counter})\n", " ds_out = xr.Dataset(data_vars = {'HFX_mn':HFX_mn})\n", " ds_out.to_netcdf('/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_HFX-CapeVerde.nc')\n", "else:\n", " ## load integrated heat flux if it exists\n", " dsHFX = xr.open_dataset('/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_HFX-CapeVerde.nc')\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['1980-01-01T12:00:00.000000000' '2009-12-31T12:00:00.000000000']\n", "['1980-01-01T12:00:00.000000000' '2022-12-31T12:00:00.000000000']\n" ] } ], "source": [ "HFX_clim = xr.DataArray(np.zeros((366))).rename('seas').rename({'dim_0':'doy'})\n", "HFX_std = xr.DataArray(np.zeros((366))).rename('std').rename({'dim_0':'doy'})\n", "\n", "tsel = slice('1980','2009')\n", "time_counter = dsHFX.time_counter.sel(time_counter=tsel)\n", "\n", "for doy in range(0,366):\n", " HFX_clim[doy], HFX_std[doy] = daily_clim(dsHFX.HFX_mn.sel(time_counter=tsel), doy)\n", "\n", "\n", "HFXd_clim = xr.DataArray(np.zeros((366))).rename('seas').rename({'dim_0':'doy'})\n", "HFXd_std = xr.DataArray(np.zeros((366))).rename('std').rename({'dim_0':'doy'})\n", "\n", "tsel = slice('1980','2022')\n", "time_counter = dsHFX.time_counter.sel(time_counter=tsel)\n", "\n", "for doy in range(0,366):\n", " HFXd_clim[doy], HFXd_std[doy] = daily_clim(dsHFX.HFX_mn.sel(time_counter=tsel), doy)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "## calculate anomaly from daily climatology\n", "time_counter = dsHFX.time_counter\n", "\n", "HFX_ano = np.array([]); HFXd_ano = np.array([]); \n", "\n", "for yr in range(1980,2022+1):\n", " HFX_yr = dsHFX.HFX_mn.groupby('time_counter.year')[yr]\n", "\n", " ## keep the mean heat flux\n", " if len(HFX_yr)==366:\n", " \n", " HFX_ano = np.append(HFX_ano, (HFX_yr.groupby('time_counter.dayofyear') \n", " - HFX_clim.rename({'doy':'dayofyear'})).compute())\n", " HFXd_ano = np.append(HFXd_ano, (HFX_yr.groupby('time_counter.dayofyear') \n", " - HFXd_clim.rename({'doy':'dayofyear'})).compute())\n", " \n", " else:\n", " HFX_ano = np.append(HFX_ano, (HFX_yr.groupby('time_counter.dayofyear') \n", " - HFX_clim[0:-1].rename({'doy':'dayofyear'})).compute())\n", " HFXd_ano = np.append(HFXd_ano, (HFX_yr.groupby('time_counter.dayofyear') \n", " - HFXd_clim[0:-1].rename({'doy':'dayofyear'})).compute())\n", "\n", "HFX_ano = xr.DataArray(HFX_ano).rename({'dim_0':'time_counter'}).assign_coords({'time_counter':time_counter})\n", "HFX_ano = HFX_ano - HFX_ano.mean('time_counter')\n", "\n", "HFXd_ano = xr.DataArray(HFXd_ano).rename({'dim_0':'time_counter'}).assign_coords({'time_counter':time_counter})\n", "HFXd_ano = HFXd_ano - HFXd_ano.mean('time_counter')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ocean heat transport" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "## load ocean heat transport\n", "path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "dsOHT = xr.open_mfdataset(path+'1_VIKING20X.L46-KFS003-6th_1d_*_OHT-Tref_CapeVerde.nc', chunks={'time_counter':1})" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/gxfs_work/geomar/smomw379/miniconda3/envs/py3_mhw/lib/python3.12/site-packages/distributed/client.py:3163: UserWarning: Sending large graph of size 9.86 MiB.\n", "This may cause some slowdown.\n", "Consider scattering data ahead of time and using futures.\n", " warnings.warn(\n" ] } ], "source": [ "## combine sections\n", "OHT_net = (-dsOHT.OHT_E+dsOHT.OHT_W+dsOHT.OHT_S-dsOHT.OHT_N).compute()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['1980-01-01T12:00:00.000000000' '2009-12-31T12:00:00.000000000']\n", "['1980-01-01T12:00:00.000000000' '2022-12-31T12:00:00.000000000']\n" ] } ], "source": [ "## fixed baseline\n", "OHT_clim = xr.DataArray(np.zeros((366,46))).rename('seas').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "OHT_std = xr.DataArray(np.zeros((366,46))).rename('std').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "\n", "tsel=slice('1980','2009')\n", "time_counter = dsOHT.time_counter.sel(time_counter=tsel)\n", "for doy in range(0,366):\n", " OHT_clim[doy,:], OHT_std[doy,:] = daily_clim(OHT_net, doy)\n", "\n", "## detrended baseline\n", "OHTd_clim = xr.DataArray(np.zeros((366,46))).rename('seas').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "OHTd_std = xr.DataArray(np.zeros((366,46))).rename('std').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "\n", "tsel=slice('1980','2022')\n", "time_counter = dsOHT.time_counter.sel(time_counter=tsel)\n", "for doy in range(0,366):\n", " OHTd_clim[doy,:], OHTd_std[doy,:] = daily_clim(OHT_net, doy)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "## calculate anomaly from daily climatology\n", "OHT_ano = np.zeros((15706,46)); \n", "OHTd_ano = np.zeros((15706,46)); \n", "tc=0\n", "\n", "time_counter = dsOHT.time_counter\n", "\n", "for yr in range(1980,2022+1):\n", " OHT_yr = OHT_net.groupby('time_counter.year')[yr]\n", "\n", " if len(OHT_yr)==366:\n", " \n", " OHT_ano[tc:tc+366,:] = (OHT_yr.groupby('time_counter.dayofyear') \n", " - OHT_clim.rename({'doy':'dayofyear'})).compute() \n", " OHTd_ano[tc:tc+366,:] = (OHT_yr.groupby('time_counter.dayofyear') \n", " - OHTd_clim.rename({'doy':'dayofyear'})).compute() \n", " tc+=366\n", " else:\n", " OHT_ano[tc:tc+365,:] = (OHT_yr.groupby('time_counter.dayofyear') \n", " - OHT_clim[0:-1,:].rename({'doy':'dayofyear'})).compute() \n", " OHTd_ano[tc:tc+365,:] = (OHT_yr.groupby('time_counter.dayofyear') \n", " - OHTd_clim[0:-1,:].rename({'doy':'dayofyear'})).compute() \n", " tc+=365\n", "\n", "OHT_ano = xr.DataArray(OHT_ano).rename({'dim_0':'time_counter', 'dim_1':'deptht'}).assign_coords({'time_counter':time_counter})\n", "OHT_ano = OHT_ano - OHT_ano.mean('time_counter')\n", "\n", "OHTd_ano = xr.DataArray(OHTd_ano).rename({'dim_0':'time_counter', 'dim_1':'deptht'}).assign_coords({'time_counter':time_counter})\n", "OHTd_ano = OHTd_ano - OHTd_ano.mean('time_counter')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## vertical heat transport" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "dsWT = xr.open_mfdataset(path + f'1_VIKING20X.L46-KFS003-6th_1d_*_OHT-Tref-Vert_CapeVerde.nc')" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['1980-01-01T12:00:00.000000000' '2009-12-31T12:00:00.000000000']\n", "['1980-01-01T12:00:00.000000000' '2022-12-31T12:00:00.000000000']\n" ] } ], "source": [ "## fixed baseline\n", "OHT_Vert_clim = xr.DataArray(np.zeros((366,46))).rename('seas').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "OHT_Vert_std = xr.DataArray(np.zeros((366,46))).rename('std').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "\n", "tsel=slice('1980','2009')\n", "time_counter = dsWT.time_counter.sel(time_counter=tsel)\n", "\n", "for doy in range(0,366):\n", " OHT_Vert_clim[doy,:], OHT_Vert_std[doy,:] = daily_clim(dsWT.OHT_vert, doy)\n", "\n", "\n", "## detrended baseline\n", "OHTd_Vert_clim = xr.DataArray(np.zeros((366,46))).rename('seas').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "OHTd_Vert_std = xr.DataArray(np.zeros((366,46))).rename('std').rename({'dim_0':'doy', 'dim_1':'deptht'})\n", "\n", "tsel=slice('1980','2022')\n", "time_counter = dsWT.time_counter.sel(time_counter=tsel)\n", "\n", "for doy in range(0,366):\n", " OHTd_Vert_clim[doy,:], OHTd_Vert_std[doy,:] = daily_clim(dsWT.OHT_vert, doy)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "## anomaly from daily climatology\n", "OHT_Vert_ano = np.zeros((15706,46)); \n", "OHTd_Vert_ano = np.zeros((15706,46)); \n", "tc=0\n", "\n", "time_counter = dsWT.time_counter\n", "\n", "for yr in range(1980,2022+1):\n", " OHT_Vert_yr = dsWT.OHT_vert.groupby('time_counter.year')[yr]\n", " OHT_Vert_yr = OHT_Vert_yr.chunk({'time_counter':len(OHT_Vert_yr.time_counter)})\n", "\n", " if len(OHT_Vert_yr)==366:\n", " \n", " OHT_Vert_ano[tc:tc+366,:] = (OHT_Vert_yr.groupby('time_counter.dayofyear') \n", " - OHT_Vert_clim.rename({'doy':'dayofyear'})).compute() \n", "\n", " OHTd_Vert_ano[tc:tc+366,:] = (OHT_Vert_yr.groupby('time_counter.dayofyear') \n", " - OHTd_Vert_clim.rename({'doy':'dayofyear'})).compute() \n", " tc+=366\n", " else:\n", " OHT_Vert_ano[tc:tc+365,:] = (OHT_Vert_yr.groupby('time_counter.dayofyear') \n", " - OHT_Vert_clim[0:-1].rename({'doy':'dayofyear'})).compute() \n", " OHTd_Vert_ano[tc:tc+365,:] = (OHT_Vert_yr.groupby('time_counter.dayofyear') \n", " - OHTd_Vert_clim[0:-1].rename({'doy':'dayofyear'})).compute() \n", " tc+=365\n", "\n", "OHT_Vert_ano = xr.DataArray(OHT_Vert_ano).rename({'dim_0':'time_counter', 'dim_1':'deptht'})\n", "OHTd_Vert_ano = xr.DataArray(OHTd_Vert_ano).rename({'dim_0':'time_counter', 'dim_1':'deptht'})\n", "\n", "# remove mean flux\n", "OHT_Vert_ano = OHT_Vert_ano - OHT_Vert_ano.mean('time_counter')\n", "OHTd_Vert_ano = OHTd_Vert_ano - OHTd_Vert_ano.mean('time_counter')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Derive contribution to MHW events" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "def derive_event_contributions(event, z, days_b=2, OHC_ano=OHC_ano, OHT_ano=OHT_ano, HFX_ano=HFX_ano, OHT_Vert_ano=OHT_Vert_ano):\n", "\n", " ## timestep of event start\n", " ind = np.where(dsOHC.time_counter==ds.time_start[event])[0][0]\n", " ind_peak = np.where(dsOHC.time_counter==ds.time_peak[event])[0][0]\n", "\n", " ## use fixed days prior to event and integrate to peak of event\n", " if ind 500) or (np.abs(Vert_contr) > 500):\n", " OHT_contr=np.nan; Vert_contr=np.nan; Res_contr=np.nan; HFX_contr=np.nan\n", " print(f'Anomaly too small for event {event}, delete event') \n", "\n", " if z==0:\n", " return [OHT_contr, Vert_contr, Res_contr, HFX_contr], [OHC_event, OHT_event, Vert_event, Res_event, HFX_event]\n", " else:\n", " return [OHT_contr, Vert_contr, Res_contr], [OHC_event, OHT_event, Vert_event, Res_event]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### WMO baseline events" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "123456789Anomaly too small for event 5, delete event\n", "Anomaly too small for event 10, delete event\n", "1011Anomaly too small for event 21, delete event\n", "1213Anomaly too small for event 1, delete event\n", "14Anomaly too small for event 11, delete event\n", "Anomaly too small for event 24, delete event\n", "1516171819Anomaly too small for event 1, delete event\n", "20Anomaly too small for event 20, delete event\n", "Anomaly too small for event 23, delete event\n", "21Anomaly too small for event 9, delete event\n", "222324252627282930313233Anomaly too small for event 17, delete event\n", "343536Anomaly too small for event 28, delete event\n", "37Anomaly too small for event 33, delete event\n", "3839404142" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_218913/4007581004.py:23: RuntimeWarning: Mean of empty slice\n", " Contributions_profile[z,:] = np.nanmean(Contributions, axis=0)\n", "/tmp/ipykernel_218913/4007581004.py:23: RuntimeWarning: Mean of empty slice\n", " Contributions_profile[z,:] = np.nanmean(Contributions, axis=0)\n", "/tmp/ipykernel_218913/4007581004.py:23: RuntimeWarning: Mean of empty slice\n", " Contributions_profile[z,:] = np.nanmean(Contributions, axis=0)\n", "/tmp/ipykernel_218913/4007581004.py:23: RuntimeWarning: Mean of empty slice\n", " Contributions_profile[z,:] = np.nanmean(Contributions, axis=0)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "434445" ] } ], "source": [ "Contributions_profile = np.zeros((46,3))\n", "\n", "for z in range(1,46):\n", " ## load dataset\n", " path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "\n", " if z<10: zz=f'0{z}'\n", " else: zz=str(z)\n", " ds = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-WMO-{zz}.nc')\n", " N_events = len(ds.events) # number of events\n", "\n", " ## init arrays\n", " Contributions = np.zeros((N_events, 3))\n", " OHT_event = np.zeros((N_events, 3))\n", " Vert_event = np.zeros((N_events, 3))\n", " Res_event = np.zeros((N_events, 3))\n", "\n", " ## contribution from different heat budget components\n", " for event in range(0, N_events):\n", " Contributions[event,:], _ = derive_event_contributions(event, z)\n", "\n", " ## vertical profile from average over all events\n", " Contributions_profile[z,:] = np.nanmean(Contributions, axis=0)\n", "\n", " print(z, end='')\n", "\n", "## add surface values\n", "ds = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-WMO-00.nc')\n", "N_events = len(ds.events) # number of events \n", "\n", "Contributions_0 = np.zeros((N_events, 4))\n", "\n", "for event in range(0, N_events):\n", " Contributions_0[event,:], _ = derive_event_contributions(event, 0)\n", "\n", "Contributions_profile[0,0:2] = np.nanmean(Contributions_0[:,0:2], axis=0)\n", "HFX_contribution = np.nanmean(Contributions_0[:,3], axis=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### detrended baseline events" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "123Anomaly too small for event 20, delete event\n", "Anomaly too small for event 28, delete event\n", "4Anomaly too small for event 19, delete event\n", "56Anomaly too small for event 0, delete event\n", "789101112131415Anomaly too small for event 14, delete event\n", "16Anomaly too small for event 8, delete event\n", "Anomaly too small for event 14, delete event\n", "Anomaly too small for event 16, delete event\n", "171819Anomaly too small for event 22, delete event\n", "20Anomaly too small for event 2, delete event\n", "21222324Anomaly too small for event 1, delete event\n", "25Anomaly too small for event 11, delete event\n", "26Anomaly too small for event 6, delete event\n", "27282930Anomaly too small for event 3, delete event\n", "3132333435Anomaly too small for event 39, delete event\n", "3637383940Anomaly too small for event 20, delete event\n", "Anomaly too small for event 36, delete event\n", "4142" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_218913/2290197836.py:24: RuntimeWarning: Mean of empty slice\n", " Contributions_profile_dtr[z,:] = np.nanmean(Contributions, axis=0)\n", "/tmp/ipykernel_218913/2290197836.py:24: RuntimeWarning: Mean of empty slice\n", " Contributions_profile_dtr[z,:] = np.nanmean(Contributions, axis=0)\n", "/tmp/ipykernel_218913/2290197836.py:24: RuntimeWarning: Mean of empty slice\n", " Contributions_profile_dtr[z,:] = np.nanmean(Contributions, axis=0)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "434445" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_218913/2290197836.py:24: RuntimeWarning: Mean of empty slice\n", " Contributions_profile_dtr[z,:] = np.nanmean(Contributions, axis=0)\n" ] } ], "source": [ "Contributions_profile_dtr = np.zeros((46,3))\n", "\n", "for z in range(1,46):\n", " ## load dataset\n", " path = '/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/'\n", "\n", " if z<10: zz=f'0{z}'\n", " else: zz=str(z)\n", " ds = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-detrend-{zz}.nc')\n", " \n", " N_events = len(ds.events) # number of events\n", " OHT_event = np.zeros((N_events, 3))\n", " Vert_event = np.zeros((N_events, 3))\n", " Res_event = np.zeros((N_events, 3))\n", "\n", " ## init arrays\n", " Contributions = np.zeros((N_events, 3))\n", "\n", " ## contribution from different heat budget components\n", " for event in range(0, N_events):\n", " Contributions[event,:], _ = derive_event_contributions(event, z, OHC_ano=OHCd_ano, OHT_ano=OHTd_ano, HFX_ano=HFXd_ano, OHT_Vert_ano=OHTd_Vert_ano)\n", "\n", " ## vertical profile from average over all events\n", " Contributions_profile_dtr[z,:] = np.nanmean(Contributions, axis=0)\n", "\n", " print(z, end='')\n", "\n", "## add surface values\n", "ds = xr.open_dataset(path+f'1_VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MHWs_CapeVerde-detrend-00.nc')\n", "N_events = len(ds.events) # number of events \n", "\n", "Contributions_0_dtr = np.zeros((N_events, 4))\n", "\n", "for event in range(0, N_events):\n", " Contributions_0_dtr[event,:], _ = derive_event_contributions(event, 0, OHC_ano=OHCd_ano, OHT_ano=OHTd_ano, HFX_ano=HFXd_ano, OHT_Vert_ano=OHTd_Vert_ano)\n", "\n", "Contributions_profile_dtr[0,0:2] = np.nanmean(Contributions_0_dtr[:,0:2],axis=0)\n", "HFX_contribution_dtr = np.nanmean(Contributions_0_dtr[:,3],axis=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Mixed layer" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "calc_MLD = False\n", "\n", "if calc_MLD:\n", " path = '/gxfs_work/geomar/smomw355/model_data/ocean-only/VIKING20X.L46-KFS003-6th/nemo/output/1d_compressed/'\n", "\n", " MLD_max = np.zeros((15706))\n", " MLD_mn = np.zeros((15706))\n", "\n", " tc=0\n", " for yr in range(1980,2023):\n", " dsT = xr.open_mfdataset(path + f'VIKING20X.L46-KFS003-6th_1d_{yr}0101_{yr}1231_grid_T.nc').isel(x=xCV,y=yCV)\n", "\n", " lt = len(dsT.time_counter)\n", " MLD = dsT.somxl010.load()\n", " MLD_max[tc:tc+lt] = MLD.max(('x','y')).compute()\n", " MLD_mn[tc:tc+lt] = MLD.where(MLD!=0).mean(('x','y')).compute()\n", " tc+=lt\n", "\n", " print(yr, end=' ')\n", "\n", " MLD_max = xr.DataArray(MLD_max).rename({'dim_0':'time_counter'}).assign_coords({'time_counter':time_counter})\n", " ds_out = xr.Dataset(data_vars = {'MLD_max':MLD_max})\n", " ds_out.to_netcdf('VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MLD-CapeVerde.nc')\n", "else:\n", " dsMLD = xr.open_dataset('/gxfs_work/geomar/smomw379/DATA/VIKING20X.L46-KFS003-6th/CapeVerde/VIKING20X.L46-KFS003-6th_1d_19800101_20221231_MLD-CapeVerde.nc')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## plotting" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [], "source": [ "plt.rc('xtick', labelsize=8)\n", "plt.rc('ytick', labelsize=8)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "dpt = -dsOHC.deptht" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvoAAAMdCAYAAADqKdJbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZgcRfr4P92ja7Puu/FsPNm4EAVCIELgCBDc5bCDww7ujsP1hMPhcJcQJGgSICFGiLtvknWX8ZmW+v3Rs7MzKwF+B8cXmM/zbDLTXV1TXS311mslCSEEMWLEiBEjRowYMWLE+FUh/9wNiBEjRowYMWLEiBEjxo9PTNCPESNGjBgxYsSIEeNXSEzQjxEjRowYMWLEiBHjV0hM0I8RI0aMGDFixIgR41dITNCPESNGjBgxYsSIEeNXSEzQjxEjRowYMWLEiBHjV0hM0I8RI0aMGDFixIgR41dITNCPESNGjBgxYsSIEeNXSEzQjxEjRowYMWLEiBHjV0hM0I8RI0aMGDFixIgR41dITNCPESNGjBgxYsT4CRBCMGnSJA4ePNhh3wknnMBjjz3WYfuwYcN47733AOjRowfbt2/v8Nnv9zN37lzmz5+Poiidlu3fvz+qqobrHTVqFMuWLQNAURTuuOMO+vfvz6BBgxg+fDgnnXQSmzdvDtd/0kknUVRURHFxMccffzyHDh0K17Vv3z4mTJhAUVERY8aMYefOnQA0NzfTrVs31qxZEy772GOPMW3aNIQQnfZRIBDgqquuom/fvgwaNIizzz47vO/2228nGAyGv0uShNvt7rSe9nzwwQcMGDCA4uJitm3bRnFxMT6f73sd+334IW35OYkJ+jFixIgRI0aMGD8BkiRx3XXXcccdd3TYd9FFF/HCCy9EbVu/fj3V1dXMnj27yzqdTifHH388ubm5vP7661gslk7LBQIBnnvuuU73XXDBBWzatIk1a9awY8cONm3axEUXXcSOHTvCZS699FL27NnD5s2bmT17Npdeeml432WXXcall17K3r17uemmm7jooosASElJ4amnnuL888/H6/Wyb98+7r77bl544QUkSeq0LX/605+QZZm9e/eyY8cOHnroofC+O+64I0rQ/yE89dRT3HnnnWzevJkhQ4awefNm4uLi/r/q+kUjYsSIESNGjBgxYvxXrF69WkycOFEMHTpUDBkyRLz//vtCCCGCwaDIzMwUTqczqnwgEBCZmZli8+bN4W2///3vxQ033BD+3r17d7Ft27bw5y+//FKMGDFC3HzzzR1+v33Zl156SeTn5wuPxyOEEGLkyJHiq6++Env37hXx8fGioaHhe5/bunXrRO/evYUQQtTU1Ijk5GShKIoQQghd10V2drY4ePBguPyFF14orrjiCjF+/HjxzDPPdFmv2+0WycnJwuVyddh32WWXCUAMGTJEDBs2TNTU1AhA3H///WLMmDGiR48e4vnnn++03quvvlokJCSInj17ivHjxwshhACEy+USu3btEvn5+eLAgQNCCCEefPBBccIJJwhd14UQQnz77bdi2rRpYuTIkWL48OFiwYIFQggh3n33XdGvXz8xbtw4ceedd4br+79OTNDvBF3XxcSJE0VJSUmn+48//njx6KOPdtg+dOhQsXDhQiFExweu9bPP5xMnnniiOP3000UwGIza11q2X79+4QdIiLaHUwjjhXH77beLfv36iYEDB4ri4mIxd+5csWnTpnD9c+fOFX379hXDhg0TM2bMiHr49u7dK8aPHy/69u0rRo8eLXbs2CGEEKKpqUkUFhaK1atXh8s++uijYurUqeGbPxK/3y+uvPJK0adPHzFw4EBx1llnhff97W9/E4FAIKr8D3kg3n//fdG/f38xbNgwsXXrVjFs2DDh9Xq/17Hfh1/KwxkjRowYMX4ZNDQ0iOzsbLFq1SohhBCapkUJ0tOmTROffvpph+Ouu+468Yc//EEIYYzfqampYufOneH97WWJ9PR08ac//anTNnQmd5xxxhni7rvvFkK0yRJvvfWWGDp06A86v3POOUdce+21Qggh1q9fLwYMGBC1f/To0WL58uXh7y0tLSI1NVUce+yxR6x3y5YtolevXuLmm28WI0eOFBMnThRLly4N728/XgPi4YcfFkIIsXPnTpGYmBglL0UyZcoUsWjRok7rev3118P90aNHD1FXVyeEMGSh4cOHi8rKSiGEEHV1daJbt27i8OHDIi0tTezevVsIIcQDDzzwi5ElYq47nXAkUxvEzG3w05naIGZuixEjRowYvyzWrFnDwIEDmTBhAgCyLJOWlhben5OTQ3l5eYfjLrroIl577TWCwSALFy5kwIABDBgwoMvfmTVrFu+88w5lZWXfq1133303Dz/8MA0NDVHbI8f1AwcOUFxcTL9+/bjkkks61HHvvfeyb98+7rnnnk6PBzr43y9fvpz4+HhKSkqO6MeuKAolJSUMHDiQ9evX89hjjzF//nzq6uq6POass84CYMCAAZjNZqqrq7ss2xVnnHEGI0aMYMaMGbzyyitkZGQAsHr1akpKSjjhhBMoLi7m2GOPRQjBCy+8wIgRI+jXrx9AlFwFsH37di6//HLOPvtszjvvPIQQBAIBzj//fK655hquvPLK72xT+z78sfjNC/pnn302o0aNYujQocyePZva2loA5syZwyeffILL5epwzIknnkhZWRlbtmwJb3v++ec599xzuxTe6+rqmDZtGuPGjeOpp55Clrvu+jvuuIO77roLr9cbtX3fvn289957PP/886Smpoa3z5kzJ3zj2+12Zs6cGX4Ix40bR0lJCQC1tbVs3LgxHOhyyimncPDgwXCAzcyZM5k4cSI33ngj5513HnfddRc9evTo0D6Px8MLL7zAvffeG/6d3NxcAC6//HIAJkyYQHFxcbg/AR5//HHGjh1Lz549O0yUWrnmmmtYsWIFN998c/iF2Rrwsnv3bgoKCsLn89BDDzFz5kyEEKxbt46jjz6aUaNGMWLECN59991wnQsXLqR///6MHz+eu+66q8t+jxEjRowYMX4K/H5/pwqrQYMG0bt3bxYtWsTzzz8fVr51xY033sill17K1KlTKS0t/c7f7dWrF2eccQZ33313eNvw4cPZt28fTU1NAPTu3ZvNmzdzyy23hLe18ve//52FCxfy6aefEh8fD0BhYSHl5eXhQF8hBGVlZXTr1g2AhoYGrrjiChYuXMjxxx/PjTfeGK7v5Zdfpri4mOLiYl544QW6d++OLMthGWbYsGH07NkzSnnZHrvdHv5sMplQVbVDvd+Fqqps376dtLQ0KioqwtuFEAwdOpTNmzeH/0pLSykuLj5ifYMHD+app57i1Vdfxev14vF4WLhwIVOmTOGRRx4hNTWVNWvW8OGHH4YDsJ9++mnefvttBg0axEMPPcTixYu/s93/X/yM1oT/E7Saa4QQ4r777hNXXnll+HtXpjYhfjxzW2euO//XzW0/1NTWuu2nMrd1ZWqrqqoSNTU1v1hzW4wYMWLE+GXQ2NgocnJyunTd6d+/f9RYH8kzzzwjRowYIRwOR4exqSs34Iceekj07NlTHDp06DvL1tbWioyMDJGbmxt2Az7jjDPEySefLJqamsLHP/bYY+KUU04Jf//HP/4hRowYIRobGzu0ecqUKeKFF14QQgjxzjvviLFjx4b3nX766eKWW24RQhg++L17946SEdozffp08fHHHwshhDh06JDIyMgIj+dJSUmivLw8XLb9+J2enh7lnty+jV3JEtdff704//zzxd69e0V+fr7Yt2+fEKLtOn7xxRfh4zZt2iRqampEenq62LNnjxDC6P/2bVm8eLE444wzxOWXXy40TRP33Xef+PLLL4UQQjz33HPijTfeEE6nU5x++uli9+7d4vLLLxfr1q2Lkjt/Cn7zGv3XXnuNUaNGMWTIEJ599tlwaino2tQGv21z2/+PqQ1+OnNbV6a2PXv28M0333RpbvsxTG3w05nbYsSIESPGL4PU1FTee+89brzxRoYOHcrw4cNZuXIlQNhqPnjw4E6PnT9/Pnv27GHevHkkJiZ+r9+74YYbuOqqq5gyZUqnqTsjyczM5JprrqGqqiq87cUXX2TIkCGMHTuWgQMHctRRR7F06dKw9r28vJzrr7+e5uZmpk2bRnFxMWPHjg0f//TTT/P0009TVFTE/fffH3Y3XrBgATt27OD2228HICEhgeeee45LLrmkUw8JMNx1H3zwQYYMGcLcuXN55plnwl4C119/PUcffXQHD4H/ho8++ojPPvuMxx9/nL59+/L3v/+dU089Fb/fT2pqKosWLeKuu+5i2LBhDBw4kD/96U84HA6eeeYZ5syZw4QJEzr1ypg+fTqvv/46siyzefNmCgsLOXz4MGDcA926dSMpKQm/38+tt97K/fffz7p165g1a9aPcl5d8pNOI/6Ps2LFCtGnTx9RW1srhBDigw8+ECNHjgzvP/nkk8Wrr77a5fFjx44VCxYsEMccc4x47rnnovZ1NrN+4IEHRK9evcThw4c7Ldf++9VXXy2uvfbaDpHy7WfXL7zwQtQsXAhjtjly5Mio2XpNTY1wOBxdRsrX19eLgoICsXbtWnHFFVeIyy+/XAghxEsvvSSGDRsmhg0bJp5//nlRV1cnZFkWqqqG6x49enRYU0AXGv3OZuHt6xbiyLNwRVHE+PHjRU5OjnjzzTeFEEJ89NFHYtKkSaIz3n///SjrRFNTU6ftmzdvnnC5XOL1118Pt+PPf/6zWL16tfjggw/CwddPPfWUeOutt0QgEBADBw4UDz74oPjss886/e0YMWLEiBHj5ptvFs8+++zP3YwYPyGLFy8WV1xxhbj00kvFpZdeKoLBoPD5fOK8884T1113XVieEsLISLRs2bLw5/r6+p+0bb9pQf/DDz8UI0aMEKqqikAgIGbOnBkl6B/J1CbEj2NuO5Kg/3/Z3PZDTG1C/LTmtq5MbYFA4DvNbf8/pjYhxP/E3BYjRowYMX75/Pvf/xaapv3czYjxM9PQ0CCuu+468c9//vN/+ru/aUFfURRx2mmniT59+oipU6eKW2+9NSzoHzx4UPTv3/+IxzudTpGQkCAuvPDCDvu6EvSFMATx7t27i5KSkiMK+kKIcK7WVkE/EAiI2267TRQVFYkBAwaICRMmiJNOOkl88803QgghysrKBCB69eoV1pSPGTMmXN/u3bvFuHHjRN++fcXIkSPF9u3bhRCG0D948OCotJjLli0TPXv27JD7VwghDhw4IKZMmSIGDx4shg0bFk4rKoQQt99+uygqKgrnvRXixxH0Fy1aJAYNGhTOCfzGG2+I4uJi4fP5xLp168TUqVPF0KFDxYABA8SMGTOEz+cTQhi5b4uKisT48ePFP/7xj041+ldccYXYsGGDePXVV8MTob/+9a9hf8u5c+eK3/3ud6K5uVkIIcQTTzwhPvnkk07bHyNGjBgxYsSI8X8BSYiYg3Fn/OlPf6Jv377fGQEf45fLkiVLeP/998OZAx577DE0TePyyy8nLS0Nn8/Hk08+CRgxGeeeey5TpkwJf3/wwQdJT0//2dofI0aMGDFixIhxJGKCfhc88sgjXHXVVUdMgxnj109jYyN33303hYWFXHfddT93c2LEiBEjRowYMb43MUE/RowYMWLEiBEjRoxfITF1dYwYMWLEiBEjRowYv0LMP3cDfg5UVWXTpk1kZ2fHXHNixIgRI0aM/wPouk5NTQ3Dhw/HbP5liCe6rlNZWUleXl5Mnojxf5JfxpP0I7Np0ybGjBnzczcjRowYMWLEiNGOb7/9ltGjR//czfheVFZWUlhYSEtLCw6H4yf7HUVR+OSTT5g5cyYWi+Un+50fk19am39p7f2+/CYF/ezsbADKysp+0gczRowYMWLEiPH9cDqdFBYWhsfoGDF+bDZs2MBbC95l/qnzGDFixM/dnP8Jv0lBv9W85nA4YoJ+jBgxYsSI8X+ImAtMjJ8Cl8vFq2+8iScQ5NU33qRv374kJSX93M36yYk9TTFixIgRI0aMGDF+tQgheP2NN3FrEguOvRmXCm+8+ebP3az/Cb9oQX/fvn1MmDCBoqIixowZw86dO3/uJsWIESNGjBgxfmHE5IlfNxs2bGDL5k18OWI+Tcl5fDXidDZv2sSGDRt+7qb95PyiBf3LLruMSy+9lL1793LTTTfFVrGNESNGjBgxYvxgYvLErxeXy8Vrb75FScFwSgoNv/wDBSM4WDCc1958C5fL9TO38KflF+ujX1tby8aNG1m8eDEAp5xyCldddRWHDh2iR48eUWUDgQCBQCD8/dd+UWPEiBEjRowY348fQ55QFAVFUX6S9jmdTnw+X/h3jkRTEyQkgNX6kzTlB9Ha1p+qX74PQghefe113JrE1yPmt+2QJJaPmE/B53fy2utvcNGFF/yfaG8kP1bmn1+soF9WVkZeXl44164kSXTr1o3S0tIOD+Z9993HHXfc0aEOpfYQDS+/QtLIcbQMOoHSliD13iBf7K1jWt8M/KpOst1Mv/R49jR4KXTYafarvLqhnCyHjdxkO2cOTOed3U1M751KqhRA9jZx2JRFZrwZuwgiZDO7mxQONvm4f+F2UjLiGZSfTHWLj7IaN385cRBHp3iQqveh9JtM8LW7sZ92A6/tcWI3yZzYLx37ri+p7jmFe748wJkjCnAHVfpnxONWdIqSQDfbWLS3kYx4C9+WNWOSJU4ckEWFM8DCLVU0egJU1Hl4+fxR7Gv0Mbn2K8TQ45AULy5LCrMfXUNTjRsloNKtfyZH9csk02GjwGEnNc7CxJQA5SRz3gvrsdrMPHtmMYXBSg7cfgvmOCulXx9k3B1nIR9zAeaD36Ll9EPSVTi8lYaiY2jwavSN82NuOISanEepSKZHoBTdnsxGTzwFSVYy7BLv7G6id1ocNe4gy/bVM6p7KmclV6Ic3IGp/xhqEnqQajcR1HTiFSfP7Pbx+5wmKp55lPzLr0W3JSL7WghuW4l8zAWYdn+N3ns0QWsSK0qd9E2PZ2OVixG5SfhUnf0NXpJsZiYUJFHpVuhRuQYpJZvgtpXsfPp9Bl4yB8uoGQizDWdcFi0BjfWVLo7rlcIb22tJj7eiC8Hw3CS6J5qQhA6AUzPhVXTS4kwcbA6y9EA9n2+rJhjUsFpNmGSJlmY/Fx3bB7tJpl9GIsl2E3FmmeWHmthT66Z7ejyz+6bT6NfYWuOmZ0oc/TPsuP75R7JOmM2W2x9m2N03ojXVUfXpYny1TZQsPUTR7CJ6Xn4ph59/nsziIuJHTETrPRa/ZKXOq5JolbHIEokb3qPuq2Uk5mdiTU3BfbgCoevYrngAvyawyhJxy19AnnwGJk8DO/5wDf4mPwB5Y3uRf+6FCF1HeJyQ3QNhS0J216Nm9mZTg8afFm7D71FIy4jn3fNHIAe9tAgbmoB04aLF5CBZbeaxHT5G5iVzlL0O3ZZEOckUmDyUawmk2Ew0h/p8d42L44oyKWn0Mq+nFWGysrVJ0CvVhsNbgx6firT5M0zdBhD49nO+/tMbACTlJjLqzkuQh0zlgJ7CVwcbKUyO49geDnQk6n0qucEaXAm5rK1wkZtkw2Ez0b12AyIlF+oOo3tdBPZtw+xIxjr8aILbVmIp7IuUloua2o1G1Uyyzbgv49a/h/A6kZNSqfjgYzKH98Vb1UDyiJFINjtaXQV7X1+Mt97L2P88xLZb/kb+xIEkj53Et9f/g7xxPcg/eQ5S0TjkuhJEwA+ZhegHt6HWluOtqKJ+6wG6z56C+ahT0HeswNxzMM1pfbGZJKo9KjkJZloCOhYZ/JrAq+jsqvMwuXsySVs/4vCrb5M7cShxk09Grz6Id+u36AKa7Ekkz70aTRfsafCzdF8d3dPj2VLWQkq8hT+PTGTP1ZfS74pzKVVt5PQqojahG/anbmLrC9/wfkkTACYJrjx7CKkDugFgTYon0OzGU1HHP55aT6JZ5pobppB32uk0LfucuKxUFKeXhPnXIsx2gkuex9lrNI6iUegCvil30eRX0HXBxO4pJFhk6pe+RtrgMaQLN+UvPIvl5seo8SgMTFSN90xqAfraD7H2LQaho9uToOYQal0FnqPOJsEsIekqj2+sZdW+ev5+4kByEi3UeVW+OtjEpO4pFJg8BGzJ+FXBytIWnAGVV9YcZmhhCvce15uSFoW+ciNIMlLpNoKHdmE+9nwkXws7r7mKfhfPwzl2PmmeckqteeTFy1gaStAt8WiOHCwl36D2HIP58AYaC8bgVXSy176C2lSHt6qB1EnTcG/8Bse0WegtDUgF/dhryufSlzYwpHcaW/c3AGCPtzC4MIWjeqeTnWAlJ8nKi+vKmTMom54pdhp9GnsbPAzJTiQv0UK1R8EqS2Sr9ZTJ6by/q5bdVS6O7pfJ7/IFpvqDSGYLntWfse9AHakeJ90vvRxMFhA6/vxiTKqfRs1CjUch1W4mP1CBlpgJJgs73v0PRUOHoPY5Ck1ASuM+AuuXwMyrONQSpEjUoO1agzT0aKoO7sPWewTpWgsuewZUH/jRZYXvw48hTyxevJj4+PgfvW21tbXcfffdPHNuE8cPAPGBmSAWBGY0LAjJ+N8XsFFdm0x1rYPC7l7SMtXwPoEZTYo4BjO6ZEbHgk7o/8jvUuv2I+0z/heS6TvPYcmSJT96v3xfXC4X27ZuYcvAmfjs0YG3PnsSW3pPwbLlE95++20SExOBn7e9kcydO/dHqecXK+iD8TBGIoTotNwtt9zCH//4x/D3iooKBg4c+JO27bfAxuQ8ShLSsRxTyJotTeTUvc15Y3v86L9z/6pSWFXKqPGTmDZpwneWf3G3k9pN/wTglj/88FzMqyq9rBo1kY82NXG0ZRfjRhb/4Dp+Su75aD2MmshH768xNsT3gh4gnT+MbRIE3l8DaQOgFChdw/HT4+k/bGSHel6Q8tGrJKjyYSEVHZAeeZhTzjiHrIz0cLm6xmYW9R+NrGlkN9Sz0pxJ4O2vmHfUYHo5/m/lGt649xCf7PTBuSeRWFuPiLezfNUhjjPvJbHfD18749mvtlLT4gEkwAlb3ueywalkdFF+5aFGVh5uBGohqQ/sF/QxJTAvtP+9g15K+o/G5vez+NVPYdA4aAI+2wLTjwXAsXIfl/caRaRC7l9f78Ov6oADCodj2eYk7sDbXDEy9wedjyeo8nrOENgvmBC/ndGZVv5d3noN/fDPhzj1rHNB7piNzOX2sLD/WPhyDwDSim2cfcV1/EfLgXNPIhfwrN+DLMGGjDSsaiLVuoXmBjOQSB+HBcfsCVhkeMXWDenjdShaCjgFEAePPM2s44/j420u2PYlk6fqjBjV8Zo1NzWxrKQBa91qSqtqwd4D/v13xp9wMgP75YXLPbC2CtZWMaqokBmTxv6gfvq+bNyxh8++/ib8Xd75JOOLB7Fq0DhYU87MrBLSsr6/avXJLfU4gwJIM+4J4uCtLxmSl8qJBf1+/BPoAl0X/POgBHIWJGXBG0sBSE6wc+mVxV0ed/DQYTbU+ijdUsLUPkcd8Tfue/y50KevufWKC36klv//89/KE8cdd9yPnsVv3bp1XHbZZdTU1BBnsmIjCO2b1frdAgX5QH7ou/ajNqVLBDLIVuPPZAt9toFsQUhWWtx+HKmZSOF91ogyVkSH7W37MNkQnW2P+C3RyTGR5QUSLrcHZc/XbO8zJUrYj/O7GHZgOUOHFXPaaaehKApLlixh+vTpsTz6/xcoLCykvLwcVVUxm80IISgrK6Nbt24dytpsNmw2W/i70+kEQNIUAi4vIuBHlsCraDT5FVRd0ORTkGXJ+F+CgKqjI/AqGj5FwyRL5CbaQJJp9AWRAUnoSLqKbAabpIMwtmk6ZMRbkc0ybmcAX5aGy6/ibvaj6KGnVFWQhCDx6N8hXDWYpHga/QoCEKphRvIFNdxBlXqvgixJBFWBW1hJCrgxSeAOaviCRtuCmlGvT9Fo9ioEAxr7Gn3kJtqQHKNRzXbMugpA0KfgbXGiBXx4nQ6avQqZDhuHm31oAtT8DPwtQXzuIHqoXiGbsRTmoTYpmM0mFB3KystRT5+H7GlEmCwQNDTALQEFkWRDKAEkoWM1SWCyQiiFmjOok2y3EFA15NDLttETwKto1GYMAj4FoK6mCl0IfKogXuj4ghqoAZaZ0pE/X8Fps6ajJ2bg1iJe2KFzdAU1NCHQhUCWQNONz5ouCGp6qKyOMFvxB4Phw/2BAOgaZlnCJEkkWY1zDWo67qCKKdReFRkLOugampBRdEFQE5gkiaCqEwio+D0KepwZVdFRg1qob4z2WU0ScWYJWZbwBTUCqtEmXYCq6Si6jqIJtjlyDMGwE4TZjKp3fLs3VJZhGz4SWSLcXtQgesTAphD6rCgowQAmWUIEfMb9a0tCM5kQAoLuIKoOiqbR5FfRhBNzRgFCU5C0IIT6WA3qBHwKgaCGO6iT4nci2bPQ9YhRStcJqjqKLpDUIJJFxWSSkNQgVlMi8SaBS5LQhcDtV1E0YZRVjPtKE2Z0AcKehOx3ogd81DW2XTtFSKCDogsCgQBJEmQlWNlY3sxxuRKKNVq70/os+lWBZLWjy2bcHm+H/tQCfkTQjxz0IakBwIwsNHQh4U9IAxqjyntUgSk5Hc3VjFcDzWRCE1KHeltx+lXQVITPA4CkqSEhP7KtoLg9iKAfSfEhAWbaytjNEj5FRwjjHlJ0gS5AjtC+Ha6sY2RqVsfzUzUUs3FtvIpGi0/BJEsoSrSEcfTYYjRN7XC8LiDoVZBtfhRZAqsxzGihe14XoCKBpnc41mxqa19lRSUjRhmfW58Hn6qTnJzClFSNlDHFPP3u4nD5YCAIQjf+Itrl8QVANqP7PeF3afhcdePeau1eu0ky3q2aANrqUHSBJgRKQCWo6khaEIsso7ibo89d16PcOjRNBV1G00GXTEg+J5LJGrb+AYbVBvAoOm6lY58AeAIKkq4iZFACKpouCPiMc/F7glQ7bFjktnuq2aegaCI8DuhCoOoCk66wp95LS0BlXpaCJBvjSos3iK4LJM2oUwp2vO8BWjx+JAkQOlLEJZQUP5Ku0jMtDr1nJnk9uhuCsxCga6AqyCJ0/W0JCL8numJdQ5ZA1zveT/8Lfgx5wmKx/KjC4RdffMHs2bPx+/0MHTqU7vOf5MtdG5k0cSwWSeeb1UEefzRAQ10QqzlInDXA+LFBjj8uQN/eQSQ9AHoQtND/UZ/b7+uijNZF2QgkdND9xl+7yycBqQAN+360fvnBSCbOTkhmr34Kkze+zucTLjO2C8GUDa+TJFyclf8GlhXvYMLCsICKRRuJJb7g52vzj8wvVtDPyspi+PDhvPrqq5x//vm8++679OjRo4OZ7b/FZv5us5TV1DGm2RD8jozJ/N2x0HonSgVT1zJCRJnvUUhXO4Rjy9+jTeGy7b7brG1nLOlqB8XD90HRuj7KkZICGEJxq0wTUFQOWpKgqoH6ZieZWXH0SE9iZ1UTKXE/3ElRUoNE9pyuC5C+u09MsvSdGpTOrnfk4Px9+KYLIf9IJMbbf1B5XY8WNmTNEJ5bZdOgbDwTFtN3PxvfhdbJDS7M1o5aq/Z0cU3stuhr3tq7rRMMd/C71VyRj7PFJIHasTGS3Pm5p6ccWaPX2h7xA697JGZNRTV1fHWryEDngmL495W2QTo5sXM3AyE6r6N9i/My06mqrDji7+ldPTtdvJ80re36JDnaJmJyaMLXSrcEGWu7vu5KA6t3sf2/RUeQYLd12B7Zjh/601ZZwt/JO7Czc5BkCdHZABFBZ2NFapwlrGDoki7u7+9CstjonZ6AOc6Gu6syQcPXPCvVQW2TM+wu83Pyv5Infgivv/46fr8fSZJ49tlnyetdzOY9dZBSDBYL9z8PHxiGFubPh/vvh+7d/wcNEwKEeuRJQWifqnhZv3YVo0YMxSxp7coeYcLRod7vU7Z1Wzv/eqGRZGrkrF5f8vweM73KNlJSOILe5RvpWbGFs/otJcl5AJyGTNMDUOtXQdLp/4PO/N/w8z9h/wVPP/00559/Pvfeey8Oh4OXXnrph1UgdBSnF+H3YJKgrMVHVqKNeKsJr6JhMckomoIuwK8a2jG/qtPiDWI1J5EaZ+FAs0KLT2kbXnUVXYBX0Uk2y6BrmGRIj7fQr0cqO/bV4/YruDxBXI0+vIqGpKvoQT8IHTWzN+byreQ7+rP6UKOh5fB50IEGd4Amn4I/QhPWEtBItMrYzCYCqmEpMMsSQc3QADd7g7hcAfyeICtKGrh8bCGHlQzSVJ1E2UycWcbjDOBtqED1uXHW51KX5yc3XgdrPLWeAC0BQxvucQZQFc2QwSQZyWKlvr6KZFXFEhdHIKiAriFpQYQlDt3VDBh9ARgaSqFjkSV0SxyNpmSSrBpqSNvYel66EDS4gzR5g7iDOnMH57HfpTF2zGgE4FN0knQdt19FU9o0uJKuEkjI5Ojp04nfsJnBSRqEhFafoqHpbRMJv6qjCchPsuIO6pgkEGoQTGaaAm39qwuBpAXxOFto0u3kO+y0BAxhxBVQsZpk470nCGsT1WAQGROaLki2yfiCGn6Pgs8dJCk1Do/Tj9ANLaVPMerSdEGj39DkuwJqeLsQhqVJ0QRHmANF3NMdC/kbqjE3HkKyFWCSQBMgQtaWzlA0oz/QQ9pRW4JRNeD1q9gUBZ/VhmZNoNHbzOEtOxgyZDD2kJZO0QQBv3G+/iSFKrdCstWMQwpSjwUkGSEEUsgqo7VqEnUNkxmkgIekpGRMnjqslnQUTVDrChDQDA0zugAtiKLZ2Ld3D0N75hHnbUIu6INpd1nbeegCufWeClk64iyGAOM2JWINdZcw29ruCR1UDZSsIkyeBlJNOs3t+kdTAuh+D1IgwbCMmBKQdJUEWTYsWe3QVQ2hKoYWMyREy0EVjuDOK2lB452ga5jVaA1aem0dNbmGy47we8LX0hSaPAQ0QZLupUmzoQmBEMb9L1q1q62/ITRM3o6JCXTAIsuG1dGv0uAOYDXLSFl9mVbcj6827yE9KY6CvFzKyjsX5xSvoS22JNvwWYzJlxoSLrWQpVN0MgkI1JeHP7cKzAFNJ6BqaAJWr1jB5MmTyJwwG8nbzOwJxXy0erNRvxAI2Qyaof0O1wPIfhdSahZbd5dgOniAAX37QOj+83qC4X7yKxq5STYkiXAdQgjDiitJBHwq7oBq3KuSBUlTGZCXxq7Kxg7tBtCFjhSyLlQ5fXhLKvDqVeQNMJMbCvhrvX6aEJhlOlUY1Lv9SD4nepLA71XwBVW8LQEUdx1mewLJ8TmGhTL0243uAIpuWMD8qk4gdG+jKXgV4z2jx6eCAm6/Sk2TMRYhdCSzBd3VpnFXVZVVq1YxadKk8EJWkmi1FoXOVdf4culSjhnWG3NeD7SWhvDxkhZE9fqw6SpCSIj4ZHSfh1mDurF+j8LAyTPCz4X0M2n04UeQJ35k/vrXv7Jy5Ur27t3LjBkzePnll6OCRB94ALZsgUOHYOlSqKz8Hwn6kgSSBWQLmBOOWFQoCjXmIKJgJvyvXGGE6NQ6MVILsOHVj1A2vkGTI4dpG9+gOLuakZltcSEiLp+d6rEU5Z/0v2nr/4hfdHrNfv36sWbNGvbu3cv69esZNGjQD6ugE81VUI1+y8ZbOnaRqZ02ztqJptZmltm2fTu79+wJb2tqcVL77aLw906156EXZ8XhEu4/ZSyNTc1InWhOLzlnPo/d3xYQ9Oht1/PcfX/pso2q301LTXnUNoSOr51LgGyWaTiwnb/MHE5zbRXrPnu/YxsjeOyxx3g49EIsLy+nvqEhXLdkbvdgt1vtcO2a1axauSJqmxKhTXY11gHQP8XK7yYMISHBCJSxRfSbx98m6KuqiqqqOBITmHHUKPIzUo/Y9h3rVnP8+GLOPf2U8DZJVTjgjhD0dZ033/+E/LxoX2i3P3pAilRQzjl+OjddcwX79+3low/eaysTMrtH0nrv7NqxnZXLvmTf5nUdtNxy6Fru3bOb5ubmI55TK42NjVRVVQGEJw1Al5OFTz/9lLfffptdu3axevmy6N8PC5phfbTxrxCsPNyIzWpmw679YP5uC4rWbiISVPWwsFDf0EhtTU2n2sT29zOSTHNjA0eNHsGLL79qtCfg6+BnK4m2tp514vFsXbsKALfbTTDkoiW1E6QNjwOBpml0+Yh20saNW7bR4nSzbt06GhoaOh4YQlEUJP3ImvfOWLRoEcuWLcMXF9dhX0NDPdXVNbQ0N3HHbW3vAWv7fmvn2tWV4c+rRJdrqiqjtqaafnnpzC0wccmxI8OuGO3xBPw8vfxLgqqKOeTGIrW77lIX9+H2g20WAtGuj1oaarlw3mxKDx002tTYxKo130SUEFGCoqIoVFZWInTYU3II86BpfFwe4MP3Fka517Ty8ssv0z0zGQC5g/2iY58ADD/hVE6/9Breeqtt4R090i1HFzhdboqyHfzzvrsZesLpSJLg61WrOz1/sySxatUqPvnkk6jtqi4Q1mihSpIlDrx8DaUf3MsXD9/MFwvf6GDJlSXJsEoB69asxJ6c3umgb7Z0vJ/jQptqamr46quvaGlp6VAmGAjQIyOJnftKOOHUs1j2TSc5ydtN6Dav+4aZtz9NbnI8M3ul0PN/Ip1+N/+1PPEj06NHD1atWsW4ceNoampizpw5nHHGGYwePZoLL7yQJUse49//XkVxsZv6epg1K6zX+m0jSYafviUJ7BkQlwNaAKlxHWcOPUSicDFv6QMk6S2c0f0z45i00TDhddSZe9lvPfl7WfF/Sfy6zua/wOPx8OL9f2HWwB8W3HYkRo+bQPHocaxbtYJ/3vM3Nr/6EKWfPEbQ11ELtmjFOpxOJ2Xl5cy/7m+sXvopPlcLB/bv71A26Pez5NOPWbxoYXjb4gWv8ekbL3TajqY931Kx+Cn+fd508lITv7PdasAwrf7n2jN5+c4/dmkSbwoJu55Q2q9nn32Wm275S6dl3W43j7/5AW5Pm6bopBOO47LTZnda3t9cx73zjmLdN6uJO/Z8dh84zIcfvN+hnCPejl1TaGpqomj8dFKTHVizurNzb8d+a8+dF59KRelhvlq6uMsymqZx4NBhAFqamqivrTEmFBGWhPZs3riBd998jSsvu4TfX3juEduwf9O3HDOsN7OmTuCC007inotP6bLsxDEjeeyxx458UqFL9eyzz/L000+zf/9+tmzfxfNvvHvEw9auXcvOnTt56623+MNVvycpIZ4Wr3FdWycaRP/HMy++wqGDh9h6sJrcjLQj1r967ToeffzJI5Y5+bxLmTy6GIDKygoqqqo5dLAETe1cy3fh7CkAVNfWHrFeAEVV2bB2DV9/+DYAJ846nmlTJndZ/uFHH8deOIA+iR0Fvq4MKxOOOoovli3n448/7jJrQ21dA/fccw/OujqyTN+tvWx2edhTcpjMBCsbNmxg2bJlOJOTO5Q7btpUevXswaii7jz68L+454G/d1pf+7Z35jrW/nnXNZUF157IOfNPI2fMcQy/+K/8/YWuV5TcX13O5tLDHKiuId7vI9uik+tr/o6WhH4rYpLbvh3NtdUAXH3ReXz61Qoyxs/hD3+7P+xqpkQI780tTu655x6eeeYZVq9bz8DppxplukifV1NVyXXX/gEAn6crp5Ou2bVrd7gdUsQkQQAVNcb9+crzzwKw41AVjsTO38PNQZ1Vq1bx7bff8vnnn/PII48AbZao9ugBD56y7ZSsWcx7zx/53bB980YAViz+uMt3eiS+0LzGE3pn19bWMn5Aj6gyNVXGxGzpSmPCVV793c/i+598zvLt+1m/cx8NTjf3PvDQ92rPb5GMjAy++OILLrroIlJTU1FVlS1btvDCCy9w9dVXM3fuRLZscQD9UNX5/P3vD7JkyRLq6+t/7qb/PAgBnjIofRc2/wm+OAYWpMLHA2DNuSSVPc7ZPZeSYnZxdtFakvrMhukrYcZa6HGGYaX4FfKLdt35b5E0lS2WFNZ+sp57TriMnO69ACh992H6X/4nmoN6WIsT0AzTZ5NfodmrULpnO0/e8DDzbnucQMitB9rMtHXetkH8Pw8/yLo1K8PfnTUV+PQsXLV1hrZVCzLv5ge4tUmwdddePvrsK/jsKwD2HirjqEIj+MrlCdLoV3A1GY7alWWl/On6a9FDgpDNHoc7FKjlV4wgR7dfZcdzf4o670eW7aUwK5nzh+eBAE9jE57aMrSgj6aKalSTUX9LbSUA9y/ZzSWT+uJpakENJqLpICw28iMmDbXVhvb49bfe5vW33qa5ZAdWvxchDBeXd5e+z7X3P8G19z8BwBVXXQ1At159AGNQb/Eq4cBBV7Mx2C793AjEnX7pLVSWl3JMWRlBezIpQqfZq2BLTGZ6+XZGvvBB1Dk+8cJrPPzkf4wvAlxB1Qim043r2NJOI68JkOMSEO2sEKeff6kRkAusWvIJf/7jVcQnJJKcmc3lz3yM1Sy3BaRpSjj4FwyBH6Bl52oCvlxcjT7URB2/N4jJJFPd4uebpZ/Q0hQdvGk1yUZfYGjAXQE1HCiqqio7duzgnXfeoU+fPpx99tlRxxKhwQZ49dVXw7uWDhzK8EnHGq5SvnbBcJ3w3JK13HTiZWHXHWSZJkXDoeoECfLcy6+Fy95+++1M7FfAxLxBhruAR8Hn8lBdtYEbNr1E2fYN7N65g7fe+4C3P16CRRYgDDclv6qDHGDths0AfLlmPfPPuxifz0cgGGTWBVdinnA2flXHHVCRNI0d2w9QX1ONLMvcc/+DnHHKXIo0L2XVbQNcQBdYQiaMdVt2AFB1cB/jM2T+tmmTcc0kwtqb1oBPTQi27CkBYOzlfwPg+Tuup1QYPuNBjx/hcaKbLSxfvoz3lm+gZ45hPfr7vw1hK3KtDl3REGoQ3dUcnpTc88arDCvohjfOxllnndWh7yU1gO5q5pZ/v8jzn61kzcsPYzKZ0DQNr88XTuOne5wIn4e6umgB6877HuCqP91GS0ALJxHQAdXva2tXMIAk7Nw0sQcPfLELzWTBbDbT0txMICWZFl+Q4KEGvnnsVgA2b9oYPnbJ3nquSS5AVHQMslu8bR0AZbUN9M/NI6G+AcWvoHgihGsdkA2Bu6amhpSUFOx2O5X1TZhCFszDh40Jtl/V8Ws6911wIgA7tm3hD3f/O1yV2+3G4XCgqIbriQj6+dezbffmwkWfhj/7fD4sFkvYlcsX1PC5A5x87CT8fsOFZs3bz3Lifffy3PMvMH++kXe7NQlDwKfQ7A2CJHeYJDmdTlJSUkgKxcQEAgHuvfN2/nimocxwuYygzXnHTcKa0wex/Qsj9WfoWRQCchMs4fPfvm0bLrfxHmzyKfi8XjSLwOP04w1qeJwh97uQBcHn8VCYbEMX0OAOGi5/uggHsZeXGv1525UX8P7nX1KhjEJgBO763EGcARVMFnQB73z2Ff2Sk9jTooXv5TfeeIPn/n5n+Dd1ARXlpQCs3bwdgL2Hy/FYHLz9xRLSylQmTz8eoQQIujzYNQWwIqzGvbth01Z25Xbjznvu5dSzz6MgiZhKuhPi4+N59tlneeKJJ3jxxRdJTU1l27ZtbNq0iY0bN1JZWQnsxeXay803vxU+rqCggOHDh9O7d29ycnLIyckhNzc3/DkjIyPsivWLQAhQPRCoBX/EX+t31wFoXAf+mo7HmuIgbQSkjWbkhNGMTB8Dib27Nmn+yvhNC/oIQaVkJ89ivMicDYaQ8Mpzz1DZ7OGk6+8i0dqxi7RggCeunY8SypZg7kQr5rDK2O12/H5/lJCflJaJp64S0rOQLdGuDv959nnq2s3EqysroDA7alvA26Zxeufl58OfbXFtTr+WI0TsfvL3G5l54dWI4twOrg6yxYrqjRYCD2/5hq0JHc22IkIr98RTT0ftW7lmDUdHxMolJESbnZ947FEAklPTo7Q5rW4r6x8wBNhliw3TWmVoQDnm2GNZtnYDRCjUm7xtwgvAWeecx9drVtOzZ08OHjzYod2tJCWn4moxJjWtg7AcjK7LH6El/PMfrwLA63Hjbaf1k4TA4+kocAG88+h9ZJ3xCHJElKcQgiXPPsTa917uUF4NBiAiuWJ7t5V33nkHgP379xu+7pHXMNSV7a8rwGdfLqd44jEdf68LjXmjy8i8YQ5G3w+Hamt58sUXo7a53W5W7iln4kzjuxbw0LT2FVw7P6MEsIfcTdZ/u5amxgayMowElZ0F4171x5tojnATqC0vJa9dmeGTpwPw1zvv4Y6/3MLg0UdR8uF/oo4DINR3jz35FAD7d2zhuBFFnZ5v+BAk4trdrxf+7R/cfvvtQMiiEXLdueefj7F89doOdVRUVKDreoeBtMXddt9sCd3TXbF+z0Ge/8x4d2jBIGazGU3TaGho6JCvOycnlwMH9jN0+AhMksSmjRuoqanGnpIZVU5oGrt376ahoYHc6VMAO/e8+C73vLqIqVOnMnXq1KiA2HUL/kPjzm9I69GfxkO7w9vra6o6bbMSUnQUpqbz1tpvmDZ4IJ07dBnX/Z577gHAbDaH78OioiLOPPNMkpLagnHb3yetQitAU1MTDocDOSKos6yyKtQvOVRVV4e3ezweHA5H1PPhryulqaHtvXvfffcC8O+H/8UJJ5yAKa5NoeEp30mtzwL054OF70S1qbm5mZSUFEyh57y+vp7PPvmYWWMH061Hz7DL0eyzL+OWv9zG6Dgvnen1Wy0DLnf0O6a0thEijDlyu/eCx+Vk25ZNmCLiRCKHgVbtO8CtN1zLawsXsXXzJozwQwNN0yiachJlVTU8+pc/gtkR5bKz+tv1TDi+LRtJQ60hVK3esAWA/QcPU15dR21pCcHk7E6tca1Koa837+Kdh18EYOOG9RQU/HqynPwUSJJEdnY2M2fO5NRTWy1UEBdXi6ZtYvToTfTosYlNmzayf/9+ysvLKS8v77I+k8lEVlZWlPDf2YQgJycnnF/+R0cLQqCuo9De/nPrd63r2LIwkglShkD6GMMlJ300JA8C+bcr7v52zxyQFC/DC5J4c7nh5uF1O7n8Dzfw1L//jvfwTnITbeyr92CRU/EqGn5Vp6S6nsV/ODpcx55qJ56AxuqyFuamu5DUAEJAo18jJTWV6qroAfHo4f1IsXkoS7HTUrqLZv9RRqpJ6CDkZ2Rl8+aKbfzlOCPnvxLQqG7243G6SM/I4OmXXmPerBnh8na7jZHdU/lyVw0tfhW7WSbQSXaFA99+xaPffsWEceWMzHXgbahACwm4rsr9uJrLKBw6lrKthgDz4b1X8yHQ67IFuKpLCWqCYGIqwmQNaxnb4w0oaC0NmCSo9QQxh1Jeblj0KiPntGmht21YyxVXXcknrz4bTuenRQQbl+zbE1Xvnj17DL9jXaPRE0DJGURDt5yoMoMGD+a1V4y4ge21HrqnxlPR6EN0h0SrmZJQ4JkjJYVT55/B808/we9mHseHX62mv1RPikmnWTMG6/i4OLy+aOG/lS2bt1DQZ0A4cO/s8y7kk6VfYrPZuOayi3joEcN6UXlwP+dO6M6LL34JWfm4a8qwJWeyZsHzndZb9f7DDLjmLiNlq2TEA3SVncflckXlbtZ1ga7r+LxeLrnkEhoaGli40HDx+vs//knvghxOvehKACRdR8gyZWVlHeqdO6wv//pwOff5PZgS29xyfJrOgg8+7FC+paWFxMREJN1Ig+k8tBXXzs/C+/0RfXj7K58xa/YJXFBkp8UbNLSOeYPD+/eXRE/O0uxyW6pHr4IUaKtrxhkXUTR8DGfNOoZeJ15i1B8SyIUAf4MTe3oyVVXVdEaGVaBb04wA8VAwZEAJsn//Aa655hoqK6s4Y8ZRzLv0OvIdVrKzc0iu3orubED4PeSnJXVaL4CvqYWE9FSUgIYI+Ak2NUP7tIIYk6T2A6lWVcINj7ZNAl9b8DGBQICEhISwKwVAoMmNVVXIyzME/UmTJvP7yy9j8MABXHbOfF574y0y07Jo8SkEVIFd13jzTcPtZsmSJdScPYt7Xv0YANXTQu+CbHr37sPWZh2XX8Wf3AOA/AmzuPhfr7N35ScM7tuLh265lkV7GrB6o11gvAEjS8jMEUfx9Bcf8sySZQwozKW4dw9M3oiJri6iJpiRn/fu3du2PZQGt7rZT68RR1Gy0YixCEZMwOMychk0oD+WnJ4Is6FNjzfBJScdx2uffx3Vvpdfeol3FizAkRAPQkfTBRXLDO3/HXfehbAlcPvNRo70rVu3kpebQ7PbS0soleW+l29gH/D5xafxh0svDNebm5ODVQ8wYvAAMlJTjDaGYkAOVVbTt29fXnr5FaZNnsjX36zj69lzmDqmmE+XnAB+DxbZyJQ2eGC/Du/TYDCI1WpFaaw2EgqELA9BjwvZmoAemoirwQAnHTsFi8XCsY8so8WvEtAEJhljkbG6OkaPGsm69RvYuW0rw/savvF3LN7N17Ueyht91GtplFUZwvvVd/+T2cdOZeXKlcw5cS7r1n3LmoMNjFR1EhQ/qhxPc7MxCSirNJ6vFd9uYtWaNdz65Cu8cm8+DrsFEfARdHqRfC3YzFlU1DbSLTuDd5a1TZA/WraGuSedDGrH2IkYXWOxwBNPZHH55TNYt24G3bvD9u0QCDjZsmULW7Zsoby8nOrqaqqqqqiurqa6upq6ujo0TaOqqiocy3UkEhMTv3MykJOTQ1ZmBmbNGRbSJU8lPZVlyNu/BaWxo/CuNP/wkzbFgT0b7FlgyzL+t2dBXD6kjYTUYjB3jGP6LfMLstv8+AhdJ9HXwL9eWxDedsxMwzy8Zv0mVF2QHGcJ50MH2LY82p/7vYvHU/LJC9jMJnR7kpH1AbCZjNl3JEP69aZXt3wqSg/jbPIhmy2YZCkqneHQ4SN48ElDACzo0QtvoxGcqAkIhoT2gNdNQmISw8eMj6q/qaGe6hYfAVXHYpJo8StIom0AHXnZvfSf0uYTX3qwxMivrRoDku6qpHnJnaCrpGZmM/zi6NX/FL8XSTYhSUaQV3pyAnFxcYwf39aO+/5wOQnxcbidzUiyjKIb1gWPx830UYMZNmgAwdrDHDVpclirtmPFEmQJXH4VXQhEu4DBB56MFoitEWoqSQ1w+kNtApHL48UaYdkY3SMTkwRxVkMDGwitdvzxa89ScfggM+acDMChPTuRBMgBNz1MbeaCvn0Md64Hb76K0cOH8beb2xZKadi3BZtZNgJMhU5FSHNos1m54qLzALjgQkMYcDbWI5utBH0+ZLMVobQJqydccgO2BAfDZ54BspnN69YaGYWEoclsH+xdVFTEzTffDMCLL7T1jVA1QOByuRBAdnZ2h4Cyles2GoGmERaJ1uwS+fn5HHPMMVitVkT3AQD88/nXEf42N5RGt4u6pkZycnK4+47baf7iFXIz0ti3L+TCIclGVp8jJJdddPfvwxanVncZd7NhWXngoY6+5XU1NVF9UNPQbLTt5XexWiwUtyZbb4dkNoVtTpmZmRw3Y0aHMm+99TZS0ENQEyiazqIFbzKyeyYrvvic1JQUnn/pJebOOJrhw4ZyyR9vpVuyBaGqRuCxbCItPT2qvmOnTATAarXiDgVON6emgq4hNB3N52H8+PFcffXV4WP+/ve/8/XX0QKpbE8gOSIt6pOfLQcMn113hKZXJ5QtKkRBQQHdu3fntFNPZfXadfTs1YuWFheaLjDLkuHeEsFtISEfIFtWOOO4o4hPSMCraARVHZPVUEJ0mzAL2WJj1AmnktO9N4GmWsoPd7SWeQJ+4q12HHGGRWRjaQmvrVrFjS+/RqCdANvqKtMZuq5TXlaGUJWw377aLlPUA08+T2r/CVhtcUw7YQ4mi8XI+KVpeP0B8h1xbHr0Zs6fdyLKYUPj7PP7OWrKNKMCIYx3pSOTYUdN48Ybb+D8iy7h6fv+yuIP2rT14TVJIlKzRk67V+8o4ejJR5EbJ3P8pDFIra5gocnIP55+ibraWkaOHBHV/oraBh741yPsbjDeBZIEC97/MKpfZFkOB+C/v62Ckl1bUX1ugqHnRmgKjgHHRtWrKMbaLxaThDW0LsBfLziF7ZvWc9ftf6P24K6o8mowiNlqwmaW8Tmj3Qg/WroMXdeZffIpHDdzDnt2bDOeb4sdkwRet4us0DjXp3sBNfUNXHK9EaeVrLfLxS+b2LJxA59/+jHzjh4X3nzng/9kx+aN1Dc2h8fPGN+fSy+Ft98GqxUWLIATT4TERAeTJk3iqquu4v777+fFF1/k888/Z8uWLdTU1BAMBqmoqGDDhg18/PHHPPfcc9x9991cddVVzJs3j4kTJ9K7d++w5dDtdrN//35WrlzJggULeOyxx/jzn//Ma/+8CPOKWZgXj0R+Px/etMHCTPh4EHwxDfM3ZzE0+B9Mu+6F/U9B2UKoWwmuvW1CvmSCuFxIGQY506H7mdDvWhh2L4x9FiZ/CMd9AyeWwGluON0Lcw8afvVTF8G456D4Puh3FWSOjwn5nfCbFvQBPt1oaIzHjypmc3kTA4YMY9Lo4QBUHe64HLe7uYHMYVMZdmGbELz/4+fwhFw/IklLS+es0+dx7Y2Gj7zZZKJbbjZNtdHaRb+/TYvxl7sf4Pi5v+OZF19l7vxzcNVEa1trDu7hyWvPCWsAv9xdTqIjmW1rv0YJBlnxZrQLjRY06u559iPkDJ/CCdfdx9mvrCN1wAQWv/5cVFmUUHrElips8Ynkj54etbvpm2g3E7NJJhgMMnz4cAYPHsywYcPISU1m6oSxuNzRmkuX201SXJvg8tb7i7jjFUPI8Lii3S2UYFt/rDpYT6++xoqQt9z1IJIk4fV2vpjLyccYKzHOPfkUpk6bFt4eqQFt5bn7bwMgN7+AeRcbQtfWjes7lFMVlT9feQHXXjCfVZ+9T/fCQgDyc3PwtUQPink5xoDndLrIzzWsDBMnGQGfGxe9GlVWj1iQZsr8i7ngxa859vI/kz7pUjKzoy0UAG89a1gHbrjkHM4880zi4uJISUmmsamZ999/HwCluhFEm2+z2WzGZDJx++23hxd+qaquDWtDRTu3kosvvphJkyZx6623Mnz4cGRZprS8EmeEYOkMtgolEgk2C3E2K1X1jSxbtoyamjbfSNGFZm743PMBCPijrSTLVxqa2vMvuIDeffqw7PUn+d2kUdxz2rFs/PYbtIj8763B3yMndB5M6wvtt+SkQSjGJi4ujtNOP4MnXja02ccda7gwXXjxxdHtWPIZnTH7BGOSsPdg9PP4+MtvR32PC7koJSUl4Qrddwmh/71BhdpmJwkJCaSnp4ctDwBffvllVD1rtuxk8RZj8nTK5LaJTHJyclQ/q8JwA9uxYwd/e+gRLrzYsGpcd+21bef05RfhzxJgtxvPYfv85Yfqmjqct66pOHoOw2xrGzwzco2lNz9/7T+Y26XMK6mtRA257/xldnQe6ieWfR7+LKwW3nrL8Cc+43SjXO/MNsXIyy8b75qm5rY2KX4f86+8kccXfMaD769g+uyTsKZkhV1BIvH4fMTZrRRmpvHsg3+LctVpv06EUAMU9ukf/n7R/N8xfkxbn3cWKPq3S88If05NT6dbQT53PP0aX369Kuy6E4xYeC+p3YqpBQX57DtUZqzEecgYO6oqyvnXf6LfsRkZGTQ2tr1ndq75qq1duo7QgqQMm0P/M2+JPv+aw1Hfd280tOdZmRkkh9py7HTj/d4ckY3N3c5d6JTJo7jm9FlMO2Y64ydO5tXnno7qD7fLyTHHnQCAtd29sHBFdAaeZSvXMO9447187OihlLzzKLU71zF81Bh2rl9Nn255saDcH4gQsHw5vPEGtBrFliyB6s4NmGHMZjN5eXmMGDGCmTNncuGFF/LnP/+ZRx99lHfeeYcVK1awf/9+PB4PLpeLffv2sWLFCt5++20eeeQRbr31Vi668HxevTqO44bA0G6QkwKtyw41umF3JXy9G979Fj7e240d8jyUYQ/DxHfg2OUwaxec0gDzg3ByJczcDEcvhqNeg5H/gkG3QO+LoGAOZIyFxJ7fmc4zRuf8pgV9SZa54SVD2PT5A+HB4NSZhobk4K7tYZNtKx89+QDuin3kjY7WomxcGT1QBzSBoigcM3Uy1//pzwBYzGYy01NxNhouOnrrircRGpz0kO/yCXPmMmHqsbSU7aW8pi68v3LPVgDiQjNtm83OBxv2UdSnN4U9euJ3G9rX1nzxrStBWlLyoga7tEET+eKdl9i0LtK/2NjvKVnVaZCO0EICojD8Yh97/lWUYJCCoI8rpk3lxjNOZBhuUpIdNLmihXGP201CXNviMiaTifgkY8BRg8HwC16WJIKBaM1ddkiwyCsoJCkpid17owMApxcX8dB1F/P2PwzhPSExkY8//oRdpYZAVNcuK4sSMQAnp6Ry3h//TEHP3rhdTnRbtAuFoigM6dc3HCDXvdBoS5+ePaIFfUkmM3Tt9m43tIflFRXMO/VUjp1xAgGvJ2w5AVCajMH1nOeWIUekTzUnZFBbVRnVhqCq8+T9RlDoxXOmUdBYy4ii7uzbZWjmNm/eDIAW6vP2ptjCxhpumnEsJpOJL7/8ssNgmpaWxgknnIAsBOmhvpIkiZSUFLxeL1JEn7SEAgctFks4RmPxdWcC8FFEViQ9QjA/7aG3mPfgm8x8fDnjz74Wa1wCqxYZGtPWVKmnnGG4c8XFxbF+0xYmjS7mtb9czhXTx2C12XBXtQkubo+XlORoP+tlK1aycuHL5KSnUBs6B7XZjVBCqz8Hg8QnxHP0jBNodnv5cOECUpKN+y8yA0vkBOT3v/99+POfb7qewb0KaQi5KhC6lkIIBgwcyMpP3+efd99GfMRktjXzRetCY8P/+hSLN+6ij1kn39dCWmX0aBzpvrJmq3Ftl995KXMmDA9vr6ysZN26dWH3DgG8t2wtjY2NdO/bPyy8FxcPI9BYxRnzT2fvnjYNbmqcmbi4OM477zxOOeUUJg3qzZShRcyfewIbSirYfyg6bkBoaof0vq39/uWCV7AkRAuwa/btIBB655hNJm6eeSrzxxkWPzVCwLY0ucIuYwP6FfHyDVdx5ZTjuHnmPAZ3K2ibzEfcq4rfR9HQEfQfNoKsgu7hdrz+7BMdrANeX4AEmzUqnejyz4zUxs52cRxa0Ie9XcyD1Wrl+JNPA6C5qeMEaNOqZVHfHaHFvTZt2063nCwcW/eS5m9T/ry1MDpZwOeLDPe3bdu2hZ+jY0e1Wd/mHDWOS2fNwu/3s3ZtxxgQaJtMmxPTyRl9PC9vKGNXtXFuznJDSdV+8eH09HSQZLYtXsBrbxqT1HUftQVweiPine66bD6v/fUKHrr6XBKTkhg7YQIA5aHrpmPEBbSOWa33fmJCAoUZKbz4+arwuwmg2dnWH0ePHExeRiqpKcn07T8gvL2ytm2si9E1Ph889xwUF8PUqbBwoRHHfMwx8PnnkNc+qOm/IDExkT59+jBx4kROPfVUrr76au655x6eveN35Cb5wJICUz9DO249dRM3s3XAOtZ1/4yPpb9z7UfDmfdvmH1HKYPPWEDmUX/jkrs+Z/kugZ5UBLa0X10qy/+L/KZ7OHVkmynf29xIrxQrBQ4Ll8+ezNFD+rD2/VfIddiN5d81HXewbQGVQFAja5ihUcwZPpW12/chbElIWhCzbJhh/YEApoQUUuzGQJmXlU5aoAWctVw4owhfUzV1zgCNlrZ87wU52exv8LKx2s2BgAWLI4eXDkmYJHA3+6luMjQustlGis2ELEnGAkX2VOadfQGBhkpS4q3IkoQmwCwbb/rs7mmkxBsal16ZiRSOPw6Az1atw1MX0lK25n/WNdZ+8Cq7t7QJIgUzrsSEH29DJS0BhZdef4sXFn6KAM4Yms75R/fi1IsuZchFvycpu5DG0gNIsslwyQmoVDc6ScrvgSSMhVp8io4tJYPMXkb8wZfbDxFUdSpc/qg0eUv31fPmzmZyJ5xEY0YRTqeTKUeNR64rweVXqVct6I5MHFYZOS4Bm7MSm0lCRhAXH09yRjZLtpVQ6zTqzHfYeCWUiebMa/+MGzOKpmN3pLJg7R70xIyo/N0erxeL34Vv3VLUbz8mv8mI5yg0B0gSbZYCKejB43Hz4J//SG+LCyngIiM5CYtJZu7MGZhKN9J71CB8TdW4aw5Ru+RBADbtdvPqp3tZv6OGb/fXgzmO6qpKxhSmhAMQW92OAPKHjefM6QOZNvd0mk2J1H5paKhLSkpAklB1gcPhoH//Ng1lc6UL2aczYoThOvDsk4/hrGrAFhrUFUUhLy8PIUkEXW19b7PZCAQC1NbXY/UZglSzx0VaooOTTz4Zp1/lySVbWJ1cxNhRoygeNhS0ILoQqBG+6FvKbHyz1cfGr7aydPlBVB1ee/CvrGk0U17tpiliMp1QtY04yRDO5IQkJEliUFEfMkUztZ4A5U0+nHICiQkJFDisVLkDVLoC9Bw4jNFHn8DwkaPYsno5LS0tUa47wWCQNF8VfXwHSdi/AnnnMqo3GJPzNZt3hRcSyyvsEW5LA/FUuBQ0Ry6qzcGICZMpP7AP58Eq/FU1uEK+5O88cg/j+nfnmlOO5ZyTTyAvM52GhgY++3oZAN74BIL1VdSFJmIzjx3LWeMKmZPi5Z0r5rFgzmRkWcYZIQjJTiMPv6nJyyF7PkOHDgVg9OjRAJSWGgJ5abWT+pBGOyczgwSCWLQAsrcJKeBhQG4q/7j/Hjy+IHVeBXNGHoqiYLFYGDBgAAvOn8UH15zKs381rFr9J89m8Zsv4KmvxuMJ4mp0owuZunovDZ4gcVYTFlmiYITx7ntx+U4iSU90MLxHXwA8mkCXzRRm9OCSiUcTjHDd8UZIoEIXOEudVPlVdNnCpN5DaWpqQtM0dm03XEUON3hQgn72NSmsPNjIvlo35c4AOWPnAPDZ8lVRgafeliYS+wzBNnQSAGpKIcMnGrFVF517FrKrFim04jOqn3KPxPpKD5oQaIkZBO2pnPPXfwBwx9/+Snmjj9qIZ8NkS2D21bfx3pYydtV5GDTWSPXqk2z4U7sx/HAJyaVtk6Ycz2Hszkr+dt3vueuee+nRbyADBw7E6/UihGDhm6+Hy772rzt5+9Zz+UtxNn169eLgwYPRcRnuRjRdYDEFkSx2kjJTAEi0mthV52Hu3LmMSjMWxTLJYI5Y7yAuIw9zYyn9Uiyk6G76Di7mm/dewlm2l11VTspdbZPNmy86A6l4OlLvkZQ7g+zxWUnr1pdHP1xmdJsuqGtqJsnhoK6phS/WrGfrhnVs2rSJm68wXBbHT5iAHJeA6vETrxvvkO69ehMcdRLygAkoqYU0BeGCh9/Gao+j/LuTgf2mURSJ226TKSyEiy+GrVshLg4uu8zwzV+6FKZP/+56/iuCLVC7EnYYQev0uQTyZmDKGElmt2EMHT6KGTNmcP3117N27VoeffRRbrrpJgoLC2lpaeHZZ59l6tSp9OrVi1tvvZXly5cf0Y0vxn/Pb1rQj8QXbBM2JEnilPFDwpqLVlpNvkMvewiAHtPPZMDkmSRmd6Op4lCHOoPBINZQZp3Vrz/Gf+7+E5kpDmrro10+fBGBiokRmSYAgk0V3P77c8LBjHonga+t9B80hPVffhrly6qrCpLJ3CELi8lqo++0k2msadMei4gBIaF7tD+pJSkdxdW2CNCfb7wu/DnJHp1XIy09g7rmaK2Z1+shMSFaa2ax2TntwTdIyi5g99ZN4e2trjvxeYbLjiRJ9D7pGuKSHJx78eUAdD9mfri83x/Abu08t4cjPZPmhs61RDPOaAumM1usLPn3LR0W0tE1Dbutre78jBQAxvQtoOJgtGuX2+0hqd05AgwcMID123ZTseKdDvvaI1vjUYKBKPelSA28zWaLKp/qSCQ3K4sDBw5gLypAtltRVRVLOzO6BEyZYggjiqJwWLfSmvkkEAhgtVo7pBqzWq0EAgFqauuQQmV9ks7Qbr1ITTH6oVky+qZnnz4s+vTzcFsbVkS7kEVSMPevSBZ7h+2d9R1Arx7daKxqE5rcHg8JXZQt6tuHjXtKWLx4MabEOCwZyfj9frxeL552gelms5lhQwZHLULm9/vIyMzi78+/0aHunJwcqhraynpDloCczDY//eOnTuSeKy8Ox620DmDVvrZrmJ3Wljpl2oAeDExPJiU5Oaod971tuLkoSUYg9DHHHMP8+fMZO3Ys/fr1Y+NGI9VlmRRHZrLxzshoFxMEcMxRYwDYvuyj8DYlGOxwf9ht1vDlH11UQNM+wyoldBWpE7/pKdcasRSrnrkzanuD20lDO1c8gPSERJq97vD9EQy5Kx511FGIdhaDzKRkZFmmtraWAwfanjHF78MS4UIEEJfVHVtCEhefemJ4279eXsCKLbuJb7ewWNgSsWx51HOuBX1Y4jq/nwBef/nFDtu0gId4R0rYdWns+Alcfe0fqahoy2zjb69OB/76h8u4+g/XApCamkpzczN2k8S6DYbboMViYf7sNkltyiQj5uNf//pXh9z/gYZSbGmF4ZiAVnr26kVVWZsF7MBewz11zf6aDpbagp69AQi2GEqdYDBAn549ULZHW6hbSe/Rj4p9bZM7n8uJw+HAbDbGmKKivhQUFDD32MkU5WZEHau2WqE6cc/JKxqM2WJhz77vXv/kt8zKlfncf7+JhgYjEPeBB6CiAp56Cn709b10BZp3wKE3YfOtsGwOvN8dFqTA0knQ8I2hjS+68ojVFBYWcvfdd3Po0CG++uorLrzwQhwOB4cPH+a+++5j6tSpJCcnM3nyZP7yl7+wZMmSDi5kMf47YoI+ML1/D/75+/nR24YVUVlZGWXKd4b8RW3JxgsspedgZt/wII6CPtQciA5wAmNAtYYEszFD+pOanERmShItLjf+iBSWPq+XtGQHyubPOwjk+TOvB2DpZ8ZKia2BqqKTBWdGjTd81F0RPpe6GkRuv0JtiMSMXBqq2wamyBzGmZMuiCprSUon6Ox8EQ6LOXqgzs/Pp7wmuqzP6yUxvnP/uoS0bBa92eabqipBTLZ4+p73jw5l/3Cz4QZVUdtWvz8QwGbpPIgrKS2d5vpoQd/rdjLq6BMwR6Q3rTpkDDAbN23GI9rOR1HVqLrNJhNq6VamDerN4X27CXjaAlXdHm+HyQzAuLFjsFmt+BsqO+xrj2Q27pfWtHUAWmhxrn89/1qnxxw/cgjV1dVIsozu9aMoStiFw1bV1k/ZHkPodLlcKEICJIQQBIPBtglExG1ls9kIBoNoqhpeyVVRVSyyiYzyaPegHj16ALBi9TdR27tdEB2bAGBLK0QofjwRueYBjp8yodPzy8nK5Ivn2u4Fj9tDYkLn99Ko4cVAWzpXa0Em999/P36/nzi7rUP5vLzcKOEsGPBzziWXc9TRx3Usm5tDdYSg7wkYgldCfMfgrxkzZpCSmMTOnYZQFCny5aSndijf2NTEhx+2ZTOyhK5f63HJEVaaHj16hN2zROhvxNDB4ZWjIxk3fAhjRg6n5oCRGlMIw6UwzmxiKNH9X/roDQC8+/VGkgoNrbzhutPx2Wp9T1VtX0tKY7RrS7eMjhOO1PgENF3H5TesGstDqy9nZ2djq4p+PmVJIi81g9LS0qj3oRLwY7F1nCCOPeUiADavMVbZvumfxvoZjqSO98hll14KwIefLw1v04M+LHGd309LtxrrKXibO650bE+IVsoMHDyYRYsWhQVZn9q1UgZgwoAerF+/nklZZgaHpLSquujfSU43xhpVVdm1axfdBgwL7ws2lmHP6Nah3p49elJVdij8vfTwQfoNHoqlE2XI72+9GwDdbwhWwWAAq83aaXpegIyeAyjfY6xJsXHdWjav+qpD/AFAXnYGn956PmC4xQJ8vdaYnHblh+91OXnptY4T7BhtjB5dzeTJoXexAosWQd1/6+0kBHgrofJz2PkQrD4XPimGtxPhk8Gw+gzYeR9UfgTekMIlvgDyZsK4FyHh+61sLMsyU6dO5bnnnqO6upq33nqL008/nZycHILBICtWrOCee+7huOOOIzU1lXHjxnHTTTfx0Ucffe8V4WN0TkzQB+6/cA4nnTwXMzp2PYCcnE46wshRXrGbJKtMeryVRQsNn8aZo3sya3gewwpT6J+bRNGQYdQc2MlHa7fjyh1GgsVYTCUYDILJTFATSPYE9JQ8ckcaGhrx7XtkFI0mqOocbnBjT0hEcmRgkoy86fXeIHWuANkjjmXwjNP4YsUqGg7tp7LUENw8AZXP9jfy6vpy1pY2UelWqPTqZBb0oL9DI9luJtlmpnuqDYvVxqkTunPCoBzG9UxjQo80hham0LNnDw4cOEhcaij4U+gQZ2gnq3dtoWJjKPBLkgmKJDSfE29DOaUtfuae0bbiq3PuTXiPuYwv6i1sEfk44zM5XNuMKTMfq0kiyWampr4RT1IuzZkD2VSvsLfBR2Wzj6oWHynFx7LrwGGyHDa+2lVLk9uH3W4jLtHOxsNNVLX40DVjQS1/RET92F5plDkDeBWd+Ow8NEeO4RakhlxezBKJqZlUVldjNcsEVJ14iwl3SzOOlDQSbYYAY5Il5l5o5MifNn0GBYVtwbDBYBDvxg1UrdpKzYpvqVq6gsDqj0isNqwylZ+/SGa8mZJt61n17XqSbGZE0I+wGOn7JCEwmUzcOW0kvc2NZIcCi1sp3/wth75dSe3hetzNfpJCgbjfbN/NJZdczEvvfcINRxvuTf1GjEdNzsU6bDIVboXd9V70XiM5ed7ccMBea9rCVo1tQNFwqwI1qGEJadQ2bNhA7aZSNF2EAwbbWwpatwUCAbLzCxktG0KhqiqYTGZaGj1R/tN2u51kh4O331tEj5Q2YUySzbjr6/HUleJrqqapvISW0EqhVz/0LgfWbePpt4xVZM+74XbU2jKEbEZLzETqPZL4waM4+ywjBmDP9u3sK23mQFMAW2IyqXYTGfEWZMnITqRaE5n2u7O5+cYbogIhW6lZvoKGd56n6ctP8e3ciFa+h4KsDMrLy0l0ltE3PR4lqGC12WjyKTT7FTxBHSHJ6EKQmVdAlcuPt8FD095Shv3FyM3v/3Ihwe2rCO7dBC21BL2GYNOroBu7d+5CVVVKN7VpKrMzM9B9HvSggqeiHtWvcuqsE6KCRCf2LOTysYNx1xnacavbGxaQ+vTpQ3NzM7qu01jh5FDJIWxCoXeCjqmlAtnXjBxwISteEDozRw4gUFfK6xsrOJDcH10IrhlbwPHD8pGtZiyJhpAbJyA/NYnum1dwwvjhZKTGIVQVIWTczX4SbWaG5jgoSk9gWv8s0goNbfAJxUaufqGoWM0W+mR3zIdeH1JG76s2lBCZjhQA+vXrR4tf5XBEmk6PJshwpNDQ0ICzpYX+GQk47GaUgJ+AZGFHRUvYrS07K4GpZ15GXrceNJbsRJjahFl7QT8qU/qjpeTRqFlo9ms89K+HGTVqFJdeezOyu46BeQ4kzU+DT+Kxrw/wxpYqykmm3KVQ7Q5QHjTeEas/fIMWbxBrWmG4/q8317CqpIFtVU5qvCpTps+ktqaGp77axqSX7yN+mPGsz5s6FkkNIIUW0wuoOvU+ld+fY+RCt6LR0lDHKfNORUEmUFCMtd9Ikrpl082qM3OmsTjFYK2JebMNd9Oy3QdpXP8OJjPYE6ykOWykxVnQhSApu4D1K74iM95Ck0/jqgvOYs/2raTGmUiUNYQSQJJNmHxN9C3MYdqJp2IWbhqafGypaMJki8fXYyz0KEZNyEBz5FDlDlDjDtAkZ7Nr00aqtHg+/cRQPtWpVtZWuFl8oIm9LjjQrKDkD6XghPmYZJkqb2jFYJ/xDpGAvQ0B6m1ZlDsVaj1BNF0w44q/YkrsOAmO0UZiosrixRpPPAGJibByJQwbBg891BaMe0RUD9Svhf3PwvprYOk0eDcD3s+HZcfD5pvg0CvQvAX0IJgTIWM89LkURj1mBNHOa4STymDqx9DznP+v84iLi+O0007jzTffpLKykr179/Lss89yzjnn0L17d1RVZe3atTz00EPMmTOHtLQ0hg8fzrXXXsvChQup+69nN78tYoI+kBzfUciRJIlh/Xqza8f28LbWTC3tyco3Xv6vP9fmriABitKm0W/FbDZz9onTqa2rQw1lMPH7vB0WwGlF03QKh41nw8plxvdQqsPONPoAjowsWuprw+lANSWIydK5W0tcWg7ehoiAQKEh2VMxF52IZGkTqE2OXExxDsOEr3jRdYHazowcSVZeIaXl5Tg9bdaQxvoasjvJJgOQ3GMQTYf34HM7Caq6ke6tizYD9OvdEwB/SJseCASwWTq3WjjSM2kJue7IoT7xOJtJSE6JKjdjfpsFI1KZpWg6rk7cTAC69+gZdrF5/o13ATrV6AN0T0nk8OFDQJtGy5Jb3CGVqCRJZHbvg6aqfLbwLZ677Q/hfZ1p5AB6dS+gpaUFTdOQreYojT7ttGdZWVkcPnwYV0ICb320KJyhx9pJ3T6fj7Vr1yJLUth1J6hp2FOS0O0dXX3+fPP11NTWdlhMrD2t2sKS129E8bnZ9C8jU0zrolpSROpRgBHFhhbzsUsN9wyPxx21mFJ78vNyO820tDO9GwfV6PtkUP++bN/R5oqgKEEsXVjAcnJyKa+sRtF1TnlrCWq7vpWsxn1SHWe45qQmOdi7fx9ffPEFq9N7YDeZWHblaZ0Guvft2R2PxxMW9ktlO3azib2puYBxGUXIgpCWloamaTidTtbLcMubS7q8/wGOGjaAHd+uQtc0BhUbLnkJEe52WoQbS2Wzi88PtFkEhd65Rh9g9s0PA9DvQiOdomQxo2oa5nauOK0MLujJlzs2srPiEDISBQUFxgSzk1dZamISjY2NCKCu/FA4hai5E40+wPijj6O+LnpFTIcjuVPNdHpaGh6fP/wcKn4vJltHq0z4POedHnaZFGqQwlnXYkrpRkJe9KQ9PiGB/F5FlGwzss14A0H+9IcreOkvnbs2dM/Ppagwh5KqOlpaWqLWw2hFkmDMmDEMHz6cmpa250r1NAOQkNu7wzE9+xjWmOqyw5g6G+HV6ElwamY2QXdjaFcAyxHevXGZ3dF9zbhcTtJClhtFaatPjkg8ajKZyHQkUB2yvsaFXCDlLu6PtLzuVJUf7nRfjDZkGX7/e8Mn/7jjwO+Hm26CgQPhpJPgyt+rPHJvCZ88v5htCx+n9tNr8X8+G/FhH3g7CRaPg28vgb2PQu0yCDYaLjiO/tDtNBh6F0z+wEhneWoLHLcaxjxtuOhkTQbrjzsZkySJvn37ctFFF/Hyyy9z6NAhDh06xMsvv8zFF19M3759EUKwefNm/v3vf3PKKaeQlZVFcXFx2GIa48jEBH0gK7nzVd/8wSD/uvPPVFdVsfidji4IrZjMFoZMm83C11+KyvASCATCPvqR5GVl0hBh7g4EAuGUd52R3Wcw5Qf3IzQFzWcE7HVl/nSkZ9JUF+32YTJ3PlA7snLxNta0CZtCB1lGim/zOU6adC3J4y9BkmTMiakIxTC9BwMBBhWP4KlX3+5Qb3qWIdBnnXh5eFtTXS0ZWZ0L+vFZxkTp0yeMVTJVJRDO390Z25YbmqTdoVRzgUAAm7VzQScpNZ3lC1/DH+E37HE5SUjqOKhe858PSXI4wpMkMEzmQVPHiSDAuRdcGHbnahXeuvIzz3ckUF5WxvaHZoNquNBYe0zstKwtPiGcPSnB0ebP3dUA3D3P6NeWlhbkOFunPvoAFn+A5ORkysvLqa2uZtvuXbz+uhEE2JpVSETIRfv378ftdiNJEqZWoUhRiM/PQusXba5NFCo9unXjw48/5cl/3A9A6sh5nba3KzqbbLQSmSvf43J2iGWJJDsrq1MfT6vVSqMeLWQUDx7E5i1bwt9XL1vapdtCbm4udQ2NjH53MZurOndjA0gOTeDTQlrrpqYmdF3Hr2nEd7LSNkBySgqapnF4v+EqoqkKNrMJWyhVpaRpBA4Yrl8mk4mk+ASam5vDAbymTiU6gxH9e6MqQb5++eHwtnhb530tBLyxo80vXmhqlytKJqRnhT+73W40TUMXOpYuBLnWfv140xpjUipA8/jD2aIicVji2L9/P4FAgO0b17NhoZEK2NyFQJ6TV0hlu1VAU5KTOy3buvaE0+Wmoaocze/FZOvaR79H775UhaybQlOwpRUQP2x+p8d07zeQHWuMNQ+8vgCJCfFHvDZpSYms3rGfFqeL5FDcSzTGc+dwOKhxtt3Tre/sjGHHdjiioFt3xo0by46Nbdl6/nrXvV22ISU9A0+54dqlBoNYu7g3ACwJyYDEpvXr0EJtKBo6osvy/qBCyWHD3cPp9VFQkM/D/3mp07IZhT2pKu+4eF+MTtA1uqeX8NkLi1n94uM8fuF1/HPubB6Y2I9/jY/nmh69mWmfwRD/VWQ1/Rt7w8dI7gOAoN6Tzcaq6Swu/SPvVr7I264NfGBz803GLg4XvkWg71+g4EQjneXPlBGne/funHPOOfznP/9h06ZNPP7442RmRq/yvWXLFjZt2tRFDTEiia1OAV0O7M/d8ycmnnklb7/9Nk/daeQpvuKWOzot233IKLZ99RFfffUlc08x0rIZbgAdX5rpKQ4O7KsIr7oS8PuPKOjHpxh+mpqrFi3kS9leU9tKXdkhtq9Yym23GLn7NVXpUqOfFBqoldqdYMs0NPrtHmzZmhD2GzcnpBLwNwOGL+dxJ57C1OkdFyFqP7EQQtBUX0tGVlaHsgCSbMJsj2fL0g8oPPVmPnr23zRWdv3Cb71eb993I9dddiGBgD8qYDYSe6IhEK5+4zEumvIkVWWlrPnsA/oPH9OhbLwjBZfTSd+0OD58dx/JSXFoqkpPiwodPUHo07eIN940UtMFAkaBrtqRk9gmFLhXP2p8MHU+ObHFJ+L3GtfZ647IxNKJJhggzm5D13XKyspIiU9ECwQ65EgHkHWdvnn57Nu3j4Yu1iKI5PTTT+ett94ivyAfl+Yjfft+gp0Ecto0hWOkRtTuRlaTl59+HIC0MWegBju3/FgHnIwoXxm9zWqDLhbG/Otd93DhBYbV5eH77uSoSZ3n0AfDaqH6Omr0jT6Jbs/QQf2prqnhwKFStPRklGCQJR8vYvzJHU3SOTmdT1Q7EHqu00P3ns/j4eOPjTS+8V1MSP2hyeS3a76hZ1EfAoEgCdaEsLLb4vSg+wKk7jhAuU/F6XHz5ptvMmvWLOMnu3iHASQlxDF5zqlUR8TuyLLcqU3wtrmTufODtsW7jqTRjwyMXblsOZOPNnKkm+TOBf2jB42g2eOmrLGWqqYG5KCKf1fnGtyUUDzP4sWL2bChLR+7yWKFTtyysvLy+fqThVHbHMnJ+Ds5yeTkZGxWC299+Cl/vuVO4/3ThY8+QE5ePu6qgwghEJqCZO5aEO47dCRff7wQr8+Pxx/oEBDcntpmJw+8+Snz5/2OnG49OylhXFeHw0F1eUl46+EPjWBoSxeuLiOHD2f/DiMVc7cePRkytLjLNqiKgqdyH4GWehSC2KydKzZasWb1pezwYTwuF0VTTgwrdjqtW9f55IvlTB2Qhdvr45wzz6DfwMF4gh0DlZMyckhMcoSVJ795dM3wiXftA9c+5Ja9jPWvxvzZTeA5CLqCBIy3wPhjog9VNBuVrt4crO/D7vK+bCnpy56qvmwvH0yds/NxOJK0NMjN7fovL8/4v4tQqf+ampoaFi1axAcffMDSpUujsvKkpaUxZ84cfve73zFnzpyfpgG/Mn7zgv6HLzyKOdWEnJgCgBRo05qMyk3mlBOOpa60zb/23EuuoMankpVgZYvVRW6ijVqHjX5nns++FZ+wtqyF4soaxgw0VpVLsclYTRLCloCwJ6HJJlILetG4fhdnX2sE/Lk8PiSLjUDOQNwehXpvMJzKLiUzgewUY7BoWvZPpDgjC0ejJ8jTX+6n4kAj2d1SGJSTxI5qF2kDx1G+dwc2s8SovET29khmtc1GfpKdbslx2M0yNrNE3+xE4i0mLPZ44vRa3GQak4eQoK+GJhS6GiQtPR9HWhz7q4x0gne+uIG60gYSi4I8seowQU2nIDWOJVur6JGdhC+o8s6KLZw6aRiyp5HCBBOaqrK9WSOxzsfOOqPuBneQhhY/rkYfBcdfSXDHp9RWu9m3ydBEZWTEkxJvpSA1jiS7heEFyaTYLQhTHGcOK6K5sB+bSipoamzEmtsbEZeM3xSHqmhIagCHxcLsE0/mjXtvZssnb2I1P8X5c4w3Ys2B3WQlWEmwmmj0qcRZTPTvZrhJKMOOZ1bV8zg3udGFwL3xIHsr/MRlJ6D7FAL+IM376xg6K5XKwyWk7/sKrcLQgqo71hLU+2FNzkJYbGAz+jO5MIunTp/O5SF/dIDErO6oQR++phrMVhsJDuPP5XDQ2NgMgDsi5WKFy88QNQ5TUjbVDUH21rsZnpNDcraRh/q9995jyC0DCShtGn2/pqOpOlYZkpAYVzyCnYcPsWh3m9Z2yuRIoblNYOzVy1gVuLKykqFnnclFh3dx26cLozTvx5ubGdAtCWv2ELR2wsSA4lyqKpzUlPhQ/R5ks4WgqxFJNqELCdVVh7Oy7dl6eEMTj/3uBDZVe+iVmoUuoFvROOpIIiktA09zAyaz0b5VK75mS42XCqcfTUC8xUilWetRCCRl0+T2cvOxA7llweq2M5MkFH8Q3axidjiQ4x04rEZ9/Y86jhdfM1KV9i3qS0tApSVgPOeSMFLVWiwWvJUHiM+LdpeoXLmNrFEB4jJTsRT0RlUFWCE5PonclHQOl5VxOJTBq+TjnfQcPxx3WQ3O0gZkq4nmGh9pvX0ce+yx7N5quAr6AwEaN1ZhHqhDHHhCK6HWhDIH5adlUtFYF86n76uoxLT/G9Sqg1j7DDXWz5Db0oteddI0rr77YSxWq5F1Z+B41EM7EAdLMadlQkIqttQkpoQsNalfPcU9sy7lnA/jqW4y7uEsh40BGfGk22XMphSSbWZ8b22iacG9VGzbyIMPGilju3LdsZotnDZuGv/45C02Hd5HQVpmp+UAUkOBrlVVVfTMy+ZgZQ0DBw+lKCeJ6mY/vTMT6JkSx7je6XRLiaO8KYfq8lIkpW0CK5ksNLgUMhPM+BUdAZgkCRUTGWlpbNhoaAOFriHbEqlu8JIcb6XJpxFnkXHYjNS7gycaWXB0vwddU3A1evC31OFs9BJnNZGWaMUkScSZJVLye3Jw+yYco04gb+h4+supmPoU403rhVkCk7uOoCYIqAI1oxd3nTiR+xavo6WhlgxHAnFmGVPAjd5ch6+hBTXoAOw4HA52en3E7VnO1BOP4t2PDMVTXKKVOLuZwfnJ9E61k2w3owlBv6EjWfX8s8RZZJRggOwEM7mJFsxVOwnu34pktWMGMnv14sbr/8gbT/yDss//w7r1S5h07PFUuBXyEzON4G0h0+RTqHMG8LqDqLrMsk07kISg0QPvbanEapZJsplpCaiYJAmbOYW87P7cdtN1rNi8m/jcNFqWb6Sv3YJZljjQ5MVuTkQTAoss0SMjAYtJoqBPf3auX9PlffGrI0qY3x8W6nHvB3eJkfkmhAnIAcIx9LINknpDYh9I6hv6Mz5b4gvoLsl0B6YCmmYE7VZVffdfMAiNjcbfjh1Hbn5S0pEnBBkZ4HZbutJLRrFnzx4++OADPvjgA9asWRPltdCrVy/mzp3L3LlzOeqoozpVZMXomt98bw0f1B/q9nW5f9/hMt79tC1Dg3GDRUe9WEOL/sQnJtFUV82hEkOI8nq9nbrupKWm0tjYSJ3LT0FqPIGAv0u3BS00wI88/Uo2vPU4wmf4UlrsnZuacwePZev7z9E3y8HLr7/Jto3rqS7Z02lZv6oz9MTzKd23N5S+Q4cutHEAaeMvoHHNCwScjeiqckQ/+tx8Y8WOyqoqFMlwBYpcTKg99oxuVFeVkRX4HhFFQmdEfibvt7RwxdFGfnGbufN2xyUkMnHm71j5yUJkJAaPHs/qJR9zxuV/6FDWardjtdn4atkyugFK6EXTlJXFgWnF0YUzIWPTDrxeLy1uD0pQYXK/7hTlZXSot5WTRw2IEvQBdKWjdjI+yYE/pMmPXHjqSBw/cQyHG1zINgua0CN89KPLSWYzVquVPYcOtZ13RByJFuG73Rqge9999/PGLYY23R/KwR6uL6Jus9nMX/92O3fdcTsjz/gDQbWj1i5MawyI6kOKz0RKzA5rpROtHa9lRmYWajBAoMWIt5gw83ddVp2emYWqqtTX1UdlsgHYZEphLNFuNyfPnsnnX3wZjpO56/4HWVMVHScQeY5dIVntqJqOOyK71LBuvamKyNiycd4save5mRW6Lov6jkLtb5xv//79Wbp0KYqiEAgEqJ4+lZRUw8VMa3chc1PSqWisY/t2Y2LgM3X9LAIMHzKIusMH6NOvP3/7y63ROyN8tgflGcL3weoGrICuqkjfMahmZmby0YG29Kcmizk6zVAEkVYpl+/IVqUBffqya/8+hgwZApU1JHXhigOQlplNXX0DiqKQnJjAcWOGAB3CSMJUVNfw/DuLwt/N9oQuhZH4xCTMFis+ZwNCDSKF+lqWO1aektmm3daV4BHfeQDd01PYXlLG9pIy5p99Xof9IvSEJScnc6Cqnn+8tABvzvFHrBNg2PDhbF63Fp/Xh7+dxVhoWofnNr/vIA6tN95NFst3CGZWB0tee4aR0+cgW6PHIVO7Du9ekMdrH34O9MblD5CUmHjEuifNmffrF/TL3oMDz4N7XwdhvgMRwryW0Jtth/wMHjcXc+oAI/PN93StMZkgJ8f4Gz6863JCGAL+95kQeDzgchl/oSVFOsECzOTiiwU5OW0TgAsvhJAxkieeeIJHH32U3bt3Rx05atSosHA/ePDgI1otYxyZ37ygb/mOQWzerOPYurNzQbk9W1YvY9OKLzA1taVR7Mx1Jzszg5qaWoYA988eRM8+RfTs1TGoKpJhJ13EhgX/AS1I/nFXMP7EudR2ssZEUlZ++PNHH37A228eOV2ZI6cA35ovEclZ6PW7kLOHdlk2acB0Gte8gOZ3ItQjB8xKkkROdjaNTU0oiUYMhPkIPti2tFz87hZ2P3vVEdvbSnq8nZWffBH+bu8ka0wr3YoGwCeGC1FOQSEzz7yQnIKOaekkSSIYCHDOOefw4fBRBEMLiO3qO5DOWl7X1ExcXBxV9U24/EHG9+mYbaQ9E6Yew7ZqgSW9b5dl4pKSaYnQ5H8fpo8bwSPvfAoQFYyre6NvEi0pPmrdBiBKcPfldzTrLnjnbR77/SkkCYFfUaImpe1fvX36GueVUtDriO1tFZbUPR8g2ZKR4tKPWD4xFFOx/92HAbjwtoe6LBsfErQnX3k7ByuNmJlbbjE0oCbRUQK9+rKLeO+jTxBC0KtP39AEp3NBH0IpVkOa9AfGDYva5/RFrH8QVLB34gZR7lHR7cYcTI3QfqenG33w5RLDVB3OhKSo4I2e8E0dUEypsyFs0g504V7TSreCPJAk9u7agbtdWtPoczMEh3dWbuKseUaMj2w6sn0+KzOLYETKj8Tivvi2H0QEjzxpV9oForenuFc/du3fF463aG5q7LJsclpoVer9B7BYzPzx9FlHrLs9kiwjOsl7D8Z7wWKPo+HADiOT1hH6OjXCjUUJ+DskY2hPt/S2yUtnMQWtMnHrvfHxirXIxxxBUgvRu28RAHt27QjFgB25HY6Mtufe8h2uO5LNsLZsWLKI3KnnH7Fst4I8yssMlzG3L0BSUufxcK2MOWYmT//t+iOW+cWz9TZoaUvy0VEzH6Ghj8sPK990ReFwxScMyj7aSKL/EyBJkJ5u/A0efOSyLtf3mRAImpok/H6JQ4egVb90+LAh6Ou6zs033xx+xqdNm8a8efM48cQTKSj47vE0xvfjNx+M+12C/pUXnPW965p3ufGCeuf1V8LbOtPU5+flUl1Tgx4aHA/u34vtCD76YUIrOSb1Ho09Oa3TIgnpOWSHfD1NJhOzfncahQOLu6wyrVsR7rLdaCVLuizTimSygCUBPWCYsE3f8bJJcjhwudwEQ1k9jjQxMNsTsSc68NeWdFkmEns7Df6RBP0ZpxuaspamJpzNTSSlfHfWgO1uV1ijbzpCcGFOdhbV9Y04fQGSvmMwBXjk5QVkTbuS+J7juiwTn+hg3aLXu9zfGYN65tPc0EhtbS2HDx8OC++tmVpakT2+DhmeOrtHc3U/Nq+P7iHLzIHyKjYeKEcISHL7MAWCJPs9ZErR9eflGRNNqYt4gkgks90Q8IXW6aJMUWVD2pzGXWuwJyRi7iIzTiStQv7oESOw6GBSVfpqHYN0MzMNIXHF18ux24/sUw3R60bMKMyN2peSEJFa1CSHXVAAThk39Yj1tp5j+YGD+D0ecqoaSd5ZgmnnQWiXk12SJFItcTTWd8zv3lXd9lCe/exOFtaKZFp2Jgmhe1lVgshHeG7B0OjrEWpaSZaR7Ec+BkDVjjwRyLcY7a2sNBQnDkfXGv3WhatGTDyGQFA5YhYigOsu7ag9PxI+Vwurn77d+NJFbA0Q7mOAhpIdRtzJEUiM6KfkI1gsTCYTU4b0ZcXG7Wx957HvbK8sy/TtP5CmhgYCfj+2LrIVtZKe16b4sH9HXIHkaBPA5CMEMQN0L8inoaEeT0Ax3pGJRxb0fxOMfhzsoWdQtsDoJ2DWDpjyAYz4O/S9HHKOgYRuR7Sw/9wkJUFREUyZAvPnw3XXwYMPwiuvGCv0fvghXHihTlJSm8XQZDIyAz1vxMMjyzJPPvlkeIw1mUycc845MSH/R+Y3r9EvTerLoMxG9OY65OQmpAPrUVxNNO4+hGSSiWuujSqfaJNJDJjolWLjULOPjHgrVrOMSYJzL7+Gtx9/MLp8Sym2JBt4mpGsiQiLjcxCQ9s5qcBKqzh3sKQEZ1BD0QWKJkhPsJKVYKOqKJMhuQ58QQ1z/mjUinXUlVayMz2H5joPZWs/Ruiz8Co6u6uclJS20GfKidS88m8sVhsZJpmjphxNdqKVbslW7CEf56wEK8l2C/tDed0lzdchOC8xuwe2pDS6Dyti/KBs1u2t45DioXLxvxGqn293NSLX7UXXBSmZCdTsP0RVVi7WOAsLUuOR7QlUOgMMLpQwW6ys2NdAi1+lxauQHB8SRHWBs9GHECLsrtLKtAFZJFjNTOiWQqUzwKi8RBIlBbFtA70zo4V1m82K7KrBlt6LOLOEyV0HusqQ7AJK7WYSkxwoLTXoXie983LITbQhSZBgkXGHNI8WWeKVN9/hnPmncuu+PTx3zRmYHtvTpaAPkJOaxJuvvs2GnYfoXx9ktxeyR/QgN783siSjy2aEJQ5bShKu0hqGlH/Bgj8fw4KtVVS1+Dlc72Hv+oM40uMp7mVo7ZTGzgf8Jp+CooOQzTT6Aqw/2MixvTPwKjIF0+bh9t7Gf55+BujoYhKWwySJk08+mfvvvz+8r7MMPRfMHk/5W++wZuhgDldUssnUjatuvBaAa+cMxa54kZNSsfQbhbDGo8enctAjkPONRZ3+dvYM0jKy2VDp5O4XfDQeDCJ0jYCrkfh0Y/IQ3/84vKUbEbqKQOLdfz/DoPwb2V3lZEpRJh5FY1ZRJvsa3LiCGrb4RAJeN36Pm3+9u42B/TPRdEFA1Rmcn8zIwhSq3QHiLSa6Fw3g8F5jEbsBzfXMWLOSnscPIWvO7xABP1rf8bhlOyZZoneaIUSXHTxAXFwcyTYTLX6VGqcfS04SwpSAO6gTZ5awSjIWiwVfKPi6YPJg6rcewJ6ejK3fcLTCYcQpX+KzGAJeemJbdidrhCa4cX85NdvroZ0BrVdeASWVhgbUIyQqvdETKSVC6RxvteENLejn9amUv/kGgSYX3Wb6kewJSFY7clKK4W5StgOvsxmAocXDEVbDEiBbzMiOdPS4ZGx9hsL+rRQmJ7Dxyw1c+MpfKUpQGDCmFymTi5jaM53chm0opXvpNWgSjsIs4i0mPBs7ZkCKN8m0TqmybSYaFS3c9gumzOSF5Z+gHGGVbwilms3IoK6+noeuPJurZk8iMCKPOq9KgkUmQ2lgVv8s4swy7mBbXYFAAPfGDSTNrCHRkoHJWUWcoxcmScIccGIyWbn/tlv41zNt2V+Gdk9le1kzvTITyE4wkxZnxtQjlYAqOrijpORkUbcb8nqncfLgHNLsZjIlDyZnDVN6RGejuvel1UybMYvSkmZG5yWRaUvEhozZJNAtcSREZKxJD9YSp7gwtVQR2L+VmvX7CfQcBEnGvfT74yayfNs+mg61uTicP6kncRYTgzITyWvaSWZmHzSLHZMWIDUlGbOnHk3TSPRWYy1pxLn8Mw4v3URyzywyhtaQUXQUCRYrQwcUEVo1hcSEeCQJzOjIARfCEhdOTawEVCRJZtStb7P+3tNw1jawY38DSkAlLtFGrStAWoKVvunGBCC7l2HxKk/KwOX2kpCagSYEh5u8FKXHYzfLFCTbSY2zkGA14Xb9BtwzsibDCVtgzdlQvRTWXgQ1ywyB3/LLngi1LuL11FOwZAkYkQUmCgoEl1wicdFFkJ8ffczZZ59NRkYG8+bNY+nSpUyZMoVPPvnk+yc/iPGdxDT6VgtSxKxZsscjghHuDrIJaztBzyLLSJKEHlq0xSRJyLKER5fof8YtUWWtEUKUsMaBrmOxWEhLS2P/gTbt9e7tbSn+dGEI+wBBVSeg6ZhkCXNuMVgS0JQgwYCGv6VNm+dV2ga6USddwJzzLsflduF2OYkPZf8IagJdQKjZKJpOvM1Mzshj0AMdNZ2RRPpbC08tBJyGhj+EySxjssZhTzA0VGZZIiExiUvOPZPJ40YjmUxYzTKaLsKL3QDousDciU/2VXe2rYQaDC2AFT5M18iMszF31IBwGXsoTkKPcCYRJiu+ULuzc3OpqaqkuamJpIg0dj5Vx2aSsYVcFloXpwE4XNuIvYt0iK3kZKTz/KotVAYCkOxA1aOnSyJCUy2H6vJH9KUaum4mc+Sj2LkTqxahNQ1oOol2S1iT2r0gH00XKCEtaVeTE4GxuNVtt93GlClTgM4FfQBbSiIvP/4vCnv2Juhsy4QRZ7Maz4gajMp5r2qQkWhHLd1KZlY2mhAEVC38nADIZiuK34NstiLZHAjFZwSkRfRTWoIh2JgifKBNEkw+55rw91btt8vfphVuFfYUTeeqO9ruHzkQce8qClKCA0mLiI0wmZkzdTwffPABG9atRQq5lFgjrolFDrVHlqOsgGqEa5RktRuuHW1bkCSJWcXjjToirBA6Eq7Mjla5ob2Kwp9tR8juAhAXYcUyJdipMsejIUHkcbqOUBTkhLYJR0p6hhGP09onqgImC3ooU5FbUXmntIJ1FbUE/MGwf7fFFC2EtV7WrPSuNdEAQV1E+WVnJCUTb7XRLf3IlgWAunojnqLG6TWCiyMqEmYrQhj3BsBz/zTS8wZVDVvk/a9pxEU+X7IJWYLKbz6J+i0p4n6TJGNy3Pp8/ePV99r2hd57JvP/Y++84+Q46/v/nrKzffd6r+pdcpN7rxhjAzbFSWwDoYWSXwI/JyaQ/CBACAmBQGJKgOAYAtgUY2Pc5IK7LdmSLVvFKqerul72buvU3x+zd7e7t3e7d7rTnaR9v17S7c7OPM8zM8/MfOf7fJ/P106MmHrNa6bFZd9+BkeFneROFAU0Mz0kSJEEJEFA0O2RzrUrbMfP2vUb09sjiRMvjACrmmr58gfeOfHd7S/CKU99hJuWhSXKBAJBHn/yj/a6jsnjYRkWZkYelNWbJsOBxj36ohZL6yeGaU1IhSr+ZKidFpu4h4F9jcQ0Y+L5JQgClVVV7D7SRTihEvD70UwLSRTIjJRS9fRnw0mNuxIueQQ2fcWOs2/9KTx6Jgy/nnvbJUh7O/zDP0BjI9x4o23kCwJcc43J3/3dyxw4oPMP/zDVyB/nmmuu4Y9//CPl5eXs2rWLc889lwPTB/4XmCWnvKE/k7d2nFyxpGnlZci0TafvPjQ0xL99/D15lwt2qINj/XunSGBmIkoSlXWNhEZGCEciuDwzx9g6i3LLbU20wZEamjDz8Pj4C4amaWjx6WOex0nVyK5rXpFzfX/KsPd0xuo4VdU1PPSHB9m5/aUZ9dpT+eMbh3A6Zjb0XSlhMDsryzhcl1868JkwMwyDwKoL+doDL824TaYH351l+N1wyFge+/yJokhxsT0qMtOx83jcNC1fydDQ5EvlfE2KEl0+0GNgGXkNUZ/xjvzD6FZu3DLxOdMjm40/PPNyznXGceToExNWbbLaomQ4R6pH/+nyFey9cmoeBVdKiIUjR9y9R0kJxxAEHlOqeD1YPe364+GBuc7f2xvtEZfr/v2XxOJxnDnCmcrLJiegb15lz9Gw/B5EvwdkCUtxkJm56WOX38CNWy+esdxU1OI6RnNM1D/3zC0Tn5VpJuenUlk287yQVKqSSREFUUpzDE2HI6mEJflz31vfePy3JJ6ZOpfKBGIpIZ27IyLlyZwv6y56G//nv/8wY7l73nyDe+6185xMJ/s7TmVtSuhOHuFrgiBQvOV6XI1n5Vy3t6eHT/zLfzEYjuWM0T+lECXY8Hm4/I92LP7oW/Do2dDzRK4tlwwtLXDTTdDcDF/+sh2XX1EBf/d39m8PPGCwdWsP+YjknHnmmbz44ossX76c1tZWzjvvPL7xjW8UsuDOA6e8oZ+P0fKLD7+Tf3jvFbTty/22LbvSjep8XiQA/vWH0yfkmgveQJAntz1GV1cX7hyGvqt4epm7KYgpiis5DH3vLOMxqzecPfF5uiywqaR6CXOdx8rqGu5OJspZtW7jjOuO88yewwS9blzm9AZGMDAZttDU1MSheTD0r7nx5rTvouJKm+SXDzU1trEmJmPGLVlieGX6BOTxl4PxlwIp+UIb9KbH8+58+Xm+8vm/mVX9+SA6vKBFQYvmjNGfLYIg0LjSDiO6PkdMOkBZ0dQEatPx2E++xXWXnse66uwKS1ayLwrJl3wpOV/BkWIgDivZY5vLg5Mhabn6tDflpWDc0x2ZQX0nHwMOYF3xpIfeNvRnjjOvSDH0q0qSxnNFMe7V9Xi3rEBb24RjTfp1IUvSxHGZicvOsOeyBINBxtSZHS4lRZPtzhyFPVb8yfOSmcl6WpLOGEdg+hevXBgZx8chQLHf7jenv/39+IqnV/jKxJnjfur1Td7H8povBlRc9CFkb+6XpWBKFvK66Vy6pzIVF8KljwACmAnoeybnJotNNAr/7//Z2Xh/8xswTbjsMrj3XujogK9+FZqaZl/u8uXLeeGFFzjrrLMYHBzk9ttvp66ujptvvpmnnnpq2kShBWbmlDf08+GytU387bsvo6oyt3dGduVn3JaUTA7b3/N6Fxdfde0Ma8+dN/fsxe2duU3ukvwfRsWX/y1CiR1eIOaYEFleVZN3uQAXfPKrrPnTzwO5lR8A4pptgD/XkvuNP5KSKbWheWZFmFRK/F4ui6Rn3PSEwyghW7mkvHTyPJaXl0+v5zcLAkXFVKS8MAhCfkbLka/YmYjPO2vrhJE4bmxaWUaWEslJ0hUVFdQN9nHuwT2UhUPccM76tPW2bD1v4vMrh7tmsSczIzhT+mWeMnFb//ERzv3KI3mt+937n0Lt2ENxjsmkAL//rp05dPnK6dWQxlm/chm/++4/8/Qdt2b9fSLcIvlQEpP75nQ4ULvtkZHxx5U7EkEJTfZNj0Ph1guv5qI16Wo+2UjVq89UUspGQ2NTznUA3LLEp2sbOWdZLfFEIucLgs9nOxLWB/38eX0dWvcghNJDAcU8JudmY3VxFXW1tUiSNE1A2yRFKS/djhmy0c4FzyydFnJxE2LVaTmdITMz9V4iJJf58nDO3PahD09uN4v7Ur7OqXzZuW8yBGOmxJCnLEYCtn8UsCCwBtZ8ZrFbNC2WBffdZxv4//iPkEjA5ZfDG2/AE0/Ae94DeQ6YT0tFRQXPPPMMP/zhDznrrLNQVZVf/vKXXHbZZaxevbrg5Z8DBUN/npGm0bfP5LV902v3zwebz7tk4nOu0B13aYq3OMfTVBClCXm1XA+xQFF2ZaDpkBwKzqDtpcrHoz+uWJHPQ+zgW/bEzPo8jJ3tL7/Mff/ytwB0D4UoNRLIo1MzrQJUpaTlzjckKB+UFG+tkchedyZuh8wPSlaxfkcPns7enOtv2rSJD3zgAxT98H5Obz9ISXSM81v20FiRPtH5Gz+eVADy5nhpnA1iShgYWWQvs24jyYg5YtfHEQQhbwPnjPWriERjPP3ysadUL42mTyov8we59cKr00NxUtqV2cLKYAlnr1iXs56KQBF+t4cPfvCD3HabrSIz0+X745/9kqeee2GGNSapd7l4qaWL197YQyyH3v34Mb60spy6gT6G/+sBlP9+MK96cuFzufnQLUmFnBz3plQDVcnT0O/Y+TQPvrI/53qzDVcTZAWpasustskk2+5efeZ6fvijH1Na15Rz+7/87O2zqu9bj76ae6U5kKnyVSAFy4IdfwEDL4KjCC56AJSZ57wsFm+9BddcA+9+ty2PWV8Pv/61HY+fS4pztrhcLj784Q+zfft2du7cycc//nH8fj8HDx7k9ttvp7a2lve///0FL3+enPKqO8+3j7AyUITasgelqJzI6y8wuOcI7c8cQY+pOIu76HjmEK0Hh3jXtzWa3vnXKKJCUB2iyu8k4LIfLgndRBIMkNMNIe3IHsSN5aCrWA43ghVBMHWcKfHoLx0ZwrG8lPqggs8hsazYQ2ORi3KPTNApU+Fz4JREAjXLGT16GEGUGOnuZ/DQTgBiw304JAFJFAiPxNnfPcqyimoUpws1Ecfn9+GUJMpkDWm0H8NXbiuTFLlpHYmhBCaHX/21KxHK6vGU1lLWWIfL4+CGcxu4qLmELfVB7g+6eGHwAEPdryI5XYwN9KFGQzjdazF1FdO0sEyLzuEoNXXpcfaD4QQxVee0xmKK3A4ayzx0h2L0d44SGx5A1etQknKE5QEPjhIvFV6FjQEdq0hB7noVvaed9l/fz6GHD3JVJM6HHvwNDQEnQttB9N525HPK8bsC0HoEQdeoWnkpXofIMy/toOvwAbasaiImK4zEDQzLwjBhNKFjJCdARzWTTevXUiddDXydo4Mhaq6+BOnJwxNp0kzDQktOGttYXUS11013JDaRDKjj2YOUbt6NAohOP4avHFGRkRwy+tEjnKm4OO3CC9BEhf6ozl/7nXgUic31QaKaQW3Aidc7+XCM9rYwEE4wGFbpa9JRAm56wyP0jcYZSxgYJhzQTTbceAvvdimcsW03O8o8RGHCigx4HGSqkDscDpqamjj3kkHWf/o2RJcXTIOW4k0UV0tUlVRxgFIe3j+ZF+KW77/Ez//ivdT6HVgCHB7VGIxphEZ1/niokxKfQu3py3EkDJbr3QRX1PKjaj9dOw20RAxTV+3MuLqKrKR4ip0BLNPgwZc78PgUijwODvaOUet38VZ/mO6ROG92jHD0UC9aJMTAgR30HDgdLR7GU1rL4YoSmlaU4HfJ+FwOSr0KUdWg7Iw6zv6XT4MoIqw4iwNWKZIIb3aG2d/XyfIyL8uLPWyu30xMN7EsC1GLE1F1+kYT+FwyEauIobiOx2GheEqgxMRy+Sk6fxQxWErwwC6UVafRV76R1pEEzoDHzqmXPPaCIFA5Loeb8UwyDSt9AnfKx1JFYkA1MKZ5jvlcHj5x3XtxN06O/gx1h+l9djsOjwtXaQB3dSXoGpYaZ8tpyxCKAuiSgKCrYBrIbieivwjDV46jeQOCw0Hx8iO4Xm2dKFPe9r98+uozYKyb3Z//Cj2v9XHm/3md6utupqx+NfqD/0nkl//E6z94hIaL13CbIuFfVsq92Zs9Z378N3fzgccep3RDM+7yYvoPdLDhz/4cs7ufurp1xB791cS6L/3gRS4v/0/qb/wwQ/f9D6XX34zpKUYY7gJ/KYwNYmoq5cM9nHHGGcSVEBUBJzeur6K65xXUlj2sqF2O4HBgldSxIiX861M3buA7usl33reF5jd+A7LCyCvbGevoZd1f38EPbt7C//U4eOjO/2LgwA52dV/CUETl4sYgUqgbn5bAdAcRYyEMUcJ0+rAMA9PpQ1X8uJQQRiJBbCh9lCY+PIZxNMGfLV9Jx5Y6Krwy/p437P0KHeb1O77Minefh3OlHZpYWVE/se3ww79ieH8bT/7vbnaOxFnuVbisZZAtZ16Cp2oVlT4PJKVi/U6ZRr8Dce+zCE4XgifI8pJmQgkNxW2bDJHROIOtB4gOHsVbVoWWUPEGPBwQoSjoIpTQEccE3LKYJiIg6HGKnQG8ikyZR6bELWFatlCEKMCYOH/OkhOCt74DLT+xRzQvuAcCuUcUjzdjY/CVr8C3vmWr6igK/M3fwB13gHdmH+K8cNppp/G9732Pf/3Xf+WXv/wl//Vf/8WOHTu45557uOeee1i5ciUf+chHuO2226ioyH++4alEwaOfhRgSz113Nb+s3Uy/mDuEREzx9kjJGP3P/8ddPPjjfz/mtiSyJHHRMjyG2QjHddSErQhSXJp9mHf8BuwMlLDxr2yvrZlD8g7sJDqQ4ZHNQBIF1px5Ht/7+W8nlslZMklmYlr2i9NMus89opuXb30nB//i/axdY8uDWinZPbO2R5LYtGH9jOsAyEkJj/LSFK+2KGUZRLcZihv899vOo7m5eWLZy2eexcsDU7MdilkUfKZLHpsaLqGHcofLTD22E3qaaX/mgqqbfPA/f8f6T/xwYplo5e4nVh5x9/LGP0NacW1ajH5ZIPc1N1fy6IIT+SpmS0LPtMizVWZlWcOa9vecZFQRX1bLo85qBsg+2mY5snhX9al91Vo5Gd72rk2Txse+ynpevvWd/G/IS0df+qujlKqeNZ9OtuR9ynXb23i8bAXt2vShJf7MSad5jBQ58uoUU8lnkrfDPfcRsENN6SGGHa5j8/T2y24Gb7qc0o9cR/zPrubZtZt5fn9KRuPknJ18Ry/02FSltmzZgjNRTxVlnVx0b4NdyTCd074B1VctbnsysCz4xS9gzRpbH1/T4LrrYM8ee+Lt8TDyU/H5fNN6+f/mb/6Guro63v/+9/PMM0t/jsPxZtEN/b/8y7+kqakJQRAm0rkD9PX1cc0117By5Uo2bNjAc889N/FbNBrl5ptvZsWKFaxatYrf/va32YqeM52SGzOp2vCQa3aThwRB4G9//RLnXH4Nb7vk/BnX9QaLZ/z9WPn0l78JJOX0cuDw2W3JpeiTXAkA0Zl7ct95F1+Wu7wU5KRqkTKDof+6f9K7tv31PbMqP18EQaB95zMcfWu3vSBV1k8SJ2LenZJAU9A3EToBMBoI8EL/zAohuXAmJ8gGLvprqt/73VlvbyUtQEd5ENeqOoZqpp/Mm89jvaxhBa6y+twrzhJBciD6ck+WPZEYP56CY6pBamW82QmGielLMb7H51a4FcLrliFV5Qh/y2KU9UhuDpLfxNvpGNl6xsQ8olTD70Cl3QdGTInXDnVM36xjqj2DlDCcAaeXNxLTe33//T2zu98sVSwLOmqnJg2K5RfhNsHhP/wPvS/aYVSHXcWodRUoteWY1WWEvH6e2dM6D63NTXnx8QlHWYr2RFYsC176gP0i2nwrrP6rha9zlvzqV/AnfwJHj8Ly5bY+/u9/DytyC+ItOONe/qNHj07E8muaxj333MPFF19cMPYzWHRD/6abbuK5556jMWX4GeCOO+7gnHPO4eDBg/zkJz/hT//0T9GTmWS/8Y1v4HQ6OXToEI8++iif+MQnGB4ezlb8nLCO8THlCRTltd6nv3UX533ya8dU10xccM0N/N+//VxeE1vHkdxFea8rHtNEs+w4g+V87Mfb8AWmV0FJpHh/o/HEvLdhnOrKCkpL7BcgWUs33IWYXe+EAytDEvNYnVYut238Se6ivOT8Mulz2SFQkt+DFJjZ9SKZs7QeCsxI3Eq+CGdRq9GH0kfjvMMjCKl9ONmhPOubQRJx1JYjzJDLQUjxYHt6BxFj9iieeYz3MEuSGBrKDPZKxzxOsbFqR3rSwpmqvWZtMz+/+OzpVzjBme19paG6grKSIgCS3RJjLIrY0Zssb2qBlZXzn6ho173fY8f//bN5LzeTpWhPZEUQwNtkf5Y88yLiMN+89Zb99+qr4c03bW/+UiPVy//LX/5yYnmq2EmBJRCjf9FFF2Vdfu+993LkyBEAzjrrLCorK3nuuee45JJLuOeee7jrrrsAaG5u5qKLLuL+++/nAx/4QNayEonEhMIIwNjY2Ixtso7TNde0bjMtwsJlf3N5PNzx+S+wvWvm/R3nyn/+LXteHyQ6ML2nDsBR3DDj78dKoHzuknQLxapdu9l52YUASAltZmtjHrj54/+HMXcFrTPPg5wVvmiEuCijZxigjlnkiSiQm6BoMmhIWPm8QFkWgp5y/LN1q5lkKFP6oRxLICFguudH2eQzn/kM3d3d01c9L7XkQUb44kz1CoLAmqIAB8gd3nhCYVnHbAyOO7CMkTDKuLhAxsH83qPbueHs3BPBZ0tlaTFCcOE19BfTntA0DU2bGgY3HcKGLyP/8XKswz9EX/4JW3FnBsbLnk0dx8LIiAhIrF1rIEkmc6n2eLb5d7/7HQDveMc7WL169ZzqPN7HOBe58gPly6Ib+tkYHBzENE1brjBJU1MT7e12PGF7e3vaG3vqb9n42te+xpe+9KWFa/BJgqe0GkGY2YsHoJQ04tjywbzLlSQJI4/Y/6WMb3SMqgMt9KzKT5rzWI2gVes3cfaflNH6o/vntL1kmlN0uM96601ie3vouvA0OhrslzV5AUdETlWC4mxHSObJs5BSzLH2P9EwCAQCBAIBoCf7SrOtRJiHhk0UdPx59fc/Y9RdyVuLUrvNfBy+mWaElFfXzltCvKXC8bInHnvssVkrDG2VtlJtbGfg8Q+z3fV3eW2zbdu2WdUxV/bu3QQ009NzkIceOrZev9Bt7urq4t5kcrhLLrmEhx56KMcWM3O8jnEubrjhhnkpZ0ka+jB1QlCmhFLq77nklT73uc/xmc9MatN2dXWxbt067vjeLxiJaVAkYcUjWLExYn3DRAfCUDN5Uzh6eJiXhmJcOzyGMzqMJRQjmDqaodAzprL3qO098igS4ZE43aE44QodUx0CWcEI2F77flUi6CpG0WMEHCLn1hfxVs8Y/WNxwqqBJAi4FYG15R6qpDjS0BHOrl2FQwDD9BKssW9G8VA/kf7JG5HDG6Ta56Q66Ga3LGKYFoos0jUapz/qYSCqEddNNvolMHVMhwvDSlDmlin1KOi6iSAKeBSJ0vpqRIeCtziIJ+CkuMTN6nIfdQEnfqdMbcDFXYrEtuEeLj6rnp3Fbvo7Rykq9+J011Fc6SUR06kOugm4HASdEi+9vJ1f7GqnE3ti56YqOyyn1u8i4HLQdXSMaMhNud+FblqU+BSckkRUi+MQRcTWVzAGexh6fRexvhES8VIosr3S1lA3FUKY0ZefZWD3YVauOh3BW0pi73bUkTBF9esJuAIgiAjxOGJ0GFdARhJkNNNOWT8S11B1k1BUoy+i4wo48PjLsWQXYcFF0crTKFtTysGkgSEIk45UMx4l1BaCuqmTYfXuI8jl9Zg+WwlAHY2i+Efh0G6c3gBiaJBlFQ1cvaGKPV2j+BTZ7gOyiF+RqSt24y1vwFdWQl2RG7ciTUygLnI5WFXppzagIIsCvWENS3HjLi+maFlpVln6ytOaoMJFuL6MjqQtKkoiy284F33L2xlVDRRR4Im9/Swv8XB27UYef72Hp3YdRdcMDr/4Aqau8dAVKzi7roioZvBi2zB9owlimsHuAwMES9xsqgogiQIN7jiKW8DldWDq6kSyIUONTfTjTLSEzrJyH/XFbna2DdMeitHSH6FtIEJ4JE4i1E+k3x5xGledGu08wEiwHC1xHsWVPopL3BzuGSMR01lXE+C05adhOdwMOEp57sAAPqfMI3t6Odg+wrK6AKc1FlO9vpIjgzEShklJXQlD4SMc7B0jphkMLi+jN6zicUjopoVpBTGiFsvq1xP1VeLyFBMtamDbm30c6A1zeU0dHOnPyxyVFSm3o3amFVJ+CmkmmmyiANG+UQa6+giMRbEME0k5ShCw1DjKxgsgMow5Oog6GsEtO4gbFmJRLZJlEWh+DaFj8p56/zee4urBEKLiAM/ki26i6wjW0z/jpa/eh6EZbG8b5WpRID4cJ7gi2yjE/Fj6B/b38Mt/e5bDEY337m5luGWE6jOqefxX+3hzdPLF9a2/vZ8/O9LN43ft5NqRMCWbVhPt6sZTW406OIQgicQHQ5Qt38w5dStoCLpZNvQar/yfL9Gxuw9/0En3YIwNZ9dQuq6GoYf3s+amLZz9uf+gwnsmTX/8Dj/75M9Yu7GCl3b2cCCs8texf6TitFXce/NnOL/r/YiCwLUry4hoJr43Hyb06ksYcRX/iia0ZHiIMjaC3t+Fu2k9qtdCcbgRZTHtWFnJo9f1wl6Mjm4azr0RueM1Dn/727hKg/TubOVHDx/mHa/2UHfuy1iGia86SO9r3XgrPfzh4RZGrzkHz+YiAEY1k/GAPrHjTWqazifglAAXxWNtCMNHGXjiEQJrVoIoseLCtYwlDEoqffirlxMocePwBjF1DY/fSdgwEWURQRTwu2QM06J1JEZD0EnQKaL3ttP53FuUX/0KDTUrObe+hhqtF2mwB8sdwHQFwTSwtLlNhM/F8bAnrrrqquSL8SwYXYb12GlUG9t5+1kBrPKp2bLH0TSNbdu2ceWVV86bp3cm7rnHDhk9/fSVXHvt8jmVcbza/IEPfADTNLnuuuv49Kc/PedyjvcxPl4sSUO/tNSWe+zv7594C29ra6Mh6YVsaGigtbU17bdrr50+4ZTT6cTpnAxXGB21DfPGtZvIFhlhZnmwSmVBBnSRfC9jpyRCDid2XyT3Tc0wLRxSensSY8O4i2eewBiKariDM8d2G1kCPvUc2ScBBkZn5wVet24dDfEiOg8O5Fw3HM89iVUtmkyMc2QkjmmamFoek1/zUODIqqQxYTVbKf9nrpPxIEGY+jDJpu2dI+mYvUruGH2HJECO3ROwprQ9H+edkUX5ySWLRLUcfSXPJFiZlM+T6k626vNJpJSPopCYxYwfTdh9cKZDmvNwZ+t+5Gcep64T8vroj4bxZ2woevxMIYvqTiqxtU2MyS68GR2sV0/vl8oc1Wtmi2tFHdFVDYgJg0GPH4ERAIwiP66GySR9lkOiQ/KQqKukEydF0xlwGaFrquwgtLyOcKmfyECYIZ+bbPlf9ZhKoqacnooKtNUKroRBr+KlPKUah3OeHrHJ0J1Eag6JFKWxuEPBtb6ZoVI3PpebYMRWxBEVu79bxX7cG7OPRupZru980CKhKcvyGQ2wHG44Nq2CWXG87AmHwzF747B0Iyz/MBz6AfIbd8BVL+W8Kc+pnjkQSUZ3FRVJOPJ4Bs3EQrb5wIEDE/H5X/ziF+elnuN1jI8Xiz4Zdzre8573cOeddwKwY8cOenp6uOCCC6b8duTIEZ5++mmuv/76eat7NCPplemQKf3ku/llyEMkmjsDZYGFI9MEixsWb+4/kHXdBSPjPjydEdYxtnhxfsdkbBY4RmaQNM1YJsz3XI9k+SGvnyfKV9Jtze1hJabMLxi75lwe8Daw05E+wS1kSgzl8WKe2bbZks3DOvS283G88yKeW7GRcFEQA4HQn15N8U2XTPzjhgv5o7+eoZsu41GxnP2h/MIHX1uzjs6rz6PtzI0MXHMuL67fwlAWffceFfrfcwVvbNhI/B0XUnzTJTxVvoIObQEeq0nj75W67JInr6xaT/F7LqHlsrN5etlG4ikOBBMwbrkGYTyUz7TS5nY8f2D+sl0vVRbTnsjJxi+C7IXB7dDx6+NX7wyMjsJ49JI/i29gKfHVr34V0zS55pprOOOMMxa7OUuSRTf0P/nJT1JXV0dnZydXXHEFK5LaTV//+td54YUXWLlyJR/4wAf46U9/ipzU+b399tuJxWKsWLGCq6++mjvvvHNeZ1m7UjwlDWODGMrkTTMaj89bPQVmj56ly4Yj8zhjdQaE5LMxWlwEGdljsxHWTgQ1m4Km9Xwz7pBzVJZMEe4XPekTZbsb6tFTRqjcqxvwnrk677qUmnTpXDOSfn86as4tAZGspxvwpiAwliUvQlhd+D5uhmNo/SOoPUPog6MYoxHE8OQ1r7qcGIKIlVQgMsaiGFkyWYen5DnITjyLSllUyLLv07w3RIwFeJUetid8ZhttBoinZOW2BIFEqqEviuC290kfCWOMjIFhTkwWD8cXJlxmMViK9kRO3FWw+q/tzy3/c/zqzcLRo/C3f2tnvX3tNXtZTc2Mmyw6ryUbum3bNj70oQ/R0tKyuA1agix66M6dd9458TadSmVlJY899ljWbbxeL/fcc8+CtSmakgiqNB4mEktghmO4/C4CPi8FU39poA2EcJQFj5upKhpTvZdhHYqOU/3zRcGjv7CkJdAr8mEMTapeiZ45hCXNcMJEV7ohbybSR5EEYW5XRyzLpMKQYNelHh3EXerHyExOlcK8XpMWqG29aYsCTonwsloEr50vIFUpLf6WPYfD21CR/kKe7+hJnhfIdKUtyP2ofwRKZgocnb7Rqe1JHD46cRysniGEmtw5Vk4klqI9kRc118Cer8DwrkWpfu9e+MY34Gc/Y0JdZ80aO/vthRcuSpPy5uc//zm33347Dz/8MD/5yU+4++67ue222/jCF76QlsjyVGbRPfpLkaKUjH/NYwOIpsnAd37NB4oiOJVTLEX3EiPtITr+4D5Oln5Zx1SpwSpXMoY6i5TiYvrKC376xWNFxaRBlk/Mcs0DT1Mxklvt6nhS3TO1r5ebKS6OuVx6C9Qppy/WmuHbicl0OV5mloSeuQ+eDMflhKdoMyBA7CjEenOuPh9YFjz9tK2Pv349/OQntpF/wQXwwAN2BtzbbluSEv9prF+/noceeogXX3yRa665BsMw+O///m9WrVrFRz7yEVpbWxe7iYtOwdDPxfhdUNNRCkdrSZJLJWH+Kprht2wT2pbYE/RYE8EVyI/ZHmVlaBTXAqmNzJks15Qw5cMiM97E6SyROV9/U8vLVpQ1jXW9MJf97ErN71off1tbYjeqUxGHDwKr7M8L7NU3DPj1r+Gcc+CSS+APf7AvoXe/G158EZ59Ft7xjpnTdyxFzjnnHB5++GFeeOEFrr76anRd50c/+hErV67kox/9KG1tbYvdxEVj0UN3FpNQQiNqJVUJNA3B5cVdUYyzd1JVxl0RRBEFyp0yvnUbGXGW8eT+fi5bVspDe1vpH4uze3cvgmjLCLa98gKy4wIUSeT6LWXIJdV0Rg087kreODpGbcDFsiI3Dj3ByhI3dSVu9nePsqtjhK11AVySaEsoCjpEhvEERkGDgOLD7VcwqxrQ1RimpuIKlhEdPIrD5ZoIFzBNi0RCx+eSGYqoDMXscbiusTimUgGWyVDMYDim4XaI+BUJXTOIjCY4OhglPDLGcMvrRINlxCMrsEyLvohKKGEQ10wqvE7OaC5hr7+EjbUBnLLICyYEgk4SAScb6otoG4zQXO5lVamHaimK3NXCqtJmekbijMQ0VpW6iekmbllkWbGbN9ZW8LJhctHKMlZW+TirNkh9wEEooRB0SUReeYax9l4G93UyOmbAOcmEXcnnkzDWT/uTb/LWS13UX74Nx7L1HH3mNQbe6uf01euQgqWI/iKQHGgdB5GbN+AvWwUJA9WwCzFMi76xBL2RBKUeCbfTjyrI9I9p+INVlK5vZEDtnNKHBMmBIAmki+GNN88CSWFUNQj6i4BeZI8bRAkrEUNrP4AUi1BReimvaAYOUSDoc+KSBOK6ic8l4ysrobIhyOk1AVTdotQt49bGWFnqIeCUqSOENDpAccVq1CefoeOJV2h7ph3zfaumXN0jLd24YnHMKh2SIgqWCYIoopkWYdU+J+MqT5ph0TMSJzamIojChKzlnq5Rmos9dI3G2dk2zEhYxTQtwiNxHE6JjpA9YV2vbeBgz/j2EoIoTUhrAkQHj045nv5iNxc2liAKAq+2j9A/mmAwnCCSbIMoK6hZ1D7ioX7CAwN4A04M08VIf4TQYJTXmkcwNiwjjsyR/ig7WodZU+OncyhqS+H6FEq8UQZiOju6RpBEgdOrvCiyyEgojmFaRDSDoZjGQFQlrjt5ayBMqUehdnkV7SGVKn893SGNXW3DDIZVxLNqgIN2/5jaY6Ysqaj2Mhx0T1k+0zbZUDMmWQLE+kMM9nUSHYgRPNCB5JCpe9sIguxg+M0DxAdDBE4zkEQBQ/YhuPw4/B5kZWRK+ZIiTyg7aZaFCIwebOHFQ8MMqDoxw+K8UZVIb4T+/f1QnlnC/BmUYd3ExO7GuzpGObJjED61KW0d1YLU8dehN1s4/NZhgo1BWxIXiPRGWDY4St2f/CnltevY/ZdfZrRxI7I7/Xz85v69JN7qh3/cxrfO+jHXbX07/3n3i/D286e07Tc/24704Hv4/v/cz8GhCFW7foXg9vLUB/+ZXV1jNHsdNGwoJ9IbxRlQkN0yo51jbPjTLiqvfxda12H2/vSPcO7FE2XGDQs3EIvrvHD3Dm688j7CbYd56/63ECSB2M1vJzVR+dPPd+IZGOFwREVwKVRtGM8WPHkOdNM+PkZokCJtmKDThyU5MN96g8ThvXQ+u58mjwsjrlK8tZ9lxaUsr/LT1rSW1fVFHKlZgampNK8oobMjhMMpU13iprHUi0MSaR8ew2gI4tFGGTt0kG3PdFD12/vw1j7Lqj//R4ynn0AbG0FZth6xtBZBjSAlTuGXjuLTYfQtGN5ph/LMM9Eo3HUXfPObcPiwvczphA9+ED7zGVi5ct6rXBTOPfdcHnnkEV544QW++MUvsm3bNn74wx9y11138cEPfpDPf/7zE4pLpwon2Dvb/BLLYyLZXJ1Xflfud6jRPKQsLWlqqJA6ljs991A4t4cwWzp1PSVsaTr6xuaWZCmbnGcmsRzHJJsTzQL0fNQ/jNwqODPLa2b5SZhsQy7ELNKOgjN3FlO3klvabEq78+y4+QzLWlnOmyMfKcU5ymsGXMcm5TZRfZad8+RxLDPlbLMhZdn/sdko0KQgWDlO1zx60J1F2eQ152c0Ie2wHQ+vf+pLTT79eJrlRmbSuKwXxdRl087tTVnVM0dZwnzuJ6Y62d9mvI4X6Fxkk9fMdl1kogS8Odc5JSk+zf47NL8e/YEB+NKXoLERPvlJ28gvKYG//3tbWed73zt5jPxUzjvvPB577DGee+45rrjiCjRN47/+679YsWIFf/EXfzFjUrSTjVPao1/gxCNdEcN+HHYOhKgIBOm8YQ0PdOlcW79AIs0zDHEL1lSN+sgiqu6Y0lQDw5yj4V1gdszerlo4L+bBYCVr+qaOROUi5z4kr4WjloLx/isoarSTAj4fjbLuN9uyq8Ms0G46b7qU+NDotG0cZ095Pe2eYtbHByhiqpEK0FFSjlw89WWo5ObLUdvsDMGPtI1x5RaV6HVTvfkARddfwI7hYVZ1tUFgMt+JpjjQbriQNr+HmBGjrnf3tPvUXzSN6kvAy8FPvQ8tGSpoOGT2vufKKWpO/NnVxEbClBkmjqqUsrKcg/bIiaAOdgpQcrr9d3jnvBR3+LDtvf/JTyCWHEhtbra99x/8IHhPkfet888/n23btvHss8/ypS99iSeeeILvf//7/PjHP+bDH/4wn/vc56ivr1/sZi4ohSd/gROK4WDRxGfBYb+niqJAe1UNsfoq3hozOdI/Ns3Wx0Z+fr5J8vFuHU+ijsJE8uNCipEriALI0qTM5ly6RKrRLApTJDtTsfT0ETFNmqMvJ4tBmOawd9pxInssD1bSyAdbrWessoyw1zdju+YDK8WjbSUVaUx1ctTOypJEb8zr46XSpmnLPFA5/QNfaaxCaaxi90CCV97YP2PbhouLadmT7pkN1VRirm4kVlNOW30Dqmt6BabWmrqJz0Y4NmVfDg/bE6PHaspR/ZMWmzkulemQscqL0oz81BEAAJIjjK48RrAKHAfGPfrhFlBHjqmo+++HVavgu9+1jfwzzoB77oEDB+BTnzp1jPxULrzwQh5//HGefvppLr30UjRN43vf+x4rV67klVdeWezmLSgFQz8HhVvg0sTWyra1tEVBxEwxfsxFmFxmKVMTEy3m89M/ZId3JVJkCceTM53CUbDHhdTT7miswrtlBZ7TViKV+JGKfFM3sOysxdPhXtMAgi3V6TltJZ4tK5GCXgQl3YgXFMeUSeFiFjWo/Jh+Mq7kc2PNoL1uZcziM95qI7a3dY7tmIGM68tUdeL7Jofj9b4RYgc6iB/OPyGUlXypSrT3Ej/YSfSNFuKHuib+jaOl5BkYD21LtPViHO5CT2reZypxmRkvaNYML2zjIyLGWJT4wU4szSDeMjmnRU/WmXqsLd0gtr8dsXXq3BeA+P70yYhm2HbzFuz8JYKzBPzJGJrep46pqK4uGO9+v/417NgB730vyIUYDi666CKefPJJPvKRjwCQSCQYG1sY5+BSoWDoZ6E2EcYRT9BIvGDoLzHGzQ9L1VOG5i1Sn/oLZch6EnFcA+nzI2o908fg1vkWz4M+rrphqRpCbDwGOT81kQLHhpHFuBYEAcnrnvBCexJxxIRKmRpBSSSoNmKQxQM9sb0sIfncCIJgT0r2upCCGV7zORv1U4lnGf0JJ4ULzLiKFbX7lJepdXoHhpFM24Nv6QZEE2ne9/kiM1xFVOQpnm9zNIoxHEYOTc49WjM6vXzh+PVgRuIYoQhWQsMYCU/8y8xTYIxF7VEbQPK7YTQyYehPvbgyDP088ldrvcMTL29mLMvcqJQizFgCdAMxFAE1vZ2WYSzIOSgwz1S/zf579OFjKubP/xzWrrU/P/jg0pfIPN787Gc/44c//CEA//AP/8Cll166yC1aWAqGfhb8pso5jzzBVdLIYjelQCapN6zpPNQL5NEXLYtl925jS9fhiWVlrukvoXLP0nKfzKy1XeB4srK3kzU//h1XDrUgAA16BN+370H5l5/lX0g+53OO57wkMtXDVSKkGIrJcpcLMaSv/4yRL99F35d+wuXbHkeJxadk1l0qrD18gM2h7B5vIP9kWXncY6bO2pl/CpK5Jxk119p/jz50TM8xpxN+9CPbwL/rLti2bX6adzLwwAMP8IEPfACAT3/603zxi19c1PYcDwqG/jQUbp9LlfEzk3ITzLgfLuTjVeAE6RszNDL9+JwQe3NCMe3zOeMlNbMvzdy35nae5notzBRKNHXd7J+XIrkTBecnozUnGyzz4OR9jc6izAInNpUXg+SGWBeMvHFMRZ13Hnz60/bnj34UwrkF9U56nnrqKd773vdiGAa33nor//7v/55XUsMTnaXlcjzOdAxFMWQLa7ULqbwWI1iDe/1ZVDtkXKVBKt7xLrSOgzQd6sX9Rj/ixkt4uWuMHz5yAOPqVbz0Rg+97UP07XkePR5GUtwYaox9jz9EPHIl//fCywklTF7uGiXolHngzR5KvQq3nFFLpUfBIer0jMTpah2hq3WE1VV+HJKAT5FxNwQpL6pGk93IDjehEY3QQBTFKeMMlqGODaMnNckTY6P0RVT2dY8SCyeIjSkYpkVMNehOSmHu6RpleG0FTjnAvp4Ib3SFuKixiIGoRmgwynD7EURhGdHBLhJjQyTGhhjtPIAovp29RycVLfyKxEhURY2EEEUBtyIhiLa+c12Zh831QQzTotjtoMwtI3W+SnjH06x5x+3E9RJ6wgmqhDC6vwhZDWPJIm9fX0mpT+GK5iLGagPUmENIvfs5p/4MHGM97P7dy8SH44x1hwmv8kBz+oPWjEdRIxoks7kbIwP0vdHLK7v7aHr5ZdylQVwNTYjBUuKH9+Erq8JRsRpZEnDJAookIrkEitwOgi4ZRRQQo8PI/gpUw8JUvBStbEAdiyJIIqMN5ZCcWygFSwnUZU9NLwZLMV1+QgmD0soGPCNDKCs2YekaQqAMwTEZ1z8SVXHJIvVBOxzhrYEwLX0RtISOJAookoBLElENE8vtJq7H8Tgk5FAHiTeex7UhzoHfbeP1Bw7wVH+UspiOo9guW7csJOC55zqp6+0nrJfAZrvNCc1gz/88yelrzsRTuwYhluDSphqKXRK+kSOcUV/CzlWlqLpJV2UT4d5WqoMuVpZ6iOsmjaVe/C4Hqm5gWRZNlX4CLgcOUUDQE5iWhb/ETVHDWrR4GHVsGNnlJdzbmvWYBX0KtT4HIYdJddDFYFglphok4hqKU0ZS3Fjm1ImdgighOhRkh0R1kZuB7jHioyH6RuPELImhuM5LHSNsPzSAz1VFPKKhJnQs00I1TIZiGgd7w8RUg9F1lQQ9DiRZxO+SEQWBsGqQ0A08Dok3ukbZWBtAECCiGsScEnHdxKNIOGUR4gMz3ncAfDXFeNaUElxeS7h7FF9tGauLXCg+By9kWd8hkmHU5et6hoH9g7S1j+J+vRdJEDg9niDQXE3vK/bIVHV4BKcWwZIcCHocdSSMq3TqXAKHxwVhQBAmvNVOv4cGj4xhWVS5ZFa+83QG9xwhNj4ZV7A14OebgEOcRjcnO3ryhiE6RBKjCRKjCaIDMV7tDhPqewPFfw9lWzcTjesIipPpTe3k8rHBrL/GDQspuYpX0Flb5uXgV3+NpEjs7ItRlLLuC20hGAkzlJQU3v9vf+TyA5307x2g74wzUbLfVgA4+L9P0LP7MDuLSinO+C2kmbit/L14pq4jh45iyU5Mpw99uJ+RAx0MHRqi7sI40b4Ryka6CFaWU+F3UlrlZ31tgGdq6pEkkfNXlvFQWEUUBaqDbkp8CqZlEYpqSIKAGBlEj8bpiGkc+sMeAq+3s+WKmwm3tyI6ZBTZAVlUwk5JJBdUXgZH/2B79Ys35d5mBr76VXtibmurLaf5rW/NTzNPRLZv3871119PIpHgne98Jz/+8Y8RT7SsYHPk1NjLaVD1LDGtcsakyqxGRe6HrJxFrztTI348mVUqmXroummhZTxzsunoJzJULUaylJ2JaVlTNMMNNT5lPTVjgt9IFh19d0beANO0prwpa9l09DMkH7OtY2g5tPWxMPPQ6Eefekyy1bdQYjmCJGJltEFUcuvo56P9bukakiPlHGQT+BdsIyBtj7N4M8SMZYZpUZox3yDbMdIz81KIU9stZFmWiaJFcq6TDctI7ydiljhzOYuueWZ+ByXL7MTM68SRJSfCuI5+PmZtamlmHobwlFWy9tHcHdcfnKr0YmlTr4vESHRq6TmKDzqyPU4W0Fs2x6IdGfeqcLbnQA7yy8ZtIacdkvk9FsaM7Z7ly5WV+xhk9sFETENM38HsSmNi+vF2ZumDBVIYD9/pPrY4fQCfD37wA/vzt78NL710zEWekOzZs4e3ve1thMNhLrvsMn7xi18gn0Izk09pQ79AgZMfqzDj9rgzQ+zOMdl6M2+c7VdrjsPSQk5DNldbTtJOZ6X9OQ71Za+pMN/mJKYmOSG3//ljltkEuPpquPVWuyv9+Z9DYm75Lk9Yjhw5wlVXXcXQ0BBbt27ld7/7HS5XbgfbycSp80pT4IQmoSi8fOs7J74LKR7VnrBGrLl24rsF9JWXM/YnW3hO93DFSWpzZCNSV0Hp9etxVJdO/fF9VxDpGcSsmvxNcDsZc3uOYwtPfvJz9s6yU8514q0gMFocpO26q0GWWP78q8w1CeZs80gsPMdWu+ZUMG66lOFeO9QqrpsI41lbc5ye9sHccnztRyfVfeKiTNH16Qm2lA9dhxUKU11ZghlPMOJysmukF+eIjFJfMWPZB87aQn1Up/jiM3O2YylgWFB00yXsqilmXayftYvdoKWMrxkCa2B0P/Rsg4b3HHOR3/wmPPII7N0LX/sanALzTwHo7u7miiuu4OjRo2zYsIGHH34Yvz9LdvCTnIJHv8AJQWd9Xdp3udg/EddZ7JIRM2T1OhrqMarL2Gt6iJ5CiR9H1i9PMxJMVcdKkdpLNfLH6S6b2agoMJ8IKf8fH167+Hw7aRdw+LzTj2PNS5uBZfVYy2sZPm8zAO3hyXuIOY3Uqeiyw8FGk1KX499TSb3eYlE7BKrXPdW4EFwKYmVJshw7nKWlqJKu5U0pZelZPwN0ZBj5Wu9kSKeVIQOqD2bJHHwc6Tdl3BuaCZcUcai4KvcGpzoT6jvHHr4DUFoK//Ef9ud/+ic7Vj86NTrvpGLfvn1cfvnltLS0sGzZMh577DFKSqbJOH2SUzD0C5wQqEr6A9WMqxOxxaJAmofUstJDFk4hO39iv/WRMNE3j2DFVRJHuokf6IDDnWnr6iPhtG0KzA/TOYNFrxPJM7f4ZNfG5TgqJ6ddysV+5NL02ZpismxjaAaj7hjOdeqWWRN/ZdtGEvGeuRqlaW7GnVJfgdKQ/iIquBWizbWIzqlJ6sg2uU4SoWiqoW3K6fM1xqdqmKoG02TyHdfIl5L1CCnzYqRiuw4zMjnPyUrGvk/ktTAttP6RrGVPbJM8R2pnf7p2vmESffPI1DYNjhLb14YxMimrEj90lPiBDmL724m91Y7a0TdjnQtN6jVRuN/kwLJgZHfyy/wdq/e8B266CTQNPvMZaGqCr38dTrZcUZZl8Z//+Z+cfvrp7Nu3j5qaGrZt20Z1dfViN23RKBj6BU5MrOljz9WMyZXzHblTJdovGMU+98Sy2sPpD2C/MPME4oUjmVEzFJ7MXmpadhbh0ShCJDax5kzZTQvMP5aqTyRcSgjHqDJiWQgZhiqCAJKIVJL+AiDNkIhrOjzqzIG8VtIQnq6XOzNEDBxlQTtz72yQRByVxTgqiidGJADk4gCG1519E//U5ZJ/MjTNnbJfvv4hu7xkMq2J9HvxGYQMZkhKlpmsC5ii6mGMRZHLgtOXD4xfw9kSZFlxFX0o3TLTQ+G0l4vxdhqjUcxwDHMstujzdHzC5HFLZApeFEin9WfQ87itwLP+c/NWrCDAz38O//Vf0NwM/f1wxx3Q2Aj/+I8wPFXj44Sju7uba6+9lk9/+tPE43GuvvpqXnnlFZYtW7bYTVtUCoZ+gZODFC9RiTPDAJrnh1yRYHD208/y51dtnVjW/OZ+1v3+KVb/9+9Y/uAz3ORepKHyLGkGcnEKTWFYXCwmRp68Vh7Gt2VR89Luia9jz7xOzSt7kj9ZEzIoE8mpLLJ67Jv2HZh1U2vGhvLKtFvvzN57HJZJcOf+9IWzdU6m7EvabmWUU/nbJ7Nuk7m+bBpUhCatmWDPANJ/P0jtvY9lbJD7imgsyxLnO+5gSGlCpqEvQG7d7pPQ4e0XJ/uSeTLu4HwRH4Cdn7E/b/h/4F8xr8U7HPCRj8CBA3D33bB6tW3g/7//Zxv8f/d39gvAich9993Hxo0beeSRR3C5XPzHf/wHDz/88CntyR+nYOgXOOkQWPiMkZ5IFHdK6IBoWfgGhpHjKoHOXly5M/MUKDAj7mgUX9dkyEXiUBe+PtsLLaT0b388V7Dt7PuiABjd2bXi80Uem5tManamv54dAyM4jua2TorV6NScVf0jSHMY2RLyvr/M/j6UT87dAicpu/4vJAagaCOs/eyCVSPLcMstsGcP3HMPbNxoh/B87Wt2SM9nPwvd3QtW/bwyNjbGn//5n/Pud7+bwcFBTjvtNHbu3MmnPvWpUyIZVj4UDP0CBU55CjfDE4MMA69w2vIkvwM1p2y3s62vcM4K0qDT0fMEHPkfQICtPwRx4UOcJAne+1547TX43e/gjDPsSbrf/KYd3vOpT0F7+4I3Y8688MILbNmyhf/+7/9GEATuuOMOXnrpJdauLeg6pXJKy2u2D0RQdRXtnecgeUvolkooXnkhrqqVVJ83yhHPMhqaTme1plJ7pIODRhE/en4vu+67h2DJB+htH+Loq49OlGckM9Xq8TD7Hv01979nI3uOjrL9kC3ftveZV1E8QSTxfM5pLObN3jGe2N7Bvkd/DcBPkkmJgiVu9HMbuXJ5Pd2jdnbBp1oH6dv7PEX1a7FMg3ho0oMV6tjHk/vXc2hfP6PdrQhCM21lHhRJpC+iEtMM9neGODQUJ6oZ3LurizcPDHDRijK2tw7Te7CFoZbXUSMhEmNDacdopH0/+zrKONgzhluRUGSR7pZhxroP09If4WDvGKODMUzDYkNtkDKPgiQKGJY9SdYIDRI63EWJW+bMGj/DMQOxfTtKaS3CaD9WLMKlay9hXbkX745f4/cGGHhyG9GeQWrfdhnhIy08/VwnxlU1kC68M4GlJtJMIGMshJGSnGzkSDelxR4E2UHoUBfuVf1IepwixYnXIVIbcOGURMo8CjU+B24zjtjfgiQrKJIHwdAQiyvwVvWhjUZwlwaRXTKWGscyTTzlxdSdI6PHVUY7x4j0RlDGZfoMO6xCkB0IoogYTKreiBKCJ4DoL0JUBfwuBx6HhCIJhDWTF1uGeKtthFDXYTp6ixmM2nHDA1ENvczLG71jeB0SZq0fyzAw+rsY7QyhF2fmyZwkYli4LBgPbBo/Zm+1hzj4ne9Sc8EmTFWn9h23QGsr4Vef5+KbvwAX2fGN7UfPZ6BrI+/aUEVj36vUNp9Bc7Gb7rEEUc3gYH2EDVUB1pR5EAWQO15jecVp/MXFy/ipSyYc14lHNGRF5PDOBrwlxURDo5iaSt/e55FdPqqL3AjxMUqCPlZV+DgsRhiKJBgNOSgudjFSXsqIv2RKPxVlBdntw+V1sKbaz5HuUUKDLoo89jVlmNA/msDQTdyKhMvrwOVxUORTKPUqOEQRSRAwTBPDsqj2u6gv97Ky0o8sCmiGNZFcbSiSIK6biHoCpyzilgUCTokNtUGiqoHR25H9BKQYOOpoGHUgxmhrN8MtIwTqOhiKadSVTcaYS4pE04UNjAfenF/upe68ejIDcVxFHpgpEihjzkr3jg60SJye13rxVftQh0dwjnRhugKI0RGifcP4a4uRohmJ0xIa471nPC+Ss7aRdefWUdsWItgYpPTadxHccgRkhZqfP8axjAlMaw9meOk2nl/HmFvOmik3NX+Tq7SI1e+/EFPVCTR3M/BmO+VDMRRRYKy9j0RRGZCf1KydPXcqighqyuE2LIj0RUlICSjPq2h0bZbyAcf4gmJqBlrnYQRJQiqtwhwbJtIziBrWUPxeon0jmJExFEmgqshFU0OQ5SVeqpqKcbplNlT6aakLEo5rrKz04VNkav0uygNO3LKAEFXx1pbDIbuhlmmBICI6ZGSfD6GoEtPpR9ISU5LenTLoMdj+Mfvzqk9B2dnHtXpRhBtugOuvh0cfhS9/GV54Ae68047pv+02O55/+fLj2qxp0TSNL3/5y3z1q1/FNE0aGxu5++67ueiiixa7aUuSU9qjbxhTb6hTEqVmyRiYT3ZPUZ4qu2bq6UPE/aNTJ1tlZt1N6CbxjAyIamTqIy2akXU3nkdmXABnRmZDK0smYCvjoMSyTNNXMjPjWtaUcNmsyWszjqWQJVOsMRdXWxYrITMrLYCWke7RBITMc55l+M8ZSH/QG3lMeBRECTL6APJUgyHzOCnOqe/jmRkorUQMSZmfyzlz/03Lwp/RBkubGu6QmflZyDLpLiMRMqamTrmexOjcZoVlXl9Sluy1SpYsw1My42bJ7pmZLNclTy17PDPujMxiKHnGNYUsH6fLx5Xj8tHjU+9DkZ6RWXufnYGp97xjIu/6p5+Yn3pqxw+9lCGJOZfMuNORmdlcnkOabWvKh+NAxn1fyKJelHmdqDFtSqbpzP0HsDIv+qzzKE5pUwTe/DKED4O7FjZ/ZdGaIQhwzTXw3HPw5JNw2WW2Ss+PfmTH8996K+zbt2jNA+DAgQOcf/75fPnLX8Y0TW655RZef/31gpE/A6f41VXgZMHKMHxO2SjWXHZF1pemwlj6UiTzTNnZapdWz14KPSdtOswxNGg2/oQF3e+TPq74ZN+/WTLyBuz7V/vzWXeCIzDz+scBQYBLL4UnnoDnn4e3vQ0MA376U1i/3g732b07dznziWVZ/OAHP+C0005jx44dFBcXc88993D33XcTDOZSsjq1KRj6BZY8luLAKJ8+JMUm4+Fx0j8sp2E2+520bMSqYrRT3aN2AiNM+yU7+duz83wNHcs1mW0EYw7b5rViPgdopjTBx3jYrAlv+jQNWVrverPnFL01Z8U04OWPgKVD/buh7obFbtEUzjsPHnoIXnkF3vlO+7Hxq1/B5s12uM+OHQvfht7eXq6//no+/vGPE41Gufzyy9m9ezfvfe97F77yk4DC073Akka3QP3w9eg1ZWnLM7NEZhIpn8yAp55CRqxaVTbzClnclnJzDQ/VbUA/0Q2IJULnWG4Vl3xFmdJsImtuNpKRobe/d926/DbMjFdKI/nbDMb7sdtzswlzsiY+zbW0MXN8n/KpL8+2TTk+ubdTS8e9k/nu/4l14S60ItoJxaHvw+DLthf/jO8sdmtm5Iwz4L77bE/++95nd+0HHoCtWyfDfRaC3//+92zcuJEHH3wQp9PJN7/5TR577DHq6qaZtFdgCqeOBVTghCRuAr70JDhmXEXtmkFOTwD30MjE11PpweLoT8a3Z4lPB9D6RjATKlrvMMZIeCIpT0JyEDtF58HNN3lqvORZmjXNZyaMyBS1+ay1O9T0uSndtTX5Ve3Irfox477On4zNccEt2u0VXHOdazD1aExZkkfnEJPna7o8BuPZeccxxmJZ11uqFFR3khhxeC2ZEGvjF8FTu6jNyZeNG+GXv7Rj9W+7zVbuefRRuPBC+Pu/n796Dhw4wE033cT1119Pf38/GzduZMeOHfz1X//1lPwUBWZmUY9WPB7nne98J6tWrWLLli1cc801tLa2AtDX18c111zDypUr2bBhA8+lvC5Go1FuvvlmVqxYwapVq/jtb3+7SHtQYDGI7WnFjGZMIEzxWhaeIyA6sgtqGSNhYm8cQe3ow4zEie1pnTLZusDCIPncSL7sGV2nZZpTI7qdiEmDdLy/OyqKpmbLhYUxuJ2zl/6b7b4r9ZMyNa41DThX1oEoZsksOzkZ17W8ZuJeIJcX4V7XhGtZni82ScQZMviKHlssIJs+t+h0IGxZiXNZSoKejNVSs/TmwlGRPVzRCGcY9voJ9oa+gLebE8umEMGZHIFtuQsSQzOuvdRYvRruustOvvXhD9vLvvIV+MEPjq3cvr4+PvWpT7F+/Xp+85vfIIoin/3sZ9mxYwcbN2485nafiiz6a9FHP/pR3nrrLV577TWuu+46PvrRjwJwxx13cM4553Dw4EF+8pOf8Kd/+qfoyQyQ3/jGN3A6nRw6dIhHH32UT3ziEwyfDPmbC+SF6J2qzJNKQIJT1dzXi3z2h9mofZyah2rBCGZmZk5iJjTMcW9tXvHqAh5z0huvRGITo1OmqtnZcYEiadLzK2Yxpn0j2YQnj5Fk3ZnqT6l41fSX8VzXbRqCgFwyOSlRVBzIQS+S35324qKYOpJp4o5NJg2TktK2jspiRM+kqlUwhyqVIxlPZc3wYmROjI5kX0cQBOQiO2uuz+1CTCpKeeLxGetORUwm8JLGr+UMpMzjeIJcv/qA3Q9LIwubNfyEsSkkBS59FFxVMLIb/vg20KYq2i11li2DH/4QvvhF+/snPmHH9M+WSCTCV77yFZYvX86dd96Jrutcd9117N69e+L8FJgbi2rou1wurr322gnvyDnnnENLSwsA9957L5/85CcBOOuss6isrJx4A7/nnnsmfmtubuaiiy7i/vvvn7aeRCLB6OjoxL+xLPKQBU4gZjCSVosxihY+z8iSxX0gmd1kLoqkJ4jBsNRZXeLC03p04rurvcf+YE16nj2ZMqvT4DQNin74O7b87jGUaByHlfTepgjwbHFOlcccR9I0fKEFuN8ljWF3FpnRcSrCI0g//j2+9jmk2Ezpi8O/eTpb1QS3vcy1vfsRgdV79k0Y4RP9OPlhdNsrnPnqK1xZN/OLRrWccmynI/lbXXkxZkvXxGLzyOQ+jm7bweBdD/PRd10+EWJQEh4l9PsXJtapbWmj/v6nUB54lkRbz8TytQf2U/+HZ9Mry2QOcf9LgYEf/p6m+57kzCP7F6yO42FTTGdPaJo2+3/uJrSLHsJSSmBwO+Yfr0OLhaZdf871HId/n/ucxq23mpgmvPe9Fi+/nF+bY7EYP/jBD1i5ciV///d/Tzgc5owzzmDbtm389re/ZdWqVcd1P5bSMZ4vllTCrO985zu84x3vYHBwENM0KS+fHLptamqiPZmirb29ncbGxqy/ZeNrX/saX/rSlxau4QUWjNnaqwEh+bBOefadSoEpQpbcEAWOL4Ig4BwYIdqUDBmZJtY6F+OxzNJYFJdHmDEn1mTl6V+dsfw9yTnbk7W+mY1MYSCE5+gA4YbqGdebifi+NtSOPpT6irTljt4hXOtcxADRslDbenGtnDpBTz3STbHksROizdTWWbRJABidHEVgeBSaqyfq044O4nGleyC1/pHJtqsJXJ19yFEdrbwEZ2MVAIqmoc7jA34pYSU0vN0DSE3HLxZ9IWyK6eyJxx57DI8n/9CsVIrEv+M8/h5H/zP0P3AZLzs/hyVk91ht27ZtTnUcD66/XuD118/h9dcreNvbDP75n5+jsjJ7my3L4tVXX+Xuu++eONaVlZXccsstnHfeeUQiER6ay9DAPLBUjvENN8yPCtOSMfT/6Z/+iYMHD/L973+fWCw2JQYyczg19feZhloBPve5z/GZz3xm4ntXVxfr8lWeKLDInBjeqiVH4bAtTebzvOQWvllAFqmDCdNlBTte9S9i3QVmxULZFNPZE1dddRWBwNw18IWBM7CeuZZKYyfXFf8c45z/BXHSRNM0jW3btnHllVfiyGOi/GJxySVw6aUWb7zh4lvfuoIvfOER3vWuS9La/Morr/C5z32Op5+2R+tKSkr4/Oc/z0c/+tFFDdE5UY7xbFkShv43vvENfvvb3/L444/j8Xgm3or7+/sn3sDb2tpoaGgAoKGhgdbW1rTfrr322mnLdzqdaZ1ndHRhYwQLFDgRKdgw80iKoZCvlOaJyPwqDM2SvCcZH4cTkNKW6Zs13Q8py1PCuwrMnYW0KaazJxwOx7EZh9WXwEX3w9PXIXbdh/jqx+Dcu6ZkDT7mehaY0lI7Rv+cc2D/fpGvfW0rN9xgt7mlpYXPf/7z/PKXvwTsY/lXf/VX3HHHHRQVFS1uw1NY6sd4tiy6of/Nb36TX/ziFzz++ONpJ/o973kPd955J1/84hfZsWMHPT09XHDBBWm/3XXXXRw5coSnn36a73//+7Ou+/CrBwl1HeaB69bSEPTROhLCp8isKCnFdJby708d5sbNNVx6+a0Ux8f41qudbN+2C1NXeePp3QwcmD5ThKmr/PDxQ/R3hggP9KHFw4x2HmCUA/zywVKeXlZMd8swR557YGKb139/H6JDwekrxjAvo9jt4PBwlKGwyu9faEOLhBg8tBMzI743Hurnlaf20Lf3eQDGjh5GS1yEIAp0h2KE4zpHDw9x3xvdHOwd4/UXDhFq38c9y4rZd3CQwUM7AQj3tk7Zj7HuwxzeWYWhxvCUVmOaFgNv2fv9/Fv9jPRHGOrqw+1TKPEpOCWRoUiCzpEYI3GD8tpVFK3ay3DCsON5XWBGx5CCGnpfF/HD+/CaBjW1a+h8yB4uO/SHvYSG4miROB2Hx+CSmVNb67EEiHb8rR5NEO4KkzAm43EHD/Qy4pUIrjAJtfZS1teJIzKIYJn4nF5q/R68ikgjLoqFBOJoL1r7AaSSenyKD0ELIwZL8VSVoo5GUYqL8FZ6sQwDTAPZ68LvqrTrj+tEeiPo8QRmZAxHZJCykhK07laG9rZQ5i9C8ASQ/EWYY8OYoQGaK1awqT6IT5GxLFANi86hKOFQDEm2lVUME8KqTtdonKBTpmsohs8lYzncoGvo/V0YqolbEphrRPbQ/jbchkbg4kHUlj30bN/L8ncNcHp1MYokcsnmal4vcbPWb9L6tR/R8L4h1px5A01BhbhhUeF1sqnSgyfcA5ZJzy//h+pbPs51y5ZR5lnBmGoQVnVM0+KPtUGqgy5UfSWGaXFfIEjtihLevr4Ka+gVHIqbdeU1mElFIFU3uXB1ObsCLkzrIrp2PY8gSji8tgdNECUCZUEaKn2cVhMkFNX4Y8JgTbUfNxolbgdrqvxIosCGSj+qbrIn4GRZuY/VlX4agk5ObywioZt4rTibKn30LS9lebGHYpdEqUdhTDXwKTJSMu5a0GJIggePLKA6Rc5qKiaum2hvHU2bCy2OW24pHsORlmE6j44hv9TBrrYQ1h+P8PxgjHNSjDxTNzE1nXKnhCgJiJKAkUiGdaSU7wz4YGK+bbrpbZoWWnxq0E+ofYR9gzE2umXCXQMEjh5CCpaidh4m3NVPdCAGlenbJEJhcNvXlZV0rFuJKIrPgajYk04Fpwe5bgW4/JRtaODs/UMMNxfRl7H/MyEJYKTsxzKPA02aDF0a/2XFimKKVtTiqYgiu3rInGs7Xt1pRS6ar9mIc9OFWKKMYKg4V/VTvGYXkiIhiALV565Hr66D1wfzSzqmeKhwywwkv9cVuxiflbE+oNAgBTAC1XQPq1RvtsOJyg4emti+dFUly10rqDs4zKtuB+PTPhsu24iyPMjhvI7U/GCoGtG39qKORfBUlTK8r43BtwaIqQamYaCORtB72wmshnXl9gThTZVerjqngdoSN+vKvYRWlqEZFhc0BHE7RIplE80soYgYVvdhBFFkuVfBJYn464owvKWYmo4eDqMk73FWPDwxEflYWEyb4pipvhIuuBeevRFafwoOH5x55wk3gaquzjb2L7jAYs+eMm65pZ/Gxn/iu9+9E03TEASBW2+9lX/8x3+ceNkqsHAsqqHf2dnJZz/7WZYtW8all14K2G94L7/8Ml//+te55ZZbWLlyJYqi8NOf/hRZtpt7++2386EPfYgVK1YgiiJ33nknJSUlM1WVlUyDORsOSWChXCzxSDTnOjF1btJpeiyccx1pjlq0ejx32UYWycZcIVYAjnyUOeZ4z7PyiV/PllxrnhJuCVmOt+DMvb9OJbuKSyqmllcEd1aEKXrs6WQ7a/kcS2EaLf9UErqJnKHcYgz3IVUtm3E7yzQQxJmPi5SlfmWGyaPjCIZKrlujM0s5Uc1AHH8g5+rqs7yl6LHpz+9sM+NmYqrzExPuDMxSOnQmMvYjqwJs5rI8HObZ0CJatiqnISW8Y7pLIKU+pyRlXT5T6el5EfJs0jw/ooQZk6XZjGV5gRTzMEhl7zz2kwwW26aYF+pugHN/Ci/8KRz8Hsg+2PL1xWnLMbBpE9x9d5h3v/tOfve7f2bcG3H11Vfz9a9/nc2bNy9uA08hFtXQr6urm9b4q6ys5LHHHsv6m9fr5Z577lnIphVYIsz5+XWCeUDmjcKw/9JjjuckW6K3pdarj0t7LJZc8q0pt5dZNi91c2GJ7duJzEljUzTdDHoEtn8E9v0ryH5Yc8ditypvDMPgf//3f/nCF76AZXUkl27hL//yX/j2t69c1Ladiiy6jn6BAjOSxZKYrXFxKmXGneRU3OclSprhMX/nJddIzHxzwpijk/qas9xu3ltSoMDcWfFhOP1b9uc3/gHxwLcXtz158thjj3HGGWdw22230dHRQVlZGTfccBfwKv/5n1fOSWO/wLFRMPQLLHGO/elrnkLpsoUTxxw7yck/dkc7bRWHz9pE4O3nMLpl1eyrErJ+XDIcu8c6z+2nqyfP+oXZC2ymVjIv7ViK56/AIrLmr2DTlwGQXr+dRu3RxW3PDLz22mtcddVVXH311bz++usEg0G+9rWv8d3vfpd77/0TPvhBMamxD6++utitPbU4dSygAickiblKbaU8MWOuhYsJLVAgN9MbeHG3C+2Ks+hd3oT3rLUMX3R6nmVOE8k9jyFr1kj6tO64uOjaDXMQu59DFTMcw+NqiE9XWeFt4NRi/edh7d8AsFn9PkLbzxe5QekcPXqU2267jdNPP51t27ahKAqf+cxnOHz4MJ/97GdRFAVBgB/8AK68EiIRePvbobV1sVt+6lAw9AssaWb0UOf5wBPnmLDohGT8cM3BGCjYD/NISrcVskTujC8zpBkmFM/LCZl7IanZXmGaOQPHo9OkZAFOrTTf0at5beI0uQuOqY5UT/8ipwkosAQRBNjyzxjLP4aAhfTKx0DPLeRxvLjlllu4++67sSyLm2++mf379/Nv//ZvlJaWpq3ncMCvf21P0u3thWQi4gLHgSXgoilQYHa4VtWjj4Sx8laaOfXCWRzlRej9I5jRxORCScR72koAEq09GJEYzobKaUoocCxMZ6yJjlnccuel2x5DIdaMXxcMuboUhz8zw6hdu2t5beaiKd+dTVXIZUGE8WOdZ8PTzpkk2pq2420qDyKXBZFSFGPSXjTyqSPNns++gZCyniAIKLVlIEuYsQRKbRmWqiO600c5nY1VCIpMor0PudiHFPQhSKKtjGUYJNp6sRJTlZUE5eTRCT/pEQTwNtufPQ0gLZ1R6vGcAl/+8pf5whe+MOO6gQD8/OewYQM8/rjt3fd6j0crT20KHv0CSxpnPJ51uVzkQy6xNdTDgowwZCctqTBiAJglwYl1TyUPmZ5iBCiN6Ua8FJy8ozqbqpBLAkhJg0rWNBzT6gUWmC3yWCTr56mypPPcO8V5LC8fPfkFsP7lmrKJfjleiRXwpa0jWiaKmiGPPDop+yv5bENIME2kaCyvepUUScnx7cdxNlalGflBnxdPv61+7xVMnLHJOqTINPWl9AMfk7LJjrFJ76xfBgUTK6kn76guxVFehLOhEkGSphj5AHKpfR3LJX6UmjIkrwvRpSB5XUgBL3KRb8o2wERfGXXkIWlcYHExEhOTcY01ty8pVbktW7YA0N7entf669ZBUxOoKvzxjwvWrAIpFAz9AksaVzxB33d+g3XPE5Q++Czar5+ass5KI4zjZ4/g+smDVBr2i4F8uGvid384t+7/yYKnb2jis5ShVz1d7LHWN8y5L7+MdAqOfCwUwf2tDPzoQZbf8yjurv7JH5KWsWjOLT9GSkHHuP2JgS8eRQCkN9NTSL1j6BAOPX1Ez3wyfYaf2dbDha9uR44lyAdZFNDH5yXMYEhJWNRXlVO27wiOnz7Ce71j1B5uJfSTh7hox0tI09QnhGNYP/gdFx9+g2YmXwaK3jzEwI//wOmPPU25AjIWxo8eYPCn2Sdext9qx/rFNoa//SsGf/ooWu/wzG2ebnmyL1bE55pir8Bx48j/IMS7iQmlWI1/stitSeO0004DYNeuXXmtLwhwzTX250ceWahWFUilYOgXWPIYQ6Nw5Cjuw52YBzpItKbHDkuWhRBXEQcm0oMiHEMCqROaObhYE4e6cKn5GUMF8kMAtM5+XIOhqT/M9H2O5B/Gdgx1LHgNU3HqyWRW+uSLkdY7hM/MkuQrY7TEbDmKJ5F9RHA6zNHcsc+lkl2PAIjdA7hFe/aC3tGXu77hMYrjkXQdfUDr6MM7luKQGIuiHj6KmSXkJnGoC9p6MEMR1MNHSSSdGnPtSlJhJG9pYxqw918AOOS4AURlkRuUzrih/8Ybb6Dr+d2Hrr7a/vvo0hUROqkoGPoFTjzysjisaT4XKLAEmOcumU/W6VkzxRO8RMIFFvlyPr5RE3ns7LGe+8LtcWnT8WsIH8ZSSmiTl16yqWXLluH3+0kkEuzfvz+vbS67DGQZDh6Ew4dzr1/g2CgY+gUKnKosoTjPU4f0Yz5bG2sxbbJsdRdsxAIFFhDLgr3/DIC54pMYwtKZhDuOKIps3rwZyD98JxCA88+3Pxe8+gtPwdAvcOIyYTNlMTcKFkj+LIQ3uMCMnJCvWEum0ceYQGu+t1lIsr5dTdPGWZ+f45tZucAc6H4Uhl8D2Yu54hOL3ZppmW2cPhTi9I8np7S85lDL6wiSwrcf2s+yugAjUY26Eg9rqv2EohpPP9vKYDiB/4pViEIpj7zwIgMHdgBM/J2Jlp37GTiwA0lxY6iTk686XnmS0Z5VDB7amba+ocYw1BhaJMTh3T18V5Ho6R4jGkpw8Kn7ADD1DKWJJH17n08rp2/v83hLSumVRXTVoP+tV3nSrzDY0Ufvm88A8NLLHRx9/YWc+zFedqjTl1Z/T9sIY339hHuPEK4sQ9VNwqpOe2+YkajGijIvtatX415/Fm+MJgg6HZhYSFXNGEU1SMV9mOob6P1dOEqqUUcjqKMRBFHESD7MJEViuVfhjGVFlKwsZlnLCM9LAqlTGV2lQbYuL8Zd5qbyrHUgSrj37Wc8utWIG1imieT2ILtkBIeCJTsR1AiWw0NUMwg4JXyKCJYOkgKihKW4UU0Ly+lGrFuNy19EafEBlGXrqQmHoaIZhyQRHO5DdHtBlJDddvykd9kylKY1GE4fkgDoKkZcxVLtGF7T6UKQJKxEnIBToibgshX9kvutyCJOl4PSxmVsri+i2q8Qikv0RVQ8DomGUg9OWURMhBhrO4oWiRPpiyA7i3Kez0yKHBKBcj9KwIup6ghOD4Lbi2WYCFqMoL8MpySwuS6IW5GQQ1107zxK7SVHkBNjeAC3w021X8E72onZsgtBVmjd9ibFm19Aru1lXfMFhFUD3bQHEgIuB3UBJ45k1uKoanD56nLOqPZhvjWC1NNC6bIGSj0KhgWqbnJRYwnLiz2ouoHTfRmCICArkzr0tbUBzmwuYVOlF79TwueSuWxZGY6efRQ5vZzf0MSGCj81fgd1QRen1wZxyiJNRS6qxTCXN5dgWhbW6w+wfM05eFZXEnRKeEc72VRZQ4nbQYXXwab6IBVeBWmkA19gFdJoDyWKm8uWlQAw8vsOJEHAJ4uEdZNBderE2yMtw+waiRNqDU35bRxVNTj86BGeGYiiiAJBh8Rpe/qhak3aeoNvHAZ3Y/JbutkW1U1e7BidYsw993wnB8Iqavso5h/2IyoP4C4NEBscpeP5DkYGokRX+QikbDPWNQrNySWWXdXg9l10vtjFCz1hTu8cpeLMBwBw+LwceWwvezpGCRwdg6ppd3NGZJdCs9fBgEOkN7nMJYp4qkrxVoYQRBHRISNKIjUuB30p2zYXuyhv9hEbjtvXXjwM3mJMdxCcXhRdo3hVG6aq425ehqNhFaWuveSamiq5PajFjWz+0FbWjIxRdMGlNPcM8S5g2bVbCNT5kV0KpsNNdzjM6tNWYqo6Z9fvITqawFvhR/F7cBb5KF5moUZU6I9Se04dntMvxFFVz8UP7sXQDF4Wptr6tW4HZ6wvR/E6OPBmP72KxOxmIqRjGibhrn4G93XirfAT6RtjcP8Q/QmD+OAoQ4cGKX5zD2Wr9rG5ch31ARe1kSN86oIm3LJIjTHAhQ3liAJUDL+FNdSN1nWYM859J+aOJ+j8wzYAVNNiWNUx4gmk0W66X3wTNaKxuroOqbiCyN6dxOWlFX++6CS9+Sz/KDhLZ153ERk39F977bW8t7nmGvjc5+DJJ20FHqVw6heMgkc/Bx5lhoQ2xwE9i5FwImCYU71OZh6eOIc3t9RbpkNLEMA0Zirb/s2a5iUpDXHq+bbmKSOoIE293ARn7v1159EHTTU5Ceo4OSRnPt42Uj7tztJgbXg453aGnrt+RZ56vB1SHv7LPPrJ+AtKKmoex2SuxDLLnkZDfi6Y091jhMwwo+T3aTzKLtfC+Y2MtDqn39nUuQoCYOWRLE/LU35zSl1TpFKn4pij3KmkJPtXll0dL9GYct5mWZeQ9if9pzyuk2z9XchjYq/Ds/TCT5Yk/S9C39MgOmDtZxa7NTMyLrG5a9euvOcLbd4MVVW2lv7zz+dev8DcKRj6BU5gCoPOx0Lh6C0B5hhuMX/lzaKoRekwixRKczJdHCfTvpxKjHvzm24BT93itiUH69evx+FwMDIyQltbW17bCMKk+k4hfGdhKRj6BU5AxlNHzrTKEou1PW6cBHHJpwLzfsiP9zlcoPqEGb/mrjq1L8+liXlss+h2c+b1auVxPyxwYjHyJnQ9AAiw7m8WuzU5URSF9evXA4U4/aVIwdAvcOKRGbqTY3WhYMcWWHKMd8q5hVtMW9x8koe85nG7tOZU0fF5GVlYCjevU5K9X7f/1t8IgdWL25Y8GQ/fmU2c/pVX2reZ3bvh6NGFaVeBgqFfoECBAsePpJFoup0Erz+fxOVnTruqGfACIPrcBK8/HxqrMLPMDZgJsawIrjxryvLEhVsIvuM8tOvOJ56sJxXD6cB/2elpy0Zryqesd/KaoSeTe/xk2pdTgHArtP3C/rz+jkVtymyYi/JOaSls3Wp/LshsLhwFQ7/ACYswkw78yWuBzMwChSsUmF9iy+vwnL4Ko65ixvUMRcZ78RY8p6+CGy9FdTkBEJ2OjDWnP4nCGWumLFPPXo/njNWY65rpW9U85ffBTaumLDMVu07BISMkXzjCwvESbksNyZmhwx5znrzcGy26Qz9zRHPi+9xaJhRuAEuLfd8Ay4CqK6HkjMVuTd7MxdCHQpz+8aBg6BcocKpScPQtGpY0VZFoQjkpdZkoIlfZsp2CIiMm1axMVZuy7tzbMvUxkCjyp7QrvS4zEs9LzWaSQkcrUCAvTB1afmx/Xve3i9uWWTKeNKuzs5PhPJTTxhmP03/88YVoVQEoGPoFTkQyPHrZzYhjdu2dkMzoncsI+5AmQjZOneOzVNEHR9EHptfUz8TK8lIwr6RcVGYskV63aWIl5u9Fo8BsmeX1OkeJzwKLhJSUHz1uo2XzQ2+vnelCURTc7vwlVMvK7L9qHurXBeZGwdAvcOKRoV+d7TkmpKwjZtH0P1kRZtD2lnzpmv2i2w4DyTyeBY4DM4WdzRK7d8+3MbfUjMPj1Z6ltt9ZmOZ6zZanA0BUMsO8CixZRBnq3mV/br9ncdsyS55++mkAzj77bFyu3Plhxunpsf9WzTGpXoHcFAz9Aiccju17ie9rI/5WO8u1UVa6pz74it84SGzPEap37sMVP5a8kScW/q7J3KBmNN0Tmy00BEDe07KgbTrlycuon+5lNCNp1WLYocf6njzv7yAzFChM83keWVS3weuHcLaky5NM9IlpPPe5wrysE+Hl5lSi8X323/Zf26E8Jwjjhv7FF188q+0Khv7CUzD0C5xwSF39DN/zJMO/eILz4314syRgdQ2GGPnVH6nduff4N3ARkXSD4V89BYBlZGTOzGIgJY50I4Yix6NpBSCHquYxmJDH01ZbDEv3uNuiS28UMHGkG+HhFxEThRiHk5rKS8FZCol+6PvjYrcmLyzLKhj6S5iCoV+gwMnG0rNRCkwhT8t1tgbuXPKlLbAVvXjd8SRz6RcS250aiA5bPx+g7cQI32ltbaWjowNZljn33HNntW3B0F94CoZ+gQIFCpyAWGmG37hRO0/G4Iw28gIanJlJXxeupuwUolgKLAUakuE7Hb8Fc+lPfH/mmWcAOPPMM/F6p+blmImCob/wFAz9AgVOOmZhHhW8hIvDsRqUx/O8FfpIgQLHl4qLwVUB6hD0LH3dybmG7UDB0D8eLLqhf9VVV7Fp0ya2bNnChRdeOJE+ua+vj2uuuYaVK1eyYcMGnnvuuYltotEoN998MytWrGDVqlX89re/XaTWFyhw4lBwVi4SWQ783MNlpm5nTVPHMRSZd/vyewU49saltWem4oQ81zsGltxrT67J3vOo8HQicFLYFKIE9TfZn0+A8J2Cob+0WXSh1nvvvZeioiIAfve73/GhD32InTt3cscdd3DOOefwyCOPsGPHDm666SYOHz6MLMt84xvfwOl0cujQIY4cOcK5557LpZdeSnFx8azqlhQ3pmGgJuyZ7YosokgihmkRU+2JjEeHYvRGVBK6kTFUnh+CKOEursTUVaKDtlqCIEmokRCCKGGZRtbt9FiY/r4II/0R4sM9s64XIDI0iKmriLJCYmyYSCiBFp3U6g4d7SAe6s+7PD0eTvseG4uhx8MIooSW0BkMq0Q1EzVhEI9EePbwICtLvWxp2Ej70TjFLgd+p4RWuZqoIeCr34D/HBPB6cL0llC6wc7Q2XyFSVnnMI3XX0Z1fx9153VRfvYmpPJa9KOtLN+5j5Zt+wkfDdP48U+iF9VxQW0Dcnkt+rrLwDK5vLuX4LefZPW7NlCythHvmRdhVS5nWWUD4voLaTWDlPhL6I3oPH6why21QVaUeojIIpKjitrTr+aI7uPZ1iE2VPoJOGvxVdUTaNhKW1Sn+Z3LeTPqoqq+htLKlZiuAAgCpWf2ULT1FYQtVzIgeJFFge4xnTWrTqPUMHCu24qlxiFYgRQsxSxtJKyahBM63WMJfIqMQxKQRAGX14HilqkrdhNQRBRJoNSj4FUkmorcGBZgGBiqjjoWQY/pOHyOWVkiPklkhc9B0YoagstrMeIqpsuPVFqF6JDBMlEkAVmAM6oDeBwS6EfxlLkRnC6wTIREBAQRRXIhxOMY/V2IviL0mI45NoIVjwIgiQKiAEGnSGORizK3jCDYaoHnLSthdZkXpyTgXnc6gjcAQFQzSOgGI1ENQQCPQ6I66OZIqQenW6bIpxBTDUp9Co2lXip9TkpkHSPgJFoTpD7gQN/bhRWLUH9WPZbPiTTaQ0mgjBqfH1kU8ET7EbtbqK5eA5bJ4I5XKIpHqTnjKoRIHKPzAGXLZILl1TjCfVy7qpxyj0zioUepvqYBDr2OIIqsXrEVIRFh/+FuQppBWDdpj2rEdRMnpHnGhzUTJeU8THdr2dYXIfWu1j0QnbJOy2MH4YbG/E96BkfGVB78/i6avApxw+TxvghFG3RmVMJOtnf77/awp82+p9zfFuLwZ36FaloEHSI7hm21K+9glADMaWRgpGeM1/oieKOqXQYQNyx2/eB5nukNc8mrPRiqyZuhOK1RjVRboW9Mpe2po7x4aBh4E/hfAk3VyD4fgsNB99M7OPDAPsBWpCo/rZWoZqbtXzaMSATHaDey14VpmhiD9v3ZGXCSGAmjBDxokThK9x7Wl68j2j04kWCsJ25Q3zKIIIlE+0YZ7Riju3MMgO6d3dTv2U6sf4ixngj9CT3tmSNYFit8CpIAkd4I3kovPlmkc67ywcnN4qEEQ51HaX+hi0CtH8sweak/QsywGNjTzhu7ejHVnUguheC5l1DkDdD9i7tZ/74/BWD06UeoOPM8rHiUlnt+S+9r3fQdGmLT+16g7akWfr+3nzJFpiOm0RHTkH70Mudq/8yPf/YmYd3kna/2EGwM0LN3AMt77CbJYtoU80rj++Dgd6Hzd2AkWAJ+2ax0dnbS0tKCKIqcf/75s96+YOgvPIvec8YvSIBQKISYTOpz77338slPfhKAs846i8rKyok38HvuuWfit+bmZi666CLuv//+aetIJBKMjo6m/QMwdVu9QMzweEgpMmWyLCIJ4JhGozgX0xnyuX4TkpkzTV1FV2NzrluUJ80Jy7Iw9EnFBkHMIlczC1K3dzhl/C7bSAUwLQtFEvEqk+uYloVmWAhGRsxhynFweN2IDgfOgHPy5/EsnMn6TNOcNGozyrBSzqVlmDiLfJPttUwwDSxpcjvVMJFEYeL8GpZl9wdp8oFjWhaiAEbKA9WSXdnlrK30hYY16VATHIr9wE85J4hSToebK9k2PeOB7pJFhKT8mqHqiIqEKM3OeycI4HLJCKnJtCwTdA2Hd1ILWdBixPTJfbOMpHq7li5dKqT0VUmRQHYgyJPHWxBAMydtvvG/RsqumWPDCLIDI8MwTP06bgCpKW0yzOS5E+x9Gb+MrdikqpBgqPb5TzlPliSn9cGsMqSWiSAk1wVkUQA5XZ/cku3jZabsjAnEsnQUc45+YT2rsXzsHltJEDDnYIhn5GBDEgTcc7xXZiNri5K7W+yQECQxZ7sVUUCPpZxTUcRKxJFd9j1Gj+mIioyRZ7bh8dosI/2+BCA6ZLRIHNllX+OCINhtzOgDpqqn9RMAZ2DyviAKAkqmXKYgENJMpOQNw1QNYobJfKQJMVUDSRaRHJPnLrPfisln0vi9QlBcWIk4ojJ5r7QME1ERJ9o4TuptyZ3lHiVK9jaSw65jLk61cRbappjOnjiWNmel/AJw14AWgu5H57fseWQ8Pv/0008nEAjkWDsd04Rknq2Cob+ALLpHH+DWW2/lqadsScBHHnmEwcFBTNOkvLx8Yp2mpiba29sBaG9vp7GxMetv2fja177Gl770pSnLLUNFkPPP4FagwInA+ANH9NiGp1TkQ1BkHFUlWVY+ni07NZErUr2C9gF3nbV26opZzkXl/31/2vfw9Relry9AuKx4MinSHM6nd+ta+k5bSeDh53B22nkY3OuaZtzGSlY08O7LqH735PL+WIKSXzyKoWlUfOb6lOzLc0Otq6Dso+/AUVM2scxRVcrBq86DXz6R0h4o/fDbEVIMTG1lPfSna87nwqgtz7lOnzm/j81oXSVVH7uAZ3WVdTNZ7dMZkhUze52nfw20yxuuLIPB1lzNPCYsl0LFx9+FFPDS0t7DFsIol55G9fmb2BWJcuHuVwGIJiWBw+HwTMXlZCFtiunsiYceegiPx3NM7Z7AMqkydrBK89ojes/cgITIGseNPPTQ/FRxrESjUb7whS/Q0mLnYXnjjTf4+Mc/zpo1aygvL8fnm3SyPfTQQxgGDA666enx0tvroafHy8GDxRhGOcXFcZ555gk8nqWRN+ChJXKQb7jhhnkpZ0kY+nfffTcA//M//8Ptt9/OT3/607QbNkx9W079Pdeb9Oc+9zk+85nPTHzv7Oxk/fr1toxVgQInG0lPnCCJSEEvrhW106/qn6cHU4Hp0W3jRXQpEyN1qVimhTkaxdR0LMOcNsNpKoLiQEh6fEPVk8aLPjyGUluWdRu1exAzpuJaVj31R4dMuLpswtBPxRgJIwV9CKKAZRiY4RiG4kDyTM1+abmdaJWlCLF4mpFvmRbG2NSwo2wYoQhScHLbVCN/nNG6yrTQJ5wKSl1F2jpCRsK4fJD6hzEqSqYkn9L6R3CUFwEQEKYfiZ0LsZpyBIdMzCEzrFr4U3/MJ75+xA79EZyze56Ne+Y9YwufR8MqK5roD+GGKqyxQ8jL7PuS6vUQ9ti/uZNtSjUS58JC2hTT2RNXXXXVrD3aM3MdWF9E7/8j0su3IcZ7aNIeo/7an+BQlNybLzAvvvjihJEP9kjHD37wg4nvTmcAr7cBXa8GVhION2KaTUAQqAYqGX8N/eY3ZW666arj2PrsaJrGtm3buPLKK3E4Th77cEkY+uPcdtttfPzjH5/43t/fP/EG3tbWRkNDAwANDQ20tram/XbttddOW67T6cTpnAwFGb8YJYcTMzOpUAa6ni0+Y36YKUZ/nNTQm/kmV93HQmY41HTLMtEiucOUxMx4AUgbPp8OS8htQGUOOUN+7c4HS8uS6CaPcxCfJuV9KlLK8LnaNjmnI+vDX9PBYa8vhubmORPyCBEy1Nz7JghM8UKL/txxsZkP7Wxkc45akpIz0CU1FGE6dNMi88gK+jQZmJNt1UMRRI8zzUCOH+rCCEUmvLXR1w7a61sWoteNe419z4vtb8fZXI2YPJ/G8Bim04Fc7J8wSk1Vx4pP9rFEaw/64Kj9LLWsieMcGR5N1gFgoTRW4SgLkur7tUwTQRSJvn4ISzPQh8bSyjGj/QiajqN+0rg2YwlEtzNtn82ESmxPq11XnqEN8YOdCA4Jz+YVU36L7WnFvb5p6sBFyklNtPbgbKrKO6JJdqeEnoxP/tXS+67a1os+OIp7TcNkzrM8XsjyCefIlu14Ihxphn0Qx8Mik8faiiUg28vXNNub8WNLvGWpU/v7tMck08iGrPs2fl3nc33nw0LYFNPZEw6HY2GMQ20Q4vY9/U3nB9mkKItmhJomHD0KLS3Q0nIRt9zyNHv27OTo0TaGhtpQ1TagDRgkkRglkXgTe37MtillSZKT4uIGmpoaee65Rjo6GmlsnPxXW1u7aPu5YOdykVhUQ390dJRwOExNTQ0A9913H6WlpZSUlPCe97yHO++8ky9+8Yvs2LGDnp4eLrjgAoCJ3+666y6OHDnC008/zfe///1Z17/hmuvo6xzlXRc2cW5DMZppEXTaceYDUY3BiMrWpmJOq/ahGxZvO7+JsaG30/HyH2i+4HoMw6Tj5YezGsyyy8fyM9cQqKqhtNr20ez743MIokTZ8vXIDolE01oi/UcZPLQTAG95PbLbh9NXQuP6Ouorfeiagce3hkhfx5TJsKl4y+uJ9HdMfC9Ztpni2hrcfgWXx4G3pJSmteUMVfo4FAsTDw1QUt9IdPAosRyTfT2lNcRDAzj9duhHYmwIgNJqPxFvM7raQHldgGXlXmr9LmqqfPQN2t67mGZiBMvxKaNIokDQJYMg4BAFLNGPVb0SMTqMJcp4KssQnC4cXjdaJIayYhOO2gjuVRsQl23G8FeiNG6gumEVRavqMTWdwYpN9EV0VlzwPkYtBzs7bO/Wxe//NOd53fgvvg7TU0w4UM9Q3KD6gps5OJTg9Z4Qy0vcvNQxwvMHB1BkO9bXMC1imsHpNQF294bZtreXjuEYbkXCMC0q/U5aB6OcVhfkN7u6OK2xmK11RQz0RDEsqPZVsGLLO3mtJ0x7aIAyj4OBqEbthrNx125gSPAgCTCmmij+ZQzEdJ5rG2ZP1yhHA3HK/U6CTpmxqIaumTicEpIgEDcsNNNCM0wMy5qYtGtZMr5kuEHlxjiWYbG1L8rEoHPGA7POiuEZG+ZAiX3Nra91sfG2rVRedz1CaS2CGiFasgwXUHXOEYxgDaMJkzLFgccBZR4HluKlfEMtUmk1WBaCqWNZpm0DSgrICqK/mNLVZYj+YsSicqKaiWZaKJKAIgn4FRG/IqKbFpoA1X4niiSgmhZC/Vp0d5CoajKa0BlN6MQ0g4GoykBUI6oaSLJgz58RBfwumcZSL1VFLvyKBKaBU1ao9Cl4HCKC04WlaQiJMGJsBEGNgBbD5y1FUFXE+Jj9uxoDUcJdGkSQHQjxMXsOhSghhfsRtShCIsKy8hVIQ0cYONxG2RmdqP1diC4Pcrgfq68dURKo9CoUnb0ZyaPgGfdsW1O1bETTTJ+LkGoQp77gmab9L2W18bL6VjVPlD+FFAM/ax3jZQM9Z62nu6SIYtOa8PZOrJalnMy48/GY9dG3n2+PTIwvm0MQ+XT2sTUxX0ck9K5LeDq5XPS6Jj38yY31ZbVsMyzYBE8Au45A04NPExgbIxbReO22GxBubSJ+sJOXhgX8z/djrmmevlHJ/RizJF797/+k5wcvcPDsTTQfeIjos3s5cs5myl4dIbJtL0UOkXD337Pq/Zfz1DefYEw12HnGBqStAfpFAausEqpkWJ9exR/+2ErJS2/y+kVnIThkXK5Jg1JZXkv7dRfSjj06pNRXoPUMTYTkTftOkeNlY7SshF8NN2JdbIeuuFbWYWw6SsAwuW9FLcL6czhysJOXnu5h091fx4XBr7Yf5X1P7Mc0TPbtH2RF/WNEowbPrl+DWLMKauDFQWDTZlybQG2uTuv7P+734FxWOvH9xbUbUT0VJDQV3to1Y3tn3JdFtinmncEd8PKHADBWf5bOzgvZtIDVWRYMDUF7u/3vyBHbqD982P575Agk0gbKLkr+m6S0FBobI1RWtuHzHaGv7wWqqw1isQ76+9tob2/j6NGjGEaCgYGDDAwc5JVXprZFFEVqa2snDP+Ghgaampo4++yz2bhxY3aHX4GsLKqhHwqFuPHGG4nFYoiiSHl5OQ8++CCCIPD1r3+dW265hZUrV6IoCj/96U+RZbu5t99+Ox/60IdYsWIFoihy5513UlKSJf64QIFTHGd9RcYSYYZvBeaLaGkR7nPWYTKpeCDIWUadzOlHayx9Ml7V0gwEJWVSsyhiaenxrOPlW5qO4JAxo9OMMGTWk1KOsLyWcZ+wZZhkn3E+dTtLN7ASGvjsOU/jnt1Mz3jeGGbWMCZLNyaWu1bWTdnMVPW0dqWuEwV6MQm8tIuxusqJ0a7xdVLdKJnH1q57ctl2zYNvVSPRjSvYA9Tu74az1jIAuF49CGPpTpl4RQnes9fZ5cyw2wNNdZjRxLRzJDL3OXXejRnLHqo03TlI3UdnRrnOZTVT6g0Dg4kwtT3dWcsL1VbgOX1V1t8yySxfVBz2vsXz67PTcdLZFK9/AQz7mIitd3O2/jTi3l1Qfi6UngXO2bVR06Cra9KQb2ub+jmSI5JLkqCxEZYvh2XLJv+O/wsGAbzAOjRtJQ89pHPttdemecg1TaOzs5O2tras/9rb21FVlY6ODjo6OtKkUAEqKiq44ooruPLKK7nyyiuprZ0+PLXAIhv69fX1bN++PetvlZWVPPbYY1l/83q93HPP0teWLVBgMRAA+kcgGVOcSq0VR46OcSD5fFhmhEEueEbmGytLCIMxGkUsD6avl5he6cXSDGL72pKfdYxwDDkZu26EwhhjMQTFgZxUltK6BwGI7WtHUGTMPGPUtZ5hzLiKIksIgJr0XJvRxIzeYCMUIX7ADrMxInEsTUcPhdPCLvTQHOO/LYvY/nYkT9KjLYp2jL9hEt/fjuhxZt3MCMewEhrxAx0IjsnHm1xRhOR1Yya9gEbKS5M2EEqGLk1+t7KEtViqTqKjD2d9BQYCqndSyCHtfGd5ocvWH6bDSBpEZlxFS86rEGQxbX+czZPzLBJHurEMEyMUxhyL2vMpZBEzmkguz34OzEic2FsdiIo8Hi2WVq7a2Y9Slz452ZzBi2qm7GPiSPaXAVPV01V6TGtirgmAqh5bONFJZ1Os/DiogzCyGyHRTxX9sCfF/e1bAaVb7X9lZzMqbaGt0zXFeB//e/TojL6FCSoroaEh3aAfN+rr60E+RsvR4XDQ3NxMc3P2ETTTNOnt7Z1i/B88eJDnnnuOvr4+fv7zn/Pzn/8cgLVr104Y/RdffDF+vz9ruacqSypG/3jzf96+hq64yHs3VlE7fs82DSzZSTSgEDynkVKPTGmsB8vp5dq1lYzFdf5gXsvFFzYRjmsES28kGlYZ6Wwn1HkAp7+YNZdchBrTuOm8Rlr6IqyrsfXH7y1xI4kCFQEXkiigSCIt/dW0NjejawYNK0snQkTOai6hxKekSH1eyXBXJ85gOXoszFj3IdTIKKauUr/1aoJlHga6RogP9xCsaaSqqYiqUg/Lyn00lHrY1T7ChSvK2NUxApxPNJSgqqkIUT6f0YEQofa9uILl+Crr6dv7MvFQP05/CcXLNuMtDhIZDuH0+hCT7TEMkw2ryxmLaximxeb6IjZXBihxS5zVXMJBj0JFwIkiC5jYoQwOSSDglBC0CIoDEERMfwWIEpbiQaq04yVdgVKcahyrqBqKQBBl4oEahuIGwWADbpcfb81yME2e6o2wfyCM1lDMUCzCK50jxFSDio3VrHn3p+jGTyhhcKh9lPZQjIagm1c7RmgbjNJTG2BX2zC9nSGeEQW6R+KohslQOEF/VKVnJE5re4i+kTiWZRGPaLh9CuFQnDe7Qry+vZMDh4d4pbmYvpE4umbgdDu4aHU5zx8cIBpRqSn3MjCaoNjtoMzj4K2BPnyKzFBMRRIF+kcTPH9wgFhYxeGUKPI7qQi4GOoNo2smHp/C/p4xmorcxHWTwahKmUchYZhIoojpLcG97nSU2kH8DZVITidKwM3piXbuowiAgJHg7UOHCJ6xjrIrPgShPpp/8yuq/+TDOF1O0DVCZWsYU008DpHWgTgrS5rxn/022uMiQzENyyuT0E0MEwx/JZXnbkaubsIAsEwsUcbQLUx3EKm4HKmshqIVtUjF5ZguP5GkPrki2Vr6XoeIw9KxRJmIZuJTJEQBVMNi1F9v97G4jlMWCTjtXALj8ydKfQrN1QHcioTfKRP0OFhT4aM24KLIJSNG+gm6g4g+D86xHozIGFY8gjN0FAwNc2wEZAcOf8huu5bAiI4ixUKYLj+uhiZEbwBrpA/R68fSVfTuVsykTKc03Ifa28HokW6KWnYTbW3FU1eD0boHrfMQpmHh8GWZW2OYU/SMnaLATDoTZmTSw5nmQTctME30wdEJQ39cFtRl6MTC+UlF2oVZGMNh5iLia4ymG5HG0NgcSsmOFUugZ/FSm7HEtN7ryXZlTPwVRSSvm6Mxnb0Hh3A5gxP5CfQMQ9/M3Da17rB9lMaGo3RFtImJs7tHVcanDHfEdY6MxNn527eoeugwPXEdRfZQCpiabuenyEDrG8aRVM/pUQ3cyXbpg6NZ25FqkKeuY0YTeb/gAZhjUVLtPqWxasLw1gZCE4a+pRsIssQrHaM8s6MLgJ8+PxkqunMkjnuTjyLsl7vp2g0wk52pa7Pot6cC9e+y/xlxEr2vsGvb/9IcDOGOvkKAgxA+ZP9rsw1ety6TaN9M2+GtbG/ZyvbDW9l/dA2WNXnnURTbiB835DM/19WBe5HFCEVRpLq6murqas4555y031RV5cUXX2Tbtm1s27aNV155hX379rFv3z6+853vIMsy55577oThf+aZZ06M3JyqnNJ7b+QROppvaEOmJr2QqYGMrfOdqtEfyzKkKolCml67mmUysKlP9XoYGeuZecTFCqJgGwwzlGPXl6ENn2U4362k73/mvk5H5gRZwelK0z3PimmCYcw642O2ibZj8XQzK9vxzkYsY6KpmGVfM5dphjVlYm+2+jKPm5LF4z6lOl1NMyCElAABl6kjAh4J+7gBLiycigNLEKfGjWc5Tkrm5Ns83EJCHjGUpjV1XxRJQM3n4sxVf5Zllj7VkBAy9PCzTZC2MiftZ7kGU3X1496pakYW2eLlZ7GfOdctaKVOS/LYudc1IX/8ehxVpdOvmsdxtIr8+C/aPPG97M/fPvG5/GPXo/XYoysIAmWWNVnftJMPJj+6188wT2B89QxP+PEi+PZz8ZyRPTxn8pgW+uGxoKrwm9/Anj2pYTUuOjvPR9cvmFiv2DvEWct2sHX5drYu387Zy1+mItjPmcte5cxlr/IJvgdAwvQzIp2FEdyKY/WtlDavnZL/4kRCURQuvvhiLr74Yr7yla8wPDzMk08+OWH4t7S08Oyzz/Lss8/yD//wDwSDQS677DKuuuoqrr322okJ2KcSp7ShX6DAyYpQeNguKppzamiJpergynypyF/Vy0pJ6DT+OTX0Z6YwoFMdM+XYZRr5ZlydmNcAyfM0DZaqYVlWTlWY1DpSz7gZS9hJtDK8+vrwGFKxbzIfAmDOcD617kGU2jK0vuEZ2zFbjJEwcokfIxxLmydhjEaRS+zxi5lekgCsxNLQQj/RME249174whfsya9TEZAkk/p6gYYGgcbGEhoarqa+4WqURhist/CWteGNbYfB5L+hV3EyRqX1JIw8CfsfgOV7jveuLSjFxcXceOON3HjjjQC0tLRMGP1PPPEEIyMj3Hfffdx3330AbNq0ieuuu47rrruOrVu3ImWRPD7ZKBj6BQqchEiWhTwwgl5WRKWen355gfnEftGydAPjyFFUVceKqRCKQEkgc7W80LqH8MUSjMTUCaPejMaR97cxqptZ48oL2JijUVvm0zH5UBdkyQ6N0g1ie1sR3E6sDInSTCzNIPbGEfxeJ2HDRHTI9gRhK0WpKOXlzSUKxMdHTS0wIzEESUT0uBBdCpZlYYZjmNEEsb1tk3MPdGPGEByte9COyc8RwjRbEke60fqH7eNiWcTebElmEtbQ+txZhhIzSO5Pgdnx+OPwt38LO20BPior4d3vngynaWyE6mqNXbse4h3vuHYa6UcBaLL/Nb7XHj06/CN45ZNgaiAqsOazx22fFotly5bxsY99jI997GMYhsGrr77Ktm3bePjhh3nxxRfZvXs3u3fv5p/+6Z8oKyvj2muv5brrBQ/vEQABAABJREFUruOqq66av4RnS4xT2tDPQwp8zn7RzJCYbLgdud8kFVmcEt6Rj7Z+tlCSTLK1UcpjYqYkiVnDd9LWmeOwspXIQ3VhjuOORh5hEtnCZPIhn1ApR5YOl099eYUTZfQJAai/51EqmkpZeW7ttP1YsOaYJyKPc2Dl4a3O1k3mI2wHsl+7guzIfU3nkZMh83gDkBYWlNyx0QjWWJSJw5xy3YxLUM4GMRrHyggbExIqlrZw+T5OFsxYgukmIliagaXl90JsqRqiZWBq5ozx5gBIAmZGf7ZMAyMUmTpJVjdmnB+QyWxi8fPGsjDHJg+Srdhj97eCAT//vPoq3HGHbegD+P3wN38Df/VXkJkzTNNg9+48C450wPaPQPej9vfSrXDOTyC4br6afkIgSRJbt25l69atfP7zn2dwcJBHHnmEBx98kEceeYSBgQHuvvtu7r77bmRZ5sILL6S5uZmVK1eybt3Jc6xOaUN/bbmX070Bal0m8kArlsNlT86TFHxOL/VBP16HiNg3himIVPm8XLCilDfby1lfGyAUtR/shmnRUxegr6aWonIvbzurjj1dIc6qDbKmzEddwIXHIeCQbJ1ipySimRajcY011X6Glpei6iZrq/yYpsVQXKPE5SCqGRimRW2xh4GmItx+BW/AiShVEI/WE4+o6JpJ/bJi3IrEYJmHRKyMhho/Zy8vpS7opiHowqtIbKjwU+VT0EyTcEKneyRGY6mt4FG7rJjI6mpcXgfVRS7al5cQj2iIsojilNA1EzXhIVjqwdBNSgK21+miVfb0M5cksq7Cx5oSJ4IWY2t9EbVBtz0B1S3jGOuhqagC1bAocUuIA4NYsgvTU4wuuxFF2dZiNw0Etxd0DcHpwlS8ICskFD+tIZWRmE61X6HMXYSrIoiOyLPPttE5HKPE5aAnnKClP0I4rvF80IVneSn7B8IcHoqwv3uMlr4wRR4HnT1hTNNiJKoyMBAlPBJn0BUhGtNIxHQs08KtyBimSTyqYRgmiZhOeCSG4pSJR6IM94bp2vEQ4Ya1hEdWoWsGuqphmQaxsMpA1yiGYRINq0RDCZ45OADAvq4Qfo+DcFxHEgWiEZXh3giJmIYoCgx7FYbLPcSjGlpCR5IFBiMqvREVPWkkumQRhyXgkkUshwu5rAZEEdHrR3R5qRElRH8Rit+DqzRIyem28rJj7dkMFq/EWb6aqluL2as0IQkCAa/IjrYQCcOkzKNweCiKSy5mecVKuvvi9IZVvIpIKKFhWhaq5MTdtBbTUwyWiaDGEAwV03JgekuQiyswfOUE1q1BLKvD8BQzEtLwOKSJSWFOWQRTQ0ViVDVI6OaEgR9KGMnJ6gK1fhchRcchiclJzBolPgW3IuFWJFyyRJnHwfoKH6VuGVEAcSAEWhS/txRxuBNtuA8jkUDqabXnf4iSPQFcjSOIEoLX9rALehzB8iJXN4FpYoQGwTQwx0YwQ4MkhkJILgWz9TDhrn6GjwwR3Pkqwwc6KAOkvn6ifcOoYZXeVbZcoW5aqCnWoCikT0ZMzFJjXs/ysqolywg67PkWAYfIsGoyNodkfy7JztlQYGZG8nyxihaOZYEsHDpkh+iMC/04HPDJT8Lf/R2Ul8+87YyMe/F3fhb0MRCdsOnLsOav4f+z995xchRn4v5T1Wni5qC4yhGJKBASmGSwDcbIxgT7bBzAEdvY5py4r8/pfMbGHPbvMJxzOIdD+Dgs40AwJhhEkMgghHLWavPu7KRO9fujZ2fTrLQrVtqV1M/nM7s9XdVVb1WHeav6rfeVx7S6B0B1dTXvec97eM973oPruqxevZp77rmHP/3pT6xfv56HHnqIhx56iJ///OfMnTu3aOJz5plnHtEBtI7gJRkhISEh448tE6eQrSwMHgbacvcLjjW6SqAydVTExIlFUGXxfn73Q0JCxgc/+QksWNCr5M+eDY89Bt/73utQ8n0Xdq2CB8+Bpz8SKPnVp8OFz8PCz4dKfgl0Xeess87iu9/9Lq+++iqbNm3illtu4YQTTsAwDDZs2MAtt9zCeeedR01NDT/72c/GWuSDJjz7ISEhIaPI+qlDe02R7Sm0eAQPgdM2tAvCESMF3vzpIAQ9pUY9n8wLmw4qMm1ISMih4eGHoU/sNTZtgqVLA7v844/v/1mwAEqs6+8l1xTM4G/8EWQK8dC1CBz/7zDv08MzQwwBYNasWVx77bXYts2WLVv46U9/il8wP+3q6uLvf/8711xzzRhLeXCMuaKfz+f553/+Z+677z5M0+Skk07iN7/5DU1NTbzvfe9j8+bNWJbFD3/4w2K46kwmwzXXXMOaNWuQUvLtb3+bSy+9dIxbEhISEtIfL93frllm85TvbCRre7QfbNTYEghNDnI3KzSJ0CSqhLvQkJCjlfGuU/zsZ3D55YG9fc9n0ybYtw8eeCD49KBpMH9+oPQfd5wkl6vj+MWK6YnViE23w47fg19YPG5Vw6wPwZyPQ3zaIZH9aMS2bR5++GHuvvtuVq1axd69vcHeTNPkggsu4B3veAfvete7xlDK18eYK/pf+tKXkFKyYcMGhBDFTv7Sl77E6aefzr333suaNWu47LLL2Lx5M7quc/PNN2NZFps2bWLr1q0sW7aMc889l8rKygPU1p+ndnUytU6nKpqkvG4ezRkXXQqUCvxdr2/KkDA1ZlXNpSPn8bctrXTnXVr3dnPfS41UJ0xqk5HA3hjIdNs0TEpSHjNo6crjeIqqqIFZCBRVEzPJOB4xQyPn+jSl82RtjyVTKui2XWZVxdjQmqHcMnB8xWObWnnh+Ub2Ta/A83w818f3Fcvn15CI6GxvzbClqZtFk8upSphs3NdN1naZP7GMUyaVM6sygg9kHJ8ZFRamJsi7PhPLI0QNjZipMb0uQXXcpDVtc9zkMqaUR2nN2GQdj6zt0ZlxyLs+zakcy+fU8NTmVpbPrsFTilmVwQr1IKiRhky3Ip0sVdFaqqIGhpREdYHctZnyqQncSAK9qxHhuSgdkBp5T2EaEUS+Gz+XRiuvxnedwNeYEdjpd+V8XmpMIaVgcplJ1lX4msD1fe59KgjasmR6ZdEOX/mK53Z0MKc6zraODPe91EhnR47WvSl2aZJMd554WYSyighWNLgF0l15DEtH+YpcxsZ2PariFlITxMssDEvHd33sguu4nngDnTteRdNNrPJafMcm3byD3OQq7LyL79roRjm5jE1bOk8iYtDRnCYTLUS+dH06mtN07tmOZkbJdTZjxsupqF2EFQ3qc22f7pyDJiBi6cypjjOnysLxwZCg73kFP9WB17wb5Tr4ZgQvm8GceRxmWRw7lQHdRJgRVCTJvoxLwpBEK6fw63/sojxmcMKkcv70ciPlUYM59QlWb2qhoTzC7LIYGcenPefg+VARMTCkINK9Dz+TQu8O1h3YW17BnHMiZuVCcsIk0rgDWTMdvXYyyorjW0l2dXVSHzdJmBqGAOHlkelWzLJJQUROXRLVg+tlX8YlokmqohoVkSh7ux0cz8fUBd12YL9fl7SIGRoxQ2NiwmJauYnesRsVSaLa9uLn0shInPSLT9G2PoguW19Wjp9NI3QTfcoshG4ionFUogrNtYNgeVJHVtQj3DzO9ldRuTSpV18l39FNasc+hCZp39JOel+G1VvaOXV9K5vbcxz/QiNu1sUqs+D8+iGfOe2OjyE9Ml5/2/1SSNEbZ6BnUr6UyXfOV8TM0laYk6M6rb5P3ldUGhp5X9FduHYrDEllVKct6+Ip0AUkdcnOrEuFIcl4flHGektjX37wgMGUHLAdRyN1lkZTif4IGXvGUqcYDpEIvP3twaeHdDrwm9+j+L/wQvC/oyPY/8orEDXz/NPyV+iIXouY/nzx2CZ/Kd0Tr2XCaVcQS0ZGXd6jkXQ6zb333svdd9/Nn/70Jzo7O4tp0WiUt73tbbzzne/kwgsvPCqi7I6pop9Op/nFL37Brl27irasEycGEf/uvPNOtm7dCsCpp55KfX09jz32GOeccw4rV67kl7/8JQAzZszgrLPOYtWqVXzgAx8oWU8+nyef7/VQkEoF0Rsdf3AAI1Wwm+35QdVEEMlTk2D0cRESNTW0gucRt/Ar3NeLjZACKUQ/Ty+O5/cLhpW1PaKmRt7zMfqED/f7HON5Pp7nI4Tolc1Xgzyx9ARw6im/p96+MnsK7AEy2G4gg5kvtMXzMaTA02WxzGxhUXDPd9vzi151evrPlAJh5wNbwT5YusRLdfTb19c22VeAZ6MKXkyEFYFc4I1Caf1tjHvqEiLw6pNxfHwVnEMp+gca66G7T0CsngAzvmuj6cEgxS1oKT1pPX0NvZ6DfF8hpeh/Xuz+M7U9AdOkYfbb5zoesnBu+56znmvF83ykbvYLuDYwEI6pB2mO5+MUXiVK0d/+W/l+cZGpVnjX69suRqz/g78YNKwQqMzzVb92Be2WGJpE9bHrNDVB2vEwNQ0UKCeYRVJ2n8itakBgrR7PPEIS6eNdyEfQ01pfBeezrwyaEPgDfOP4SgVB2AaYvDue3/8eVn6/19VCk3i5PEYsWuwnWVjw3ZtJohwHYRb6yvfAc1CeVzwvyvNRnkIave0wIiZOxELEwDZNlC+Q5uCZ9YEM19NOKYubgeeqt7zSpSoVPAt6pNZE8PH6BCrzVXB030GE46vCtVJ4tg1T5pCQseRw6BRD6hOOg3OQkX1NE046Kfj0oBTs2gVbXthEYu+PWBT7FQmzA4CsHeF/Vr+b2x74BM9uOwUAIRSzZysWL+7/mTbtoB3VvW56+uNg+2U0aWtr409/+hOrVq3igQceIJfr/e2qq6vjbW97G29961vxPI+LLup1YTqWso/WAuAxVfQ3b95MdXU13/zmN/nb3/5GNBrla1/7GieeeCK+71PbZ2XK9OnT2bEjsEHbsWMH06ZNK5lWihtvvJGvf/3rh64hISEhxxRN06ZgX34CzxWUiRYY9cW1o8H4kygk5NBxOHSKofSJ+++/f1T9sMf9vRxv/4jzveehItiXFvVsEhexumMF66NTmXJ8GV55E9u2ldPZabFxI2zcKPi//+stJxp1mDati5kzO3nnOzdSXT0MF9ajzAN97ZEOMy+88AL/+7//yyuvvFK0uQeor6/n9NNP5/TTT2fu3LnFwFlSyjGVty8rVqwYlXLGVNF3HIctW7awcOFCvv3tb/PCCy9w/vnn8/LLLw/yVqEG/Ij2m808wA/sDTfcwPXXX1/8vnv37qPKR2pISMjhpaumcvDMfYmZ/EG+0g8BIhmDuVNLpnXOm45ecMuaK0zQWwRvOvJAk+/3Gw20CYgVvgugR21J99k/EJ3AR33utR2HZGQhdI3I/Ab8nI3XmcacXANCBOsPCm1zmtpxdrcMOBAi8xrQElGU64EQKNcjt3EX5tRatHgU5atgfUMBtz2Fva0RrSqJ1VBfrKeHnvp6+sNt68Levg9zSi16TTn27hbc5g6sWZPQyuI9R+HsbcNpbAv6q64Co76S/KY9Iwp4Zc2ejJY8OEWypw25zXvw2lMl82iVCaxpE0AI3JYO7J3NxTSzoQ6jrrQZi5/Nk12/o1+MiOGiVSaxptUX7x3ZnYb7RlxMkcOhUwylT7zpTW+irKxsyONGinzmWrQtzwPgT7gQe8aH+dsLcMGb3szCEjO9+/Y5vPii4KWXej+vvgrZrMH69dWsX1/NSSdN46qrDp+tneM4PPDAA1xwwQVj5p7yc5/7HJs2bQJg8eLFrFixghUrVnD88ccPuibGg7yHgjFV9KdNm4aUkve85z0AnHDCCcyYMYNXX30VgObm5uIIfPv27TQ0NADQ0NDAtm3b+qVddNFFQ9ZjWRZWn6XrXV2j6O0iJCTk2KPwAxFrbsPf24bRUEuqorxflvTa1w6LKLI8vt/0vooqDDDyKfFOX5TKV+J7X7REFGGZhyQ6r0zGkBETGTERhobQ+5tmAejVZYMUfWGZaInAZKvnGKFJ9MoEenkQjWhgm/SqMuxtjegViX71DKyv51i9ugx7+z6MCVUAGBOrcVs70Sv72/Vqlcmiom81BGs4jMk15DftHl4naBK9InHgfAcgMmvSkNelXpEstlmvKuun6OtVQyuwMmoh45ERBfvqrbN/Pwvr9SlXh0OnGEqfMAxjdJXD2dfAtv8G30bWLUebcjG8+Jch65kyJfj0iK1U4LLznwvBcBcvho9/XMMYRqDO0WbU+2YEXHDBBWzatInzzz9/2DP1YynvoWBMFf2amhre+MY3ct9993HRRRexfft2tm7dyrx587j88su57bbb+NrXvsaaNWtobGwsrpDvSfvlL3/J1q1beeSRR/jhD384lk0JCQk5huiZ7zu4+M+Hhokt+5j56kaiMQ13XxeNbYFt6XMdORwfZsRN0q5P5v0XISPBWpKpz77Cvqc3FMuYmTB4tCVLnaXhKkVbYQ3L8WUWL3YNnn1O6oLoJy87DK3rYTR6fHAZXQ+soeyCU/skla6n6fu/B+C4KZU0X3b+4JKDxTPF751/fZLyC08vWVypgcTQIvcW0PT//e+IzcTqPnP5iPIPrv91JR/wwO4nXiYydyrE9+dL8sAcVTpFzelw6u3w1IfgxX9FJBcCw7tmMhn42Mfg178Ovr/73YH//vj+5wSOSj772c/ywx/+kL/97W+sW7fumLTmGHOvOz/84Q+5+uqr+eIXv4imafz4xz9m4sSJfOc73+Gqq65izpw5mKbJr3/9a3Q9EPfzn/88V199NbNnz0ZKyW233UZVVdWI6/75X15j5vxuuk6ZQsLS+b/n91AVN2lO5cjYHls2txGJm5w4t4a27jxrn9xJsirKaw/cRcfes6hpqOfUEyaStV12NXaTasvSWhtn7dY2tr/azLpTp5I0NaiKoUvY3ZVjw75uJlRE8HzFk5tb8XzFO0+eQk3MQJOC7e0ZElbQzpdfa2brY3+ibccCGo4/js6WYMbkxCnlTC2PsrEtjSYFx00qI2oEkUI7Mw71ZREayiPUe234ViUtWUV5RCPt+Kzfm6IuaTGlKoomBVFTY359EuhiRmWMhXXBk0ATgs6cR1M6T2fepSVjM6syRnNXnsX1Sbptj4Spk3E8Mo6H4yuUGUWmupGG6I1Samdwd2xAn7cMqTyE5wSeWJJ1pH2NbtujXNdRmolMVkKyBul5+JkUOWHSnfPpzHus3tJGXZnF6VPK0ITAkEEEzz3rt1EzbQq+Upi6DBbQSkFnxsbxfPZ25Gje100u7ZBqCmao3Fw3xtRqjpsczMCuLrg5XL6wDk0KHn2pkQnlUabVxHi+Ksry+XVFr0ZNXTmytkcionPPCw8BwaLbybNrMSyNfTuqOO2EiWxvSZNO20yujfOq7TGlMsaM2jhb93YhNYlpauTzLjRCrrOZWPVkMq17yHW1MGviGWwmWCjs5F1SOYeEqRPRJcfXxYhs/AeivA66W2l94E/Ep0wk3xLMFqZ27MNOpZmSrGD7wxtwcy4Loyae7VLte5Sf9E4qIxqydQcv7OzAdX1qkxavbGpl8qQkEysibG/qpi3rILPtxAyLVN4lZkg0CZMjPt6jf8Vp2Rd4qXEdslu3IJMViMqFdOQ8qnwPP1KGbFhMNjmBPSmHZ3Z2UFtmkbI9DBmnLh5BErwilwgMKYkZkjLp0OgHC6GTbhdadzOyYhZ7UzpGYfbZkJJyS6cubpFxPGpiOubedbibX0CfMpvc+rV0bt6Nl7PZ9+w2Gp9vomxqkmhdBdLQiZoRVCyJcm2EH0H4Lm7rXrzOVnQjCul23FQH3Vt3Ypa1seUvz+PZHp3bO9nWkefVVJ7426YSAdrzHo7tYaRtzIrhPXdKea8phS7AVcFC955otX0XyPbmC7SlafMnc9rJNSjfx+5K07C7BasiweynNpHvytNwzjyyTe38MZ+ju6Doz1s6lWVVOdL70uS7bOoW19N5x8ssXlhNcmKCrl0ppp23gAlXf5L0337P9vvXkphcTeXcqWz6w1NUzKzmfzI5/Njh8fZhGRL3wNkAmBw3aC+x35CD1dJ3v/tk/tz3hcAQmusN1y3DTMYQJ53G7Y9tOqAM502P8wxBZMrJUZ206/N6l/atqDeJVkSoW1xPtjWNm3WZ/Ib5lM+cgkxWsP5nf6BjexfVcyp55v6ttNkepY11hu81SRxAlTekYCQ+iOqswAOU1CQ2cM6iajZ152l8nYo+jK1OMerMugbanoONt6E99QESxrcOeMjWrXDppfD884F7zu9+Fz7zmQP6CDhqmTNnDm9/+9u5++67+Y//+I8jOvDVwTIsRb+uru6AeSZMmMCLL744YgFmzpzJww8/PGh/fX09999/f8lj4vE4K3vCyr0O/FEKT17K24umD34lPpDOjEMisv9TUMoHtlPKHcfA4xQHNc3ienCgiSbnIPtNqAP/oijtwJdkid/pkj/eg+qX2gF9imfswemlzu9AdOPA59suYcPq2gf+2beGcS35nofU+p+4vOOTT8Rx1NAhsP2DDKbkO8NQt4bxy1Kqem0YxxnagfukBwWk43FyviAyDLnVEF4WfE3iViaRhoVWUz7goGGLc8gYzu0+yIxHgBrO/ezv595VfYz6x4wRVF4ia0+vDIpkfMAi9p+/+Fg6BFqW2t85KTDQS9V+6Zv3EGqFer96+myP0mL2sdQpDgmnfA86X0Y0PcJS70awrwSjdAjd++8PZu/b2oIou3feCeecc3jFHY98/vOf5+677+Y3v/kN3/zmN4uemI4VhqXo19bW8pe//GXIdKUUl1xyyagJFRIS8vrwfMWaN56NHYuyLufxLtl84IOOUraffQqt82fwdDdclejkYN5eK+DlFW8kV56k35LE8eBpZ4RKmRjlUUmvTf9ol7y/2oaxewT9MlK19gAWPgdd7nDKGZPx1IEqfZ0Dg8Nx5RyxSAPO/D3q3iUkMjvwn7oKzvnzoKi33/9+YI/v+3DaaXDXXYHNfggsW7aM5cuXs3r1am699Va+9a0Dvxk5mhiWov/Vr361n+upUnz5y18eFYFCQkJePxnXxy74js+gkR1yTv/op31G76/dLtdgwkGU4UtJrnxw4BQvE7iq8zrT+LXlSCswibF3HZqBlT+xmmgyTn57I0KTmFPrIDpCc4c+OtWoKI2F8iLzppJ5ccv+Z//3g1aZwJxci9vSidPYhjVrEjIWQfZZoOmapRfISUMnunhmv33tQyzsFBOqB+/r0xHxJfMOLGxPOAoh+tUrdI3Y8bN6vxcGgiJq0TmnoZ86qyWig2TuQeVs7D0tgRccKXrt+UdhYBlfMg/lK5TjIui1+u7bz0LX+st2AEfs2qzJRPMOyvXIb9mDygdvxayZk5Dx/mZdAsiIwmXT53yK8TBoHq9EanGX/x7xtzegN94HO/8Xpl1ZTPa8XiX/ve+Fn/4UrNdvBXXUoJRi1qxZrF69mvvuu++YU/SH9et/xRVXjEqekJCQkLHkYBVbOYTyKgoKkJ/Nk31pK+q5DeSfea3oYWXUqa9Cxiz02opAieqj5FdZw2tdLN3r8rNcvP7ornp74HVE6Bpa4uBt9c3JtciIiTmlFmEa6JXJfspnEaXQS5hXScvo9xlIwintP1wqn1oDzNzgxcayj6lXzYu9i5ajhoaRt4v19qXHPMroSBHLZYsDH2Ua/RTbUjL3fLTyOOaUWmTMCrwNFRT9aFd3yTaMFCEF0jIQ++mvofrSai618iHIr8UjaAUvUMLU0auSg9omLGNQX5R5NtHU6LTtqKXyJDYZ7wi2X/2PfoM+TYNzzw22J08OlfyB3HLLLfy6sDL5hhtuGGNpDj8jWoybyWT43e9+x5YtW3Dd3gfgTTfdNOqChYSEHDzh3NjoMqQKPUYr3ETfWV5Aui4Ly6O4w9CV5r/4MvUvb2TW0klUT6yk9XXKUv/HR9jxidc/0dNv/UCfbm35yT0cVxnjlY4sF8yrZtrCKlKv7OWpHTmWn1LDxsd3sUYNXlh01oQEyWkV7NzQyolvmEI8m+b3D+5B6RrlhkY6nWcfgo9eNo/ktFksfexxHl62HK0wA33hrpdpeXgzjzs6i2vimLuaYNFyAHQpWfrIP/jD9sBBwknlEdpzDtsKC61nxk1qU93ETqzlxDvvZW1OMStu0pz38ICGmgRP7CytMNd8+G2FPuh/bUU37uD45186mK7ltP+5h8yUWl44YXHRv3967WtoL22iu0/E7nPiOlvb03QnYrT2Wa90fLnF9HINmYzQ/NwuHhMWsydVMqO9nU26RZvrI1e8oeCGc7CD1paf3FPctqRgVtyg01FMi+vU1EWZMK+CzPObWfP3ka/zO5bYalzIPG8Vom0NNP8D6s4qpn3qU/Dgg4F3na9+FaLRMRR0HLFy5Uo+97nPAfAf//EfXHbZ4fQSNj4YkaL/jne8A13XOeWUU/r5kT1S6WzuoLmlit1dOSYkI7z0ahNl1TGcvEcuY9O4YTMAjduCl/271/yFqpknANC1ewOaFUWTk4iaOt0dObpbmmivCH4kultaaOnOk6yKFRevJiydqKmRtT22NKdx8i6tWYeEqZEwdeJG4DXG0iUxQyOfDQZTXj6L8hXlNTEiMZOlU8qZntSojRuUWzonTUxSYWmssXSSlkZFxKAhDur5J9EbFmCY07By7ZhmnOMml9FQHmV6RRRfKXKuT2VUpyvn0FAeZWaliecrDC/PlITFhIRBxvFpzthURAwmV0WZmLRozwYzap35PosbfR/h5knGJWWWDBZV+gboBsJzwc2D8vFjlXR5Gp15rzgpITPt+I6N8NziIjPXVzRnHLa2Z3l5RzsVSYsPnDIZXQqk8kiYEuV7VNbHKYsYnNJQwZz6BHbhh6suHngXkkIQiRtUTKwlljARUrBkQR3vWDyRiqhOMqKzcV+KM2dVkzA1uvMu58ypoSZm0Di/jrfMr6M+YZKaUU1b1qHbdplTHefB300in2pn0vzZXLxkCmURg8dqm7n8xEm0Zx2a0jZWwRPQshlVLKpL4PmKtm67eB3ksy52qo14VTX2pFlIqXHajCrKowYvaBLfV5w3v46lkxPkPEW06TXSzz6GWT8Rr7OVfWs3MGNCNZppoDwfJ5Ole28niWx/n9ZuJo+9awvGKaDnOqB5J9WJapq68pRbOlZUpzphURYx8D0/OL/CIuf6NHflSdkedTEdkeuk4+V1WBVJ0E2kFcWqqULGysi6Ptu7HZZPmkG3FiWlm+xqzvJaS5rHXmtm1oQkjR05DCkwtTjVZpSsG1wAMUMLFi76HjlXEkGiosG95Piq6N0p43hsburG0AQxQ6M959CZ95giAiVRGFaw6Nrz8RwXI2Ei+uiPVm0VMlmBPmkGQkr8WAUyl8Lv7kBW1IGQiGgcLRrHqkyixyJohqRiRulgQQOxfYUuBe4oLPSfHDVAgGZqdKadforXQCo1H+MN78R0cwgnj7drA2Un2BhTZlGx4Alan3uV2jcsx8+kiE14Fc3UqTj5ZPRJM6g8owmvvZn0li34tsuc6TuZsnw2VkWC+iWS6rddycPOJE647EvMv3AvWnczblUDi2fPR6usQ4//Dyub2sjVVZE0NAxLo7mPZ6F6S9uvp6G4Jqi2NNrkYEttSxN89QtnU3n+27C3vII8933sycL8KCxr2cLu5CxOiggu/NGX2XDXWuZdcRrJhYvQKuvwZ55C1izngq2rcWechi10/t/Gf6ByGWT9dLzdG3D3bGPfuR/n6fYcb7ji8+y89btsK0zsT7np58zWNS7ItZCO1hDF4c4NKXylWLOtnRsfuI8zHvsd+B7ayW9CGRH8J+7GT3UQOeks/EQNXrKeE7v28pbX1iDjZSg7h5/uwliwlEseW8VLP3uQypmVdO3qYsJJ06haNIMfv5YnpZnoA/pj2VVv57QffR/h5ukUMTa356iJGcQNSVvW46+7O3h2ewfvveVKZidNWrIul1VH0Dt2oyKB2Vnux7exKRuUd/n7z+Pk+dfgNu1G2TlULo154rmo1t0o18HdF0SGbX7iOSa+fQWyrgE/VomW2sept36fyW+9AHP2Cbj7tqPyOe64/xm2AWWGpA2ojUjSgO57XLO0mmx7jtqF9Uw6ewn6hAY6nnqCxLTJ6JOmo9dOZspFL6J/93f8pGlYt8cxiS0q8KdfhbblJ/Dqzf0U/YsvhunTYds2+J//gauvHjMxxw2PPvoo73vf+wC47rrr+OxnPzvGEo0NI1L0d+3axSuvvHKoZDns9PVa4PTZFhI81y96adF0OcgbgxEvQyu45vJ8hRzg3kAaJqYucXxFvuBtJe/6ZG2PqKlRHjWw8x6RmEHe8zEKx/f18CILLhs8O4th6dgFP9a+AiU1wKNHn8g4fuH4wNODErJ3XqWw4esWtuvj+Yq821unIQVWYXbQ9RWGAOHZ+EagaOUK8med3nYEcig0AZ6CiC4ReQc8B1WQ0VcKPZ8i39SCEXR4T8fj9diuCsC1UWa0p9EIw0D6EXIFJVCTAuUrLF0iCdonfJesI4tedHrk8HxV7GNNBp6NhAwSNV3gK4X0wSx4sknbHlnbQ5OBy86866NJEZzTQsd5SiFE8L/bdot94LvBYMfOF+oTEDX731KaEJi6RkSXeErh+apYPoDv+kg9GHzIwuIqQwvSvUK/SymK3mmUbhS60C9ev17ORnk+QpMIKbHKrEEKk50Oft11KcAHYQXn1nN9BuqkuqGRNDWUZuJ4QXujuiTvKZJe0Gbl+QX3mja+XbBT9yFpaWBrgfyFa8BTimTMKORRRHq8CBU0cE3294Bl6gIfBcpHFfI4vireo1FTw5CyeB3rPa5NpFa8xnpmh5XXP/IrnoeIxFH5LCJaWJYrdVS+YNah/OB69LyiWU7Qx8NzimiWUFYPFoUqujX0R2C/LJRftKlWvg+ugzT0YFtqRKvLyXWkQA/WE+AH59LL2egFN5n5jhTRuoqgDM1E8wVa4bmg9IJ5TuHe822neD9LMdge1DmA7D1DgMGOQwGl8PoE4VJSR5MeoFCajucrhO/18wKlfB90o1dO3QTPgcLzGikRbg4ZiSOicQwpioNMz3bp66u8rzMvJXUMTZB3B0gptWJfqKKZThx8N3jACYlynf75ATedQzODbeWpfpF+SyGERLh5lNRRviq6GQaC+4XgWdlzf2l974sCQT8F510ov3jdKzuHiMSL+UXEQOVziGgcJ1MYGQiJ0gyUZiKkRCYrQPlIM4Lb2Vr8jeyp1le9naeZGr7tIw0dYRgox8Ysi/f2m1moe0Rugo5N/LnXoW35Key+BzrXQ/l8IDDfufZa+MIX4NZb4YMfPHZdagKsW7eOFStWYNs273jHO7jllluG7VXraGNEK/QWL17M3r17D5UsISEho0R+gPaelWMeMmPM8PrYAo+SR91xx5j/fI12vxZ+kMfyd3ncKQWjIM6hbVHpi2Cc9eKRT3IeTCl4OVx/S7+ka64JTHaefx4ef/zwizZe2Lt3LxdeeCEdHR0sW7aM3/72t2jaYPO+Y4URKfr/+q//ytKlS7nkkku44oorip+QkJDxxcsd/f3Fr48O9jRyLNJpj7JGGmoxBY7SEdQYMNQlNd4vtaFjC4TXxqgzP7A5Z+t/Q3ZfcXdlJbz5zcH2D34wBnKNA3rcve/YsYM5c+bwxz/+kegxvmBhRNN873//+7nkkks4+eSTj+nRUUjIEcd41xIOIXo+j1tYU5Q0RrcjtLI4XnvoLUQcIl1uLC/bsZvRH6ozR1eew9a6UM8ffWrPgOql0PoUbPkZauG/8Je/wL//OzzxRJBlz56xFXGs6OrqKpqYt7W1cffdd3P11Vcf0zrriBR927b5wbE6TAwJOYKYHNN4prV3Vr/eTgNlYyfQGOL2cRzwepSbaD5H1hrgPjL0/Q2AOkRa41j2rjrY8OKvm6HqHN3eOGx9ewxPMhwyhIC5n4AnniL9wo95w3u/yHPPB4qsZQUmPP/v/42xjGNEeXk59957Lx//+MdZt24dH/nIR/jxj3/MD37wA5YuXTrW4o0JIzLdOeOMM3jppYNz7xUSEnL4mFfefww/N1fald+xQKyjq7j9eiZpz3v+aab+1/9S9Z8rmfzcup4SX59wRw1HRz+Mh1YMpYCP9zGlKrEVfBsPvXp0Ydvw3w9fRnumijjbmaDuI5GAz38+8Lpz220wadJYSzl2nHXWWTz//PN873vfo6ysjLVr13L66adzzTXX0NR07Ll1GpGi/+STT7JkyRKOP/54TjvttOInJCRkHHKQEUqPOkZRQ5KOi3C9cWeOMObijLYuVzhnY6ncqnGmWatROMuHtkWhQn+oyeclt90mmT0b3n91lJ8//AEAvnftD9m+HW66CSYcTOjvoxDDMPjMZz7Da6+9xvvf/34Afv7znzN37lxuvfXWfrGgjnZGZLrz/e9//xCJMTZMnD2BJfNqmZCMUBMzqKxPUB4zsHRJU9Sgu2MCvuejaZJ8NnBtKXUTzYwSKatFN4JXZVMqo2wqixCrqqWsOsbMugR7qyooixhMLovgeIHzs8qowYzaOAlTx9Ql9XWBS7GEqQduCAt6mV9w7agbEj2SIFJei5N3saI6VTUxamM6eqqJKcladJlkYiLwKjKlLELClCRNiXQCP+q+EaM96zK9MlJ0i+n4gf98Twk6cy6GlOzuzFIZNaiN6ygFMSNBNuPSnHbZncrh+YqqqEFbt01LxsZTgQ/97ryLVXDnJnwX9MBMQikVuITUTKSpF90WAigjSirjs70zR33ChEiQrpVX4yXrEVYShOTVlgw7OrNsb83Qti+NkIK2nEfOU0Q0jR2dOTp3bQAW02177GzLUFtmMaE8gleIEQAU3GuCYenU1icAqE6YxIzA7eXkqiitaZv2rFP0e18TM6mLG8yfkGRS0qLM1Aru7CSO7zOlzGTG6WfT3ZFl4cJaFtcliRkaZRGDedUxOvMe0yt8TF2QMDXmVMeoimicMrmc9qxTdD25a3Y1nueTqIgQL5uH7ytmVcZImDrTamJURA3OnV5JWWonXtkEhOeiJxIFF5A+kcp40aWfk85St2Q+MhLDOu3NiJfvKv6wN7znSuTU+azZl2ZxXRmVlZNp6tqH63i0ZW2EFEV3fIGrT4HSLXzlYOqSnOcTM3QQAj0WwaoqR6usC1xs2jlkPEljdz4451YcT4HtKVJ5j7zrk4zoTKuOUZ+0iBkajq9QVhzpBC5II5rE0gQy3Y2pVaBUcD0Jz8WQgpqYQUXEoDpmImXQpzFDozJqENEFaBp63WT8SBJZWUfFHMi3daI8H8PofcxpFdXoNRNQlZPwzDhevBq9fQfCiqBPaMArn4CIVyHcPJHZbchYkmkXtGJVJMm1dmIkTHzbY9vcGnYTuKZFgl24d62Cm9asN7Tf+FpLw/YVnc7+B2JWwiz60S/Le2T9/ahpAmS+G5Hvxk+n8Jp3ozwPmazA7kyR2rkPPfo8nu2S7+gmvbeNZEM9+B5+JkW+sZHUjmBR38Ztnbi5zdTu7cSzfYx4lGUrPoZ4dTXO3m2BS0TdpHXN80Sqy9j3wm7ceTUAZDyF7/Rve9cB2qkLgeOXVuqV79P68jYSUx+je+c+aqavZnKiGmfDM3SsX0fDm96Os+1V9qx+jY7tnbS8GMQ+iXW2YllRkrpB16N/JTJ9A1aygtTza7BTaSLV5WSa2unYsJO5xy2jrnoS3iN30rWrHSYHmlLVuvswJ07H72whWTURgDOnziLnKRbVJYntWMurv/o/3JzLvKu6sBaeRteWLbS+vJXJrkO+PUWkupyuxla2/OV5PNsL3Ex6PtMveJam57awbs1eos82sjXtcMLGNhIT15M5fRlUmLi+oq9VsbN+Lb67Ez+doiye5KTjz0Jt2YyfTlE3oYG5c4/j4jnVVGX2IDpT1CXr0La9iL3pRYSUeJ2tdGxtganBVO/Wux4kZmaQpoabdTDiFjXHb8ROZci1dtGxaR+e7bHq79s496EtlE8rp3rhJLxcnr/+8jlOfnYXFdPK6W5K07m9kw2LFmEsKqOjcL5bbY8Y4Lg+d979Gs15j1nP7+PEe19Dj+hs3NaJp6DKlEw/oZ5tL+zjvuZwvUspurrg1lsl3/3uBXR2BlfFhAlQccpHgFuYl/wzWDuAhjGVczwyYcIEfvnLX/KRj3yET37ykzz33HNcd911/OQnP+EHP/gBZ5111oELOcIZ0Yz+2WefXfJzIK677jqmT5+OEIKXX365uL+pqYm3vOUtzJkzh0WLFvHYY48V0zKZDO9+97uZPXs2c+fO5f/+7/+Kab7v86lPfYpZs2Yxe/Zsbr/99pE0o4ja3w9nsa4D5/FK5BHywLMb3bkDjyh7/MT32zeMmSYlDnxqtRJ2DO4w2usMI08phBrGDPMw5C7VtXIYNhk9A7P9kXcHyzic5hrD8P9cyrWjN4xZ9+G0rSTDkNs/SH+Tpa7LgXgHOSNa6rociKGN6NHVy378lBcZRtsO9xz6gf3oD+8aEQfZb8O6d4GD6Rd3jGfOhWeX3D++5vMHI7yDmZEc3nVixCMHzKNHDzBPOEQHasN4Du+P8apPHApaWuBf/xUaGuDLX9bo7Iwwfbri9tth61a45rPzoP68YCJt80/HWtxxzfLly1mzZg3/9V//RWVlJS+99BJnn302733ve9lzlK9cHtaM/rXXXnvAi39/eS677DK+8IUvcOaZZ/bb/6UvfYnTTz+de++9lzVr1nDZZZexefNmdF3n5ptvxrIsNm3axNatW1m2bBnnnnsulZWV/OY3v2HdunVs2LCBzs5OTj75ZM477zzmz58/zGaHhISEHDxi0MbY0opx4EwFNulJnpw9k9hWxfuqXBJ90l6NVrP3U1eyT/ks2bWRupbWA5aXM03UhIL71telHQ8+2B7ZXNTrYkunTcfkXruH/3xkPddcVEvFEPl93+fBhuPoiMQ5bkeWSxeWzrfN0Xlg2Rvw+nj9KLNdKifB9utOL+57+gDy/aNdsOx1DIq2pBVtUycWv69bsJBXlWJR517mZnf1y7ueOE+csAxfSvSlZ/GPPmnneDvpeO9b+EfC4vjOvTx16ol4y/TeK3CAiMI00G94HxOBDPQrC6AJWA9wJtTncvDtb++3HceCPtHYGJjh/OhHkCkEOZ83T/GWtzzHt761mFisz/0+52Ow7++Bor/oX0EO/1lwrKFpGh/72Me47LLL+PKXv8yPf/xjfvvb37Jq1Sq+8pWv8IlPfGKsRTwkDEvRv+eee1i0aNF+8/z9738fMm2oVyN33nknW7duBeDUU0+lvr6exx57jHPOOYeVK1fyy1/+EoAZM2Zw1llnsWrVKj7wgQ+wcuVKPvaxj6FpGlVVVVxxxRXccccdfO1rXytZTz6fJ5/PF7+nUqn9tiUkJOTooa8uPt5iIO2PXMRC8300Ss2mC/LbG7GmBYppnOHP7u7W4/hS0u3BnlSeubE+aWYSNImPpClROSxFvyvZx5tTrvTs+HCItnWRqavC6Ej1e/NyuFaabOvqL3vO8djV0k5FdenZ7c5Mno5CNNkNnUNHTt7pGv2UfIAudLoq64Y8RjkublMHWjzS76LNuIqD9Qi+PT14kKCEYHe0nLn0V/R3igj+EG9XN1oVeMkk3cAm6vD0XjVC+T5+Jldsg5+zkRHzICUuzXjVJxzHwXGGF0H7QJx7rs769cF5P+kkxRe/6PHWt9o8+OBOYD79qqm/CN2qR2T34u76K2rihaMiw2jQ0x+j1S+jRXl5Obfeeisf/OAH+fSnP81TTz3FF77wBbq6uliyZMm4kdcwRmfQNixF//zzz2fNmjX7zfOWt7xlRBW3trbi+z61tbXFfdOnT2fHjh0A7Nixg2nTpg07be3atUPWdeONN/L1r399RPKFhBzpVODSjoF++CZFxyWyj3mUPgyTumFxiO06ZNSira4OfJ+pzY0lBXCbO9FzNtq8BkbyakEN+WXA1xF2lZfOgXPwC9xirR1oLZ1I5dPRb+b68IzOemr0mtsxEzG8qLXfxcDDXazbkyve3U1ZupvG2jqUHHxTVm/ajh7V6eq0ack6oBTJTJr2nEd8ybxCWQd/4fUc6exrI9LcTnJyFR2VlfvNW57qon1bM/qCafgFhb6UF51IVzdd2xpxXL/X1lEpsq9sJWoGx2U9RZkhqYobIATdaQdfgaUJ4pUR0u052lKZg2rbeNAn7r//fmKxWIkjRs6WLW8FdP75n9dy5pm7EQIefDBIe+CBBwblX+LOYjL7ePXpe9hijD+js1Iyjxe++MUv8v3vf59HH32UF154gSVLlowbeVesWDEq5QxL0f/FL34xKpUNZGBAkoEPzr7pI0kbyA033MD1119f/L57924WLhziPWtIyFHCmaqdl2yLU4+fMdaijCkLW3axrbKO2ukTmFk1Oj/Eh1r1FD2zoCUUwn70eKcZpXoPppziMaNgay98f+zfung+0vMYzkqN4dDTK9L3gzc0nodb4rxKL0gXnlfsS9FHaUaIUTnRylcIL5AD9h8DQfN9cD2k5+OX0BZ6jpWeB643+PWLItgP4CmEUGi+BkIgPA+hQCLQfL9QxsG/vxlrfeJNb3oTZWWjE6tEqeAN0Cc+cQJTppwABLPiDzzwABdccMGgmV753AOwaTULZ1Yzf/FFoyLDaLA/mccT99xzD48++ignnXQSwLiXd6SMyOvOaFJdHdh0Njc3F0fh27dvp6EhWDXe0NDAtm3b+qVddNFF/dJOPfXUQceVwrIsrD5Bc7q6uobMGxJytFCHzZnpViZXHNtrV+oyXdTnUsw6cwZSH+3oiGOtlY4c1W97oEF16Xz7pUdJOkSLasdkflIN2hg6C4fPDejrqWboJg2+hvdXj+p3jYyP63886BOGYYyactjj+TEaNRhYZMl6YsHaC81uRhuHCupo9s2hoK2tDYC6usCcbrzLO1LG9KX+5Zdfzm233QbAmjVraGxsLC6w6Zu2detWHnnkES655JJi2o9+9CM8z6OtrY2VK1dy5ZVXjrj+4XjGkcPIo5XIMxyPPonIgcdZQg5WTIYTmn04XjJKeUUZjmmDcZDmD8PxBMQw5C7VtQf2SgKuc+A5OquEnctwmusMw3tNKcc82oFmbBle20rWNwzbWDkMb0GlKHVdDqr/IKdmh+OtxxmO95wSiOE8vIfRtqIqdJj0nEGelw5S41MH2W/DuncPEn2Mp/CVNvR9Ms5c6fdDaYdunu5gr5NhlX2QXtsOxFjrE6OF38fVrD7cUxwtLCLP7TskMh3ttLS0AL0DxqONwzKj/4lPfIJVq1bR2NjI+eefTyKRYNOmTXznO9/hqquuYs6cOZimya9//Wv0wpX9+c9/nquvvprZs2cjpeS2226jqqoKgKuuuoo1a9Ywd+7cYt4FCxaMWK7v/dOJLJxcQ1w4ICSJixaQcTw0Kcg4Hk/MqCLv+li6ZG9njs3z6lg2v44N+05ibn2ShpoYF8yqxpSC06ZVsm5firNmVFFuGRw/tZwL51RTF9VIOYoyclgTk8yriRHRJFnXx9QlSVNnyaQEhhTEdcEpk8upihpEDcnZS6bg+xcyZVoFiyaXA7B4UhmV3TtRu18jWjOFhopJyLZO/EiS2lg5MUPiKXD1BGasDD+SpLPTRelxOrM+nRmH6phJS8ZGk4K9qTytGZvtrRkaKqJs7wgWGdUlDGxPsaMzS2N3sE+Tgr2dOZrSNmWWTr7wY+ApyLl+4Hc9Wk7OVZiaDCb6cj5GIo4frUC4ORAST7NozWbY1p4hYWq4FRV4SmHNOpXXshaGjICCv6zbQdbxyNoedtbBc31aMjYxQyNuBn70fdemImmRMDU0KQqxBHQ680F8gEREp7IqGvR1RGdKZYy861MVNzE0gaULZlQG5hxlEYOM4zGlMkpdwiBpakwtj1AR0TClACRSQM4NfL7Pn1+D6ytWnDCJBTVRhBDETY0aw0WTOh0CEoZkfk2CiCbIugpNCKQQeEphSIGpS6IJk+ryCMpXeK4iZmjMqIhSFTWojBiUWxrkXFAKP1KGPmUWMhJHy3QxKZ7AnLkIpERYUfzqaeTjtTyyp5szP/av1Lg2O0UlOVfxclM33737Oa44Zybnzaxl/ROPEimv5MWpFeTSDk1dOXa2ZejuyLG5Jc2+KeXs7c7T2m3TlfOI6xIvWU/Z0jcg42V4dbNB0zFqpuAma9m2JYshJf7kSjpyHo3dNu05h8bOHImIwYyqGJPLIlREdExN4EkdTXiYmkAI0AXgOURNScbxUVLHj5ShCSi3DAwpMDRJwtSpiZkFf/w+tqfwErWISDlOog5zsYnIpbDS7URnbMZPd6HXTUHMXQpC4CRqackpPAXZlEdd2TTKTzoPt3o6u3OSZEQjYUoMQOkWZSd1AGBOTOM5LtmmdqK1FZCFiCGpS5h4rk9zPugjK2agsNGFoNv1SRXMERK6ZGJVBDNh4mRdEh05dmeDqbsqU9Jm9ypXtVGdHpcBkYoYvuOTbPfpa8FcbWoITZAtfBdOFmfPNrzWvbS9+Bpuzqa8qYV9z6ynfUs7mqHjOS656BSoCXztOM376N7TRfNzm2jf0oFz2hQIHjV078vwzGM7AVhYW8eeB1djd2WQho6dyrHuwW3UTU6yVUvCccExuRIDXvcAel236+MphWerYjyCviZLt/3PK5z6pw283JXnTbc/StmUMta+2MSrqTxvrr+XNe052uzCIP5nzwPPk9Ali8p+Qafj82oqz6y4Sbvj9ebrw7l/fi/lSYtH580lvnRhcF14Pjrw96/9mN+teQ1TCsp0yfJFwYxwvivPz5sd6j71zqAfbZdr572nt9CfPFvcLLt4GfEl82lN2TTuTRGtqC7pGGVbyoZU/wXBPddEj+XOV993O37Rjv07/fIuSFpoAl7uylOKsguXEl+6EAhiOHS35YjUQFNrlh/87pVCrkDuyvdcQGROnL1tWVxPoTy/6NN/245OrFnB9bOnOYPZkKQj5zJUuIRsn2ui0/Hp7Cgh3+7hO8gYr/rEaNE3jtOwFf1Ij6Jfaj1PyIFobQ2cDtTU1JBOp8dYmtHnsCj6t912W3E03Zf6+nruv//+ksfE43FWrlxZMk3TtJLlhYSEhBwOxofBQi+jNkcqhtje7zGHojfGMiRun+39Na1vu/fbBaPYP6+nqEHn6SD7uF+7D/+dcLTrEwen6NcH/7Ohon8w9MzoV1VVhYr+s88+y7/8y7+wZcuWfuGDt2zZMuqChYSEhIQMjywa63fuY1ZB7/qHqGRDLM5b83m2l9Xz8tknEfEcZnc301ze65nkL62SK+KSl6oms7d6Np1l5cW01gUzMcqTPF5m8fyGFG6yAScWTC23To7D/KXsaW2jq7rqkLat5pq30qR8Ep7POlNHszS6FzpUez6bDA3D9akeYGOjCUGjJnAVVHs+OU1i+GpQPoDthoamCeJ1Pa/te/Ok33Q6sQUzEYAt4JmC/3LlKWoS8WI+oetUX116EaTZUN+/3IPSrxUgqLnmrXidpRWRlCYRBO3dvxz9MSZWD5J9qLwA1sxJvfmmDu0iNOTg6BtUe8SmO/mmwPz1EJraHW34vl+00a+pqWHnzp1jLNHoMyJF//3vfz+f/OQnWbZsGZo22ovaQkJCQo4slBDFDwWnKEqI3v99vXkUvvv05gs8qajBnk/6HNcvf7+6A08tPTyxbhuzjqsBYIMIlNA/d1pQHihmOc3g5fJJDOQl22J9ZWlvIc6kWtqB9rQLRpyBcbn6KvnKPnjXmgj6K8C+QjkuwtAxJlZjE/xYdfekV4BJEIBJEmwPpMdAxCTow6HyZQd8V7aL0nv9aGsFZVYBfd04DFSl9qcc95QL4NsOMmb1S/Mzpc1t+h4rIiZaeQKtPFEyT49+eKCVOb1y9J6voWT37aAf3KYOtOkTSuYJyhwffsePBvrO6DsORA4cpBi0gjcx3wG7Hayj09b8UNDR0YFfcMEc2ugTvOL66Ec/eqhkCQkJCTki6FG584k4zXMCpVooRUcJU4aY6wWLGy2DvX0TJkOcYOGjLQUxzye7fgdGfSWp2opits1WBUypgCm9h+rVZeSr+yvnB7to2y1hD+Ju24s+fWKJ3KVxmjqwdzUdVP16TTliWj1aKgMbegM3ZV/dTjQRIe9DuSHpdnzKK+NkqisAyG/fR7Xw6XT9QfbhmoCkLnF9RbeniGkCR6mSduRVpsTQJPuyLsrz8FPZYKDVlSaqS7KeQopg0XBFIlCjfddnXzpQbnsGJPujWC6Q37oXNxEFIfBzNkKKfkp3KXLrdyAT+w+VldCCwWb3fhZF9JVD5Wyyr2xDWKUXqCvHxU8Hwa/cls5AVk0GrjEL/5Xr9Ssz5PWTTMKECUF03GuugTvuOICXXbsDHrk42LZqQU8eDjGPGvQ+r02O1mCqI1L0zzjjDJ577rmir9GQkJCQY5EJuofmuv2igg7lDUvoGmI/bj2FJov5tHgErSw+ZN79MXPC4NmoE6IuOzrztJtBmRV2hi7Nwi+8kdVQzNQdNjr954H3J29JBKXdYQ0DvSqJEAIxoN3KdqEzjecpdEvDtz1ksnd6U+VtTMcG28MbsAhYStANDd9XeI6PNCT4alA+ADOqYxoSr29kXKVQXWk0XaJcP1BuhSCqBfPmnu3hlVpUOhw8v5/5zXB6TbkeXkf3fvNII3CA4NnD95jjZ/OQHV47/O5QmT8c6Hqg3F9wAfz+9zB/PnzjG0NkzrXAQ2+G9mfBrIRz/gz78SIVMpiysjJmz57Npk2beO6558ZanEPCsBT9U089FSEEjuPw05/+lHnz5hHp8z7p6aefPmQChoSEhIw3Juge5/zjUdLtedycy+7Z09l72uJB+UR7F6qPWczSh/9Bbb1FuinDxpRk18VnDTigd7BwES1E9+zFiFk0PrubV19t4cx3zOfP0WnkCmVWPbSW41WKGecvYMqJb8bZtRmAa/xd5HMOVXUTaNywgdZtnVTPqUE4Dq1bO+jcm2beisVUzpmC1+lgpRzy+tCuR0+usZi34XlyqRzS0Llr0uC2jgoDTXgGMCDM0aGRISRkjDn7bPjRj+Dqq+Hf/g3mzYMrrhiQKdsIf78AOl8OZvLP+xtUHj8m8h7pnHzyyWzatIlnn32WRYsWjbU4o86wFP2bb775UMsREhISckQhlUJzPZTrIYcyvcj3t13WXRfdN9A9D1nC1SNQ1F8NFIbyMVBBfsfFUD7S7T1O2A669ALXpAPQCmqxIIhwqqPw+shtoNBFYNstBgXO6l+gFKBBUL/y0XwPb1jxBg4hoZ4fchTzwQ/C+vVw002Bwj91ap8LPrMLHnwjpDZAdBKc9yCUH9uBEV8Pp5xyCnfeeSfPPffcsavon3322QD8/Oc/5+qrr+6X9vOf/7yYfqQx6/Efk966l450lkh1OUvPPRetvPf194VLZoLyEb6LH5mAMmZi7H0Fb+lkhJ1GZvaQe+T3KNfmovlLuGjOVPytD+Bn08yft4T8Q3eR2rGb+JSJZFraqFmwmIkN8/BTbQhNY8biJQgnCy/eE9g5dnfwhtPeinCyyK5Ovnze8bzn5CnMrrKIKBtbmli5dlp/+gM6Nu0m2VBPxZwGkBoiGqdmwamobAoS1aBp5NavJWJFWNpwGuaeF5lUNoErT5hEuaVhagJNQEfeQwDTK6PMqIhQbmn4SmGlm1HRCJOmlZN1fHKeImFKEqbG7KooZWbgr18Q+NEvI4fcFXhfmj5jKpG9L6Ny3QgzQqYzRSK1D5FP47fswvRs5lfPoDKqUx/TMTt24htRhOdQFYmjyWCh2zlzaogZGlLAlMooCyckOWViAs9XxHRBmVnB2R+8in8+bw6L66IcV5dgQlzH1CRpxydhSqJGPcsaKokZgVJSFtFQCixNUB830NMtVE6tYmFtnHJLw/YUU8osGspMtEwbC2vLqfJT4ENcj4Ch4QgDM9fOB06fRsLUmVcdoTLbCEKSLKtD3/caVVUNaNEYZZpHVdQMXqn7itq4WWiTwNQF+Tk1zKlPMLMqxt7uPFnbY2q5iSkFWdckqgviKodwHYQT+M/WqyfgxyrQlI82aTZe5RSU1HH0KK1Zj6aWHI9tbWNSciKmFmftnhRZx2PNtnaad7bz3PZ2oqaGkBrxsghRQ6OqJsaUyhiJiE4kbtCZcWhKO6TyLrbns7c7T9LSEEJQO3c5jhGlKadwPUVV9RwcH1L5RmzXpyM6iU17UuzozNHSnWdvZw5Tk+iaJGZoaBLyrqLd9+h2PDw/CJIlgfKySexqytCZc7G0GPFIHc0pl3XN3Vi6ZP2+FFnbo6s2TlnEoNt26bY9rLo4iDgbdnQxpayeaHICWpkgOW0ZhibYk3bZ0ZkjZmg0taR4rbkbU5d4vmJ2dZxZlTPYuzfPi41dTEhYTC6LUBufiO34zF36TqTyEL5L3YKlCDePWzOT0y/aBEKipM6aF19l9/ObBj1j6udMojHVaxqx5Ne3EyuvQuTTTNqygV890P9t6OS6OB2mjgu4l3+GydMnI4VgWstGTn7hUfTT3krZb+4gUyjzjC+8i+NPPBGnbg4vtjvUHL+IqqjOxNM2IuwsfiRJ8rQtKNdBNBwHng37tuF1tiIXnYUfqySaaUf7+e/6DUrqJ5XR0kcut2Ex0996IWS7EFIiVz6I18dUp7oyitVmUjG9Ejdrk27O4Nge0aRJWUMVTa80si/vFv3kL5xeTmJyNVrEZEsGup2grBOOn4ify9O8vZPyqijx+jLyXRlidRVM7OwmXVVNwWycqXVxqssrie3pYF9zBkMKqqqj6BEdBJiJKG4mT20qT7QqSj6VZ9feNN2uT0KXmIE1DxMWTwKlcF7eS6vtFf2+z54cvDVJtGaQmkQzNeITyvBsBy/nkuh26HZLm8nENEHGCwZSB4ojMBLqLI1u1yfjKaZGdbpdn27Pp8bUSVZY2GmHNts+cEEhRwQ33givvQarVsFll2l885tRSG+FR94M6W0QnxYo+clZYy3qEc0pp5wCwHPPPcdVV101xtKMPiPywfSDH/xgWPuOaAbOUpVyUzVg0dtwooTC4Kic+4vI2L+6gfWViN4aifU/poTcSg4e1w2cFCu1oM8Zhu2t8AfPaIr9mAL0MDCq8MC2wuAIq1IwrAi6YkBZpaLeovc/B8OJyhoU3r+s4UQiLlVyqYC6A9s7nLJLlV/KZHw412opW3NLO3B77SGUnv0hEYMiDw+KAlvquFLRqAd8L3Utl4rW6w24vnVt8HVywHMwhMiDdveR6YCt7Juhr8+9PgkHLkPu//sQDGzuoHpK9GOp0+YPI2J0qRtjOOb+osSlfFDrkYd50HAiqR9OSkl9qKLOhowNUsJvfgMnngjNzYLf/agG+eB5gZKfmA3nPxoq+aNAz7rTLVu20N29/7UwRyLDmtFfu3YtTz31FC0tLdx+++3F/Z2dndjh7EFISMgxzlAq4CCvmQc66IAZhpXlECD28y0kJORQkUjAPffAVZe8xP9ccxFafh+qbCHijX+D6PA9Y4UMTVVVFTNmzGDr1q1HZVyoYSn6u3fvZu3ataTTadasWVPcX1ZWxi9/+ctDJdsh5759Pt36BFTCR3ga+lNbOHGWw6mzhvYX3JftTe38bWse11dojS9z2omKhX0mzP6+N8/27gRySw7lWmhPbeWU43ROnDDYD3JrxuaBjZ2cVr+LOZOG9uXa1tHJn7JJMrVzkJ6BttUB4SC0vczpNDhnXnDj72vr4N6dHrHul3njhBNH1C+jyfZ9bTzQYhC/71Hevvz4A/p4Dgk5mhg0yy36zsbvX10eMnUMNP0xCIA6DMalUCEho86U2LPc/4ULMPw2ntt2Iv/bdj//fnHtgQ8MGTYnn3wyW7duZfPmzWMtyqgzLEV/xYoVrFixgr/+9a9ceOGFh1qmw8ZrKUUkYvX2QirP6td2DFvRf27zbvZkC++482mefnkjC48Pgqvk8jbPtLqADjkFSEjleOKVLZw4YfDK+Ie2tLCty2HHvX/nhqsvH7LODVu2sds3wCyYxeR7XtU67Ht5M2fNmYAE1m3eya4skG1lwe5d1OzfBfMh47nNu9nrSNixhx2zJjN7jOQICTmUDOlac3/fD6SnDqPMw6fqDpjRD3XskJDDQ2oTPHgeht/JjvRxnPfvf6cjU8mcRfCBD4y1cEcPp5xyCnfdddexq+j3cP7553PzzTfzt7/9DSEEF1xwAZ/85CcxzSN7nnaS3Y1jmjRjjsjGc6ANcF/78r5p0+OSTN6hydXwh7D1bUkHJlD+AWwse9I132OidDDiUTwFOzLBflWw3Oxb/4HKPJQM1SchISGDaYn2BrsZli49Sgr3wGJaNatkvqHo0i1SsxpokQIMUEkVGJELaEKi5k1Hp/cHZ6cUiLwAW/Vbp7JZTyISCfwFVWRlIXJweRzhCFS0Ej/Xm7cpUUELCiZE8esUDpCVfd6TCCCZQCVUYF8fAVWtiBGI1rNEeoMKXsOqedMRQM9qp10Fm3xVrYodJArtIwaqopb+K6P605O2319HKUYUf6DH+34M6Ci0wwBSQEoAE9ivTKOBn83jtqUwJ1WXHvEphb2nFb26DBkZmW6guQ7cN0qCHi1s/jk4nfiVS3gpdj3Xfa6Mb3wDvvQluPxyiB9c2I2QASQSgaVFPn+Q8THGMSNS9D/60Y/S2trKxz/+cQB+8Ytf8Morr/Czn/3skAh3ONCVT1y5OGg0U3ox6JAUsiZ1SLn9F0f13U7qIB1F08CEg6EgX8xzSGg+piHw/AMVHCrYISGHktqywepVwtSYVhFlV1fww1EeNbHM3gXqlYkYhqRktFbLNIknS0e4rE9a7OnKIQTUxCMl84yUeRMqeGZ785DpNbX9zQTqkhF2tmf67VNawaHnAN1PAehav91+v8Q+eYVAIUDvk6dHmSyhVPqIQFmWvcX1K1L0qUYAsoQDgp6NoWTsY45ZLHuIsg6KEbnE6K1T9fmuSqQfKrRkDBkx9xsN2JxcM/KgawCuc+A8xxq77gbAn/tp3JdjfOELPr/+tcbWrfCDH8AXvzjG8h0lrF27FoCZM2eOsSSjz4gU/SeeeIJ169YVX1NffPHFLF58iAKnHAEMUp+H0vQPvPvg64R+T/aecUq/AUuo54eEHFIaaiu4draBk6yhasJEUnu2E02WYwjF7HQjImJRu2gBUsri7RiPmHx8lkFHV4aqE5ey5Te/I591qT1xNnWXv58WvbQS/+a59SzO7qPq5FOJmSN6hA/Jmxc1sKQ+SkVVJau/+WNqFk+hZsli9HQH5gln4c9YCG0bi/n/6ZQZbP7bQ5TNmYZKd9OybhvbH97K9PNmkW1N0fRyM+mUTUVdjOnnL+DF/3mGFzpzpAq+Jq88bzqTls/DrEgiDItIeSW51mba1m0h19bJcw9uY/b8GupPaiC1s5maxTPo2tZI3anzsWon0f78C7S9tovymRPZ+/QWnnu5mbgmmDOvmmh1FKkJ4hOryDZ30rWzi6q5NXTt6mD12kb25l0mWjpJXWIrxVs/dDoAz/1mLetTedoKI6/L3zAVgKZXW9FNSaQyyqTTGrC70uTaczz6+C725kvHT6g1NZptj4gU5IaYsa+5+iJkLDjHTnMH7Sv/fsDztLjMpDHn0Wx7LK+Ksi/v0ZhzWJi0mDSjgq493Ty079B5Dan75KX9vqceepbsK9uK36OLZpA856R+g7KmH/zfsMo2aiuIrlg+KnIeNXSuh671IA3UxLfAy49jmvC1r8H73w/f+Q587GNQXj7Wgh759Kw/nTNnzhhLMvqMaC5h8uTJ5HK9705t22bKlCkHPO66665j+vTpCCF4+eWXB6X/6le/QgjBn/70p+K+TCbDu9/9bmbPns3cuXP5v//rfVj4vs+nPvUpZs2axezZs/t5AjpYBs6SHAyqz9F9t4ey3z3YWkZ+RKjph4QcauK6oDpmoGuSpKlhFNx0lmuKKpPi975YmqDKgLhlkPAcypwcVbrC2o85pBCCCl2NmpLfU2Zl1ESTknguS4VyqIroxHVBWXzwwhopBRW4VFuSCh3KfZtoVzflvk2ZkyPa1Y3VkSLWnaYCl0hHCtXahdfSidfSSTKfpVJTVJuCaktSZulUW4Jy5VDm5DHaU8SzGSpwSdo5KjWfci9PtSmoiBiUC4+knaMCl3g2g9bWhd6eIp7JkLRzJO1coawc8UyGci9PIpdFtAUyiLYutPYutLYuKoRHhfCwOlLQ1itjIpclkcsS6UgR7ewm1p2m3Hcoc/Mk871llfr0lOO3lk73WjpxmzuK/ek2dwyZr+/HaO+V0epIobV14bd2YXYEbY92poZVzkF/urM9F0xB7gFtaunsd5247cOXx23pYDgcCfrEqLF7VfC//o1g9Grz73kPLFgA7e1wyy1jJNtRRCqVYv369QDMnj17jKUZfUak6M+cOZNly5Zx4403cuONN3LGGWewcOFCbr/99v3eHJdddhmPPfYY06ZNG5S2a9cufvSjH3H66af323/zzTdjWRabNm3ivvvu49prr6W9vR2A3/zmN6xbt44NGzbw9NNPc9NNNxVP0utmJJY7qjfy5OFmqDp7lPrQHD4kJCRk/HJkPqIHSj3Q9qrw/2B+FIfZIUeUPvF62fmH4P+Ut/fbrWnwjW8E27fcAi0thLwOnnnmGZRSNDQ0UFFRMdbijDojmhJyHIeTTjqJDRs2AHDCCSfQ2dnJmjVr9jtrfdZZZw2Z9pGPfITvfe97fHGAodnKlSuLrjtnzJjBWWedxapVq/jABz7AypUr+djHPoamaVRVVXHFFVdwxx138LWvfa1kHfl8vt8Ci1QqVdxWnk96Xwo/5kBNFM/O03jXnfiOS7SuAuX5SEPHiEcRmmTfq9uJTawKyu20AAs3mwfDwu1oo/EvL+D7Psb0zUCwoC3X3I7tKYiU4+ezdD/1MJ7tkGhpxM+l6Xr5Ffx8OUGQeXBfeBi3vZnk3CZOrG3AXfsKKpcmUlmH2rsdAN/zcTM5EAIlZbGu/IYXoLwKlcoW2xjt2oPT0ohW3cGcKQuR3Z3gOgjfpcyKg2YyuaIcLbUFke0KZGhtRJoRKivrKTejIHVEJseZtZOR3TuRHWmUkAjlB4G4Mh04uzYjpMSKluFseQll51B93gCpVDteNoMGJIBYrBKtuRnVsgstGkdYMeqqouC4CN/lvOn16PgIz2FudQNJUxJteg00DWFnmZSs43uXLmZW3Edv3UgsXo3W2gq+h2lGEXaW2eUTmBWPBQG9lAOuHUQh8X1kWwqZT1NuxUlaSWR3mgrdoqquHqNtO8LOUpXw0VJNQQRU3QAhkZqJdDIsnzo7iDDc3YLMdgZBypQP+TSyu5myZD2yuzMIACUkmpBMTlZjezpSgC6D6L52Iepw2vFxfUUZOYTnErPiCM8GJ4cyCosjpYYfr8K3ksUgTr6VRAlBNu/hK0XM0JhfH9h3a0IwpczC8RTGTEH2vFmcMbuaiQmLN154PDNr45w4uZzOGVXUFaL21iUtamImZRGNxfVJamMmE5MWphbc43kjjuMpPD+IapsuRDWdXR3HV4pu2yNmaFRGDSK6pDxmENEkNTGjGLTMUwrHVXTlPTQJjqfoEoKcFxzv+IrOvEfGUbRlHXyl6MoF9rumLnE8hRssTiHn+uxLO+Rdn6a0TbftEjM0cq5P0gr6ujGVpy3nkDR1UrZLW7ddDNZm6pJu26PbdmnuymO7Pt22S0vGJuP45FyfiC7JuT41sZkoBTubc9TEFpBxPPKuTyyhMfGCJeQ8he0p4tMltqfwUUROuBRfKVoyLrtacji+T0SPkzDLaDjvODQBL3bZHHdT8Jxsyro88Forr+xuZlp1DFOXLKidyOzT3serLWlmzL6QsoUX80xbcI93phx27d7Hizs7mVIZZWpllOmVE7A0SSblMXHimeRdn42NaXRNUl+xFKtG8trONBmnneqYyYza5cg6QbftcvofzqU5L3i2K0/M0FjfkubZdVs5uaGGcmsCngdVE+cz49NvYXPWxfMViYs1zrxRZ3e3Q1wKlkY0LF2ScXx2pxzO/7zJW500It+NH61gc1rycHM3nXk3uDY1Qd1ki4Y3RIjqkvfcrtOe99mTciizNNZ321RFDR5sz9CedZjz7rdS9yGTVsdn1md0TlFpbDNJU8YNnrVAq+2TsCTTDY3OvMcEU/J5mUHkUviJGnLCRApYvTOFoQnO/XSctxoS6eQQns0OJ4qpCY6L6eRdH9tT7Mu4RDRJtS74nOmhde5B5tN4sUqkk4F0B179HHwriZZqwo9VIpwMescevGQd+MExfryKX9/9V3a0Br9FJ7/5NN75nU/jR8uR2U7cLS8CoM85CdWyG1EzGbd8Mu3KImFIDOXSYssgcrb06PI0UrbHcRGNN3dsRWY68ComI9w8ws6izCgin8bbtQF0A72+oCT7bhC4MZ+GSBI/kkTrasRt3o1MVCATFdibX8KcPh8/m+b7f36KtOOj6Ro+8KHbv8iChgkIJ4vX3swr2xtZ9eo+pBQooGZiJV/feEehH3IoI4LSLZQZQ0kdme9G2Gn8WCUd29bzvTsPvBJ3vOoTjuPgOKO4xiC7F6P1yaDs+guLZff8f9vb4MQTdZ5/XnDjjR7f/vbIAxYeagbKPF558smgn3sCZ40XeQ3jwEFHh8OIFP1f/OIXo1JpD//1X//Fcccdx9KlSwel7dixo9+Iffr06ezYsWPItJ6FFKW48cYb+frXv75fWYYMeFPidfuI2M/UujAMVG7I5GEX11d2NeB/cMwI5o6kBr534HxjiX+QD7ThRJgdZuTQkmUf6NgSEY1Hi1KnWA5jWm1gVNjDzcHeXtpBvkYbTtTdgdGaS9d/eN/jDUfu4TAePV8ZB3syR4nhnO+jiuE834cZ7X0Qh/IZewDGWp+4//77icVGz+fRdOdeTgDa5Dz+8dBzxf0PPPBAcfvii+t4/vll/OAHsGjR36mqGqFCcZjoK/N45J577gGC2FAwfuRdsWLFqJQzIkW/q6uLr3zlK2zbto0//OEPrFu3jhdeeIF3v/vdI65469at/OQnP+Hxxx8fMk/ftwQDldX9pQ3khhtu4Prrry9+3717NwsXLiyZN4+kk8B7RN4L6hBKYDjBnHmX0LEL+ztV8DDskaTTl3QJHV/4aG7pH4+UCx0ueJ7AydgkfRUcp3ofrEopOhxF0nbpCa3VlfeIu70P6KF+mtrzPpGsOzLl/hCgVDAj63jjT7EICQkJCRk5+40LQW8QuNdjwXMwjAd94k1velNRURwNtEdvh31Qftz7uGj+RTiOwwMPPMAFF1xQnOm98EL4+999Vq/WeOqp87n11vE1q19K5vHIZz/7WQCuvPJKXNcd9/KOlBEp+h/72MdYuHAhf/vb34DgFdg//dM/HZSi/8QTT7Bnzx4WLFgAQGNjI9dccw3f/OY3+fCHP0xDQwPbtm2jtuDWbfv27Vx00UUAxbRTTz21mNbQ0DBkXZZlYVm9fqG7urpK5Oq9uX9PfeCcuG+2jp7CpvTfD8XpVA/BXVZhcXJb/yx9H3i/ag5MfljdE5ihol/eW55pxlUgdrzEBy+qZNuuDv6+uYWo0Yp1gNmv/96cAxr77Xt1+x5mTzrIGZqD5JHtnTy5u1Q/h4SEhIT0C3x2hEUgG/b0zQia9Xq6YDzoE4ZhjJ5yaHdC80MAaNMuQ+tT7sB6vvUtOOcc+NnPNL74RY0ZM0ZHhNFkVPtmlGlpaWHr1q0AnHbaaaxevXpcy3swjOgd2vr16/nyl79c7IBoNHrQM8f/9E//RGNjI9u2bWPbtm2cfvrp/OxnP+PDH/4wAJdffjm33XYbEIzWH3nkES655JJi2o9+9CM8z6OtrY2VK1dy5ZVXjlgGoRTRdBCCRPc8ospFooKPUr3bJRYg9ezXfY9yO4ulvN7jVG8ZSSd4lWYojyg+EkqU1x+36CITmtq72JcKysg6XvG56fd5KkoBZdrQZRoH48/4dbKvEAAsJCQkJKQER5hy35fijP3ANoj+G2JEc/oH3x/jQZ8YVfY9BL4D0oCOl/ZrAnz22XDBBeC6cOuth1HGo4C9e/fyqU99CoC5c+celQtxYYQz+gMj4Gaz2WEp+p/4xCdYtWoVjY2NnH/++SQSCTZt2rTfYz7/+c9z9dVXM3v2bKSU3HbbbVRVBYtgr7rqKtasWcPcuXOLeXtG8iNhakczutvzQIKpXhZpaKAUyvfRosGoXQjBRlvHVkHe+YaDFKA8j3x3GjzFdD+DFjFxszYohVkeJ9+ewrMdiFhIYIZuo8ej+I5H1vHZ7PSOGGdoeTo8STvDG0VqA+zU928hMzCkythwBP+uhYSEhIwqYojt8cyB5Hw97RjuseNVnxhVyuaDVQ35VnjsMqg6BXHcN4ZU+I8/Hh54AI7CoK6HBNu2+c///E++8Y1vFBdTf+YznxlboQ4hI1L0zz33XL71rW+Rz+d5+OGHueWWW3j7299+wONuu+224mh6KB5++OF+3+PxOCtXriyZV9O0A5Y33hmu2j0w0mN7LgjQovtev/cx2RKmeaZQaJpk7pR6sBsHZziEzKuOsSeVJ+8pLKGIx2NMrkhAKnPgg0NCQkKOcuZPrGJPayearjNvSu2BDxgHLKiO8Ny+DAooi1lMrq3slz65zKLSgJSjkFKyoDY+7LIrElEmJw880XVM6BPl8+Ftm2H9LcGn7Rn0f7yVM+RxiJYqmNjf81Ah1hNLloyBrEcY9957L5/+9KeL3iNPO+00br31Vk477bRx421ntBmRov9v//ZvfPe73yWZTPKFL3yBSy65hC996UuHSrZxy2GdfRkwIqiNGTRnDnwx6lLw8fo8kSlTMRom4m46vIr+iRMSnFClI8uryW14mfjS01DZNG7qwMeGhISEHO2cMqOeeS2vET/pZLTy6nHwzvXAnDs1wdlVCt/OYc1diIxG+nnaSZg6V08TZPa2UbboOIRZOrpzKaSUXDGvmk8dCsGPRMxyOP7rMPeT8MqNqI23U+O/Ag+dDZPeCid8EypPxPPg2WeDQwrLDEJKsHnzZq6//nr++Mc/AlBXV8d3vvMd3ve+9yEPoUe88cCIFH1d17nhhhu44YYbDpU8xzSlHvQKVfJtnTpiXvaGhISEhISEHBSRWjjlFtzZn2T3fR9jmvd3xJ4/w54/Q8OVbIt/g+7uucRiMH/+WAs7/kin03zrW9/i5ptvxrZtdF3nuuuu4ytf+Qrl5eUHLuAoYNjDmDVr1nDllVeyaNEiFi1axLve9S7W9LwvCnndvN7ZnCNhNigkJCQkJCTkIIhN5QXrE7hvfhGmFTwd7ljJjHUL+fGHPsxb3rATfURTt0c3SinuuOMO5s2bx7e+9S1s2+aCCy7gxRdf5D/+4z+OGSUfhjmj/8QTT3DRRRdx7bXX8u53vxulFE8//TRvfvOb+etf/1oyQMWRgBG3iGg6Sil0y0SPmggpgwXGShVf5whdgiOK2rTUNaQmUK7ETESD6LmmjpASPWqCEEE03WQMw/eRelCHNHWQGtIUCDzoY4GjWSbSod8+AJVqQ3mDTXWMhEXEiiKtIFqr6PD6B8kCIlOmImJlCDeHiJeBlMhMO8LJolwH5dpIz0EZUaRnI7JdKLtPJFvfQ+W6EXY26BfXQYPg+FwaZBBvQOgGyveQ8SRIDeFkEdE46CYyVoY1Yx7CiiF0Ax2CNNdB5lKgFMKKBGVoJsLJBft8FzPfGXz3Paqj5Yh0BuHmgoArnoOw08ysrkfr2IVw88h8CuE5watkJ4/wXWS2E3ID7IX6BGxRUg/yOVnwXYSTxXTShZOiBRF1e4LHCBn0tfJRQhLxsgjbRvguvhXvzRMtCyIJe3b/Fci+jyWDYEtSCCSKioiGUgpTC6Jc+gqEbwey+G7QFiOCD6CZKKkHEXiNCKrnlbnykUIWItdKDKk4rjZBzJAYEiYmzCBKZcykMmowuSyCqQkuO2kyVVGd2piJ46sgyq+AiqiOJgRxXdJQHqEmZpI0JaYmi1FsPUXhu0KKoJmzq2MoFQQgqo2bJEwdx/dxPIUmoSJiYGoCvRCgSBXKkAJMDQwpkAJqYgaOpxfTkpbG9IooGcejMhrY8CZMnZih4fg+mhAYUqIZgrq4iaGJ3j4WQX8nLB0pBTEjiNiaNHWkEPhKETU0NAGWbmLpkogmSVg6liYxtN7ou3nXD6L2eoqc69OSscm7QeTczryLpxS+CtJihkbe9XF8VZShLevQbQfRi10vOC7oG0FTd7CKzleKzrxL1vZIWr2P59ZMEMm3M+eyqTVD0tLZ1h6sd/EUZG2P8qiBJgU5z6epO4+uyYLMLnnXp7E7jyYFGcfDkJKOnIPtBu1zPR9PEaRpgn3dNk1pG0MTNKXyZGyPnR1ZWszgXmhMSfZ127TnHFJ5l7ihUZewaMnYGFJSHtExpCDn+uxO5djYahEzNAwtTue+DNs7sjR25MjYQWyQmKmxN5ZjW0cGTQTnsTPvsqs9S3nMoDPjkIjoxWP2duWojJl05Ryq4yaVEYP2XDOtaRvPD/o0a3skIjpllk571iFh6dTFTSw9QdfeFJ15FykEz+/swNQkr7UksXSJISWWLtnS2oipS6pjJhnHw1OKxo4cUVMjEQnum6hRQUSvIpP2MLQ4MWMC2zZmyHlZqiIGKbsTQxPUxKbQ2eECksrobLpbXCpjJzP1kuVs78iSyXvk0z65Fp+IVsOEhgsxpGRve55ktI7ONpeWXZ3saMlQHjOKfRE1NcpjBt05l86MQ22ZxbTKSmJGDU078kS0OJaeJO/66FqSmolTybs+7Z0OsnAf+r4KohhnfPKuR3VsJsmaucE1n/Gomz2LlowNGlTNOxlLl4VIzw6dbS6+UkghsKIziCQlldODiNh7u/N4vqKxJU/W8TD1ssL15mC7QQTqREQnakTpzndTGa0lOvlC4DODfu9C+pCcA2f8DhZ+EV74MnLPn/jwuT/lg/5/wzPXwnE3QKRurKUcU1544QU+9alP8Y9//AMIgqB973vfY8WKFUecK9vRYFiK/k033cSvfvWrojsqgHe84x2cfvrp3HjjjfzhD384VPKNPcOJmngIIyuq4p+BiMH5xhMHG732YBlOtMXhRK89RFEbxyujFXG1FIcyCutwopkG9Y+8fXIcRkodjzKNFmMdmfZwRzk+WigVVftQPk9CBlB5ApxzDx+5dDX/tPBfOGfhI/Da92HzT2DeZ2HB5wI7/2OI1tZWvvKVr/DDH/4Q3/eJRqP8y7/8C//8z/9MNBoda/HGjGFpNevWreun5PewYsUK1q1bN+pCHYsMqdCrcajEh4SEhISEhIwpjgO//utyzv33h9g1536oWgJuGl75JvxxBqy7Cdyj39Od53n813/9F3PnzuX222/H932uuOKKYuynY1nJh2Eq+vvrpFgsNmrChAymLZPjtfZe57j795cfEhISEhISciywbh3kclBWJph0ygXw5qfhDXdB2QKw2+H5L8IfZ8GG28E7OoNY/uMf/+CUU07h2muvpa2tjcWLF/PQQw+xcuXK/UY4PpYYlumObdu8+uqrJYNj2fbRefEMJCrB9kFHHdbAT53Z/vb5pV6XhoSEhISEhBxbrF0b/F+yBIIlhQKmXgqTV8C238JLX4X0Nlj7CXj1Zlj+W6hdNoYSjx7pdJprr72W//7v/wagsrKSf/u3f+OjH/0oergquR/D6o1MJsNFF11UMu1YWdgwNQrVHhi2zQi9kpZkkL4+TP29x5zVQeAoeK1TIfFC856QkJCQkJBjiD17gv/Tpg1IkBrMfB9Me1dgs//yv0F6K/z9jXDm72HyWw+7rKPJjh07WLFiBc8//zxCCD7ykY/wzW9+k5qamrEWbVwyLI1127Zth1iM8Y8UkNDBHaXAae6wQ+P2z9iVDyLjShS7ncADRs+yV03A9HKLzR15Tps5AfBGR9iQkJCQkJCQccXkycH/HoV/EJoJcz8BM94Pj18Je/4Cj66ApT+Dme8/bHKOJo899hiXXnopzc3N1NbWctddd/GGN7xhrMUa14TvN8aIg30PkrR0OnIuAsj4vaW8eVqCCeVxKgzYkVHMmTEZmneMiqwhISEhISEh44uemfwdB/qpNxJw1h/gqQ/B1v+GJz8AuX2w4PMcVlvk18nPfvYzPv7xj+M4DieeeCKrVq0K7fCHwbHlS3CcM4TTnX5YWulTdkJNhIlJi4gumVcTx9C1UZcvJCQkJCQkZHzQo+Pu2DHo5f9gpAGn/zJQ7iFYqPvc5wK30+Mc13W57rrr+NCHPoTjOFx22WU89thjoZI/TEJF/0jjyBl8h4SEhISEhBwipkwJ/qfT0N4+jAOEgJNugpNuDr6vvwWeeN+49sjT1tbGW97yFm699VYAvvGNb3DnnXcSj8fHWLIjh8NiunPdddfxxz/+ke3bt/PSSy+xaNEiANauXcunPvUpcrkcuVyOD37wg3zhC18AggXA11xzDWvWrEFKybe//W0uvfRSAHzf59Of/jR/+ctfEEJw/fXXc+21145YLiMWwbRMlALdNIIosxDcDEoVgycJTQu2lR90mBZEwVW6h64FEXOFJhGFSLoIgdBNdCEBhZBB9FOh6wipo5QfRHDN9Rr8C9MKIqG6+x9dy0KUVmka0Ot1E628GmFGUL6H0A1kPIlWPRGhGyB1ZCyJsKLB0vy+kWF9P6jXK7wBkFohem+kNyKs32exr+8Fxxfy9RwjzAgyFkTfRbeQiYog8m6yAmEYKDMKvoWUGkozUbqBkjroBjKaDCK+WvFipFol9WCmQakgEq1n99YtJGiFiMBOtt+MhBIyGAsJ0VsGDIqGC8GYSek+SD2ot3B8MU+hLqWbwT7NLF4HoiAnyg/yGrFiFF1lRIp19JULGRyrFfpNeC6mZqCUQPMdLN0IvCr5BXkLUzRKSIRu9rZNN/u1TSg/uDalXlzkHTNEMdJtT4RZTSgml0VImBJNCKaUWcQNjYQp8XwVXMsEb5EEYGoCUYgua2pBlN3idShAkyBVUIcQgoQhUQQRbiO6QAoNXxVuJQFxQ6KJ3gBJvgrqkCLY1kQQcCeiB3UZUiAERHQJER1Ll8QMDSlEIcqqKAblMqTER1Gu9CBKrgRDCyLmAnhKYRQi4yZMRcYJouECWLosyhMztEL9AkuXOJ4iZgTnSxOiKHvM0Bj4cq0n8FLPf6NQgdcjoyaxdIUmgu2+6JrE8f3i+assRLkts/TguMI5tHSJJgWO5yNlEAHYACpjJpoMIgD3RP+VQkDhv5SCaKHvNBGcs4iuYWqy2P4eOnMuec8v9k/U1KiIGZiFqLGOH0TRzToeedfHdv1i1N686+NLRXc+kDXv+ni+or0QFVgKQbft0p1zcQsRbHs+EHgVs32f9qxDVyFCMIDt+nTngvVJmhR4viLnetiuT2s6iFDcnMqTtb1iWXafZ2l3LijLUwpNCLKOR2fGCSLoOsExzak8ZqF/TV3S1h1EI7ZdvyhHKucWv2dtD7PQdz19YOqS3W1ZXF/RVohYq0lBa8Isyp+I6HTn3CC6bXeevV25QDZfkbE9LF3SWGZh6pLmrjxRU6Mz49CRdWjrzpNIG0QNjbZ0HlPXSFg6tufTnevJY2PqktZum5ipETU1UoW6K2LBM6aj0HbPV9iej6lJbC84VxXRIPJuj0xVCZOmriDKbUXMKPZJR8Yh63jF8xY1NaKGRjISPPuaUsExrd1BFFxzwHXmFSLymroklXOxdEmUAyuc41WfGAuiUairg6amYFa/qmqYBy74Z4jUw5MfDLzz5FvgzP8NTHzGET0xnDZv3kw8HufXv/4173jHO8ZarCOOwzKj3/OaZdqApeEf/vCHueGGG3juued4/PHHufnmm4sBuG6++WYsy2LTpk3cd999XHvttbQXhqy/+c1vWLduHRs2bODpp5/mpptuYv369aMj7EB7tR6lfyCjHvVzeOUN6eVIDj6Vyj9Ei3GH+apPyIM0HxoYnXYY9anhRrQdmG8cRMI9lCaSw7mqRstj68EUUyoo6qH2IDuc8g9VhE9tmMUeS/Ey9D6K/kgZjrvhg3VJPNYRe0eL4bR/OG3tGRi83vr119mvR5Q+cRjoa74zIma8F86+B7QY7L0PHjwPcs2jLt/B8qc//YnTTz+dzZs3M336dJ544olQyT9IDsuM/llnnTVkWkdHBxD4RDVNk6rCkHTlypX88pe/BGDGjBmcddZZrFq1ig984AOsXLmSj33sY2iaRlVVFVdccQV33HEHX/va10rWkc/nyed7p79TqdSotOtwMOrjiZCQkJCQkCOU8apPOI6D44ySW74S9JQ9sI6pUzXWrpVs2eLhOCO0t699I+Ls+9EeW4FoW4O6/wzcs/4C8YH+OkdX5v2hlOLmm2/my1/+MkopzjrrLO644w5qamoOaf/Cwcl7KDEMY1TKGVOvO7/4xS9YsWIFX/7yl2lububHP/4xEyZMAAI/qX1H7NOnT2dHYchaKm1tT+SIEtx44418/etfP0StGD1K6/T994ohU0JCQkJCQo5NxlqfuP/++4nFYqPVnCF54IEH+n33vOOA2TzyyBZmzFh3UGUmtK+zTHydWPdG3L8u5YnIV0jJ6a9f2AIDZR6KfD7PbbfdxqOPPgrAW97yFj70oQ/x9NNPj5osw2G48h5qVqxYMSrljKmi/93vfpfvfve7XHHFFWzZsoVzzjmH0047jXnz5gH9zVQGRuXdX9pAbrjhBq6//vri9927d7Nw4cLRaMKoMVQLbK//CP0I8oQVEhISEhJyWBhrfeJNb3oTZWVlo9GUkjiOwwMPPMAFF1zQb6Z30ybJH/8Iuj6Liy6afvAVZN+KevRiol2vcK77Vbwz7kbVnnlIZC7Frl27uOyyy3j22WfRdZ3vfe97fPSjH31d9Y+Ukch7JDFmin5LSwt33303v/3tbwGYOXMmS5cuZfXq1cybN4+Ghga2bdtGbW0tANu3by9G5+1JO/XUU4tp+3OzZFkWlmUVv3d1dR2qZo06oV4fEhISEhIyNONBnzAM47AohwPrmTEj+L9rl8QwXseaM30aLP81/P2NCLsd/R8XwRsfhpqlr0teOHDf7Nmzh+XLl9PY2AjAN7/5TT7ykY+MmbJ9uM7l4WLMViJWVlYSiUR45JFHgOBGffLJJ4sr6C+//HJuu+02ALZu3cojjzzCJZdcUkz70Y9+hOd5tLW1sXLlSq688sqxacgIyDg+2zpybO3IsyPV3wZsS6dDe76UfV2JxcFA3g9Nd0JCQkJCQo5FfaKHHreaI17PpxSkNsGmn8Lqq2DVNLj3ZLALBXo5aH92VGUdio0bNxaVfIAvfelLlJWV8YY3vIEvfvGL/PGPf6S5efwsFD7SOCwz+p/4xCdYtWoVjY2NnH/++SQSCTZt2sSdd97J9ddfj+u6OI7D5z73ueKo+vOf/zxXX301s2fPRkrJbbfdVlxYc9VVV7FmzRrmzp1bzLtgwYLD0ZTXRVPGpdMe2WKZ2mSEba29i4e7Cy45x95XTEhISEhIyOEl1Cf6c+edwf/CuGVolIKu16Dpkd5Pdk//PEKH6lOh7myoPw8mnH9IZB7I2WefzZo1a3jwwQdZvXo1q1evpqWlhccee4zHHnusmG/OnDksX76cM844g+XLl7NgwQJkCY+DIf05LIr+bbfdVhxN9+X888/nmWeeKXlMPB5n5cqVJdM0TStZ3nhnOAPudyyezKTyKFsa27BiceZNqmLNtt6RbGXMpCNrIwRENUHWU5wzvfLQCR0SEhISEjJOCPWJXlpa4MEHg+0rrhiQqBR0riso9Q9D06OQ29c/jzSh+rSCYn8O1CwDfWwCUS1ZsoQlS5YAwTqJjRs3snr1ah5//HFWr17NunXr2LhxIxs3buRXv/oVABUVFSxbtozly5ezfPlyTjvtNBKJ8RULYDwwpotxjzWGo+jPrw8W85xQn0DEyxBSMjFpsTcVuPMy9MG+6esS5miKGRISEhISEjLOuftu8Dw4+WSYPcuH9pf6zNg/GgTC6ou0AmW+7myoPxuqTwc9OjbC7wchBHPnzmXu3Ll84AMfAKC9vZ0nn3yyqPg/9dRTdHR08Ne//pW//vWvQDBoO+GEE4qK/xlnnMHUqVOHjj90jBAq+kcAYojt0EY/JCQkJCTkGMT3ePZvz/PZCx/h4+98BO76R699fQ9aFGqW91HsTwMtMjbyvk4qKyu58MILufDCCwFwXZcXX3yxqPivXr2aHTt28Oyzz/Lss8/ygx/8AIDJkyf3U/xPPPHEo2qh7XAIFf0DodS48mlZSpLDLt04iCY7EKH8cOBzBOKrwdFxpTh6I8N6avjRcY8VXF8RvpM8dnAPdejroxXfpcLbgHztVWh5DL/pMf5rRWdvuk1gdlN7ZqDY150NVUtAOzrvLl3XOfnkkzn55JP51Kc+BQQuOnuU/scff5znnnuO3bt38/vf/57f//73AESjUU499dSinf+yZcuorq4ey6Ycco5pRV/qOlIPukBaBsLsdZmF74OmAyJ47SMl+D7K9xG6DkJD+B5SFRbXSg0hZXFgIIzem0toemF/Htj/YlytPLjgfDOCjMZBNxGy11xH6IWRqJAFDV8ho4ngON0E10aYEfxYBTKbRkbj+FYc6bsoPYJvJpCAEDJok2agdAtlRBCeE9QlJFiRoE1mpLc+5aN0A/pE3xNSgtRBSIRhgNRQmoEwDJQnUZqJiIBnJhCeDb4HuoHSIyjdChR0mS/ss8CIoHwX4drBA8q1UVIv1GGXOIka9JyDvgMQKYO6evYpH+G7qJ7vQqCEDLqw73FC9u4vlCt8Nyii54HZN78flCt8N8jve8H/no/vBYcACr0wINEQSgUyFf7jOQgh0aQGvguei5CFMgt9L3y3uD0I30MzDDTV+0MqRe8gsO9YVRS+SyHQJER0gecHoelVIV2TohCqXuEpgakJNBG8RTI0ga8CJd1DockgrSe0vS4Fmgj2CaFQCjQRlKEX8noqsMP0Clqv6qMACxF8dBnISEGeiN7b76YuMKTAVwKlwNQEngJDSkw9qN/zQSuUkXEEUgiMQiWe7N2O6BIpBL5SSAExQyOiSzQpsF1FtFBvTxs8GfSv5wcfRwR9YOkSXym0Qj1BCAwPg6Bux1eFOnrbYmnBMUahfY4XbBuaKJSpYWiCpKWTNHW6bQ9Lk0G6CPpAFvrdMTUsXRI1NBJm8FzLez5GIb0nr6VLDBnI4ylFRJNYusTxFZoLhiaxNEleC/LlNYmpSyIFWSCoX9dk7/kpnO+gj4PyrD5mhj0y+qqn7xSe39tvpi5JRHQiuobj+xiFOnvO/cBPjzxeJCgjuJb7fzxfYeqSqKlhuz5aQYa+19TAMovbmizm79kHYPXJ01NHT1pPm9zCf+i9F70++zxfYbs+WdvD8XxsN/jkXZ+s4/XL35M3X8ifsT3MQn/lC23y1OC8nq/IOl5RTtsNnhk9dfWkeb4ia7vYhWN6ZPZ8VSynJ3/PsaYusV2fzqxNxu6VN2tLymNmsZ69HVk8X5FKB89t3dCKfVXsh0J/dmccNF1iqd6Is8c8vgOtawv29Y+gNz/O2W43vBgkS6AzU8ZLjWdy5qU9iv3JII+t2eq+TJkyhSuuuIIrCgsW0uk0a9eu7Tfr397ezqOPPloMygUwf/58li9fztKlS7FtG98fYYThcc4xregfMfRV0sLZwJCQkJCQkKMLLw+tT/fa2DevBi9TTBaATRx94jnICefx0a+czU/vOpHv3KRx5viK/zluiMfjnH322Zx99tkA+L7Phg0b+in+69evL35+/vOfA/DVr3510CLfwxH1+FARKvpHAAfU7UPlPyQkJCQk5MjBzULrU4FSv+9haH0y8F3fF6saas+CurNxqpfz18d3ctGZb6Op1eAndwVvQi+/fEykPyKRUjJ//nzmz5/PNddcA/TGXFi9ejWPPfYYTz31FG1tbfz5z3/mz3/+MxCYCZ144on9XHtOmTJlLJsyIkJF/wij9OrxUNMPCQkJCQkZt7hpaHkC9hVm7FufAn+AOWqkrte+vu5sKF/YayrqOCACv/d3FZT8pUth2rTD3I6jjJqaGi6++GIuvvhiHMdh1apVTJ48maeffprHH3+cxx9/nD179rB27VrWrl3Lf/7nfwIwderUotK/fPlyTjjhBHR9fKrU41OqkJCQkJCQkJAjmY6XYdvvCor906Dc/unRif0V+7L5w7LP7QmSdQQF8D1iMAyDJUuWsGzZMj796U+jlGLnzp39zH1eeOEFdu7cyR133MEdd9wBQCwWY+nSpSxfvpzLL7+cE044YYxb0kuo6A8DpRQ5x0MohaHUsObP866P8nxMKYr5exY7jZg+N37fuh3PH7QvJCQkJCQkZIxRCu5fDm5vZHtiU6DunF7FPjl7xAvvMhn4xz+C7be/fdSkDRkCIQQNDQ00NDTw7ne/G4Du7m6efvrpouL/xBNP0NHRwUMPPcRDDz3EzTffTDqdRtMGxz0aC0JFfxhsbs/RXfCGUGkKGsr3n78l57E73Q1AfVRjYpmB6ysyhTJGjOodIPQ8E7odv9cFYajph4SEhISEjB+EgLmfgHXfAVTgDWfm1bDwC68r+mwkAmVl0NkJ7e0wY8boiRwyPBKJBOeddx7nnXceL774Il/5yldYtWoVEATtuu6665By/LghHz+SjGOybq+CnhuGg++c25unJ7/t9bprOm5iRcnjlk4pPYJo7u5doNNjo2/38f40sfzIXQ0eEhISEhJyVHLijfCWZ6DurMBd5svfgHvmwdbf9pvAGwlSBrb5AE8+OYqyhoyIdevWccUVV3DCCSewatUqhBC8973v5dVXX+Wmm24aV9F4Q0X/ELC/2zcZMXjLcaVXazeUl45YN2k/ivyCCeX9/FWHhISEhISEjBOqToI3Pgxn/h7i0yG7G554b2DW0/L0QRW5bFnwP1T0Dz8bNmzgve99L4sWLSoG4bryyit55ZVX+PWvf82cOXPGWMLBhIr+EcbgUeL4GTWGhISEhISEDEAIaLgMLn4VTvj3wHSn9Um4fymsfh9kdo+ouNNPD/4/8cQhkDWkJFu2bOGDH/wgCxYs4Le//S1KKS699FJefPFF7rjjDhYsWDDWIg5JqOgfZgRixKq5GGIxbqnvISEhISEhIeMQLQLH/QtcvAFmvD/Yt+3XcM9cePmbgW/9YdBjurNpE7S0HCJZQwDYvn07H/nIR5g3bx6//OUv8X2ft73tbTz77LPcddddLF68eKxFPCCHfDFuLpfjXe96F+vWrSMWizFhwgR++MMfMn36dK6++moef/xxotEoZWVl/Od//icnnngiAJlMhmuuuYY1a9YgpeTb3/42l156KRBEN/v0pz/NX/7yF4QQXH/99Vx77bUjlk1aOtLUEUIgrBjCioDyA9s53wet0D0i08eeTiB0M0jzXPC9YLSuGQhNC46TeaBgRC8kwooglA3kQNOQtVOBl4Nk0Vu0iMSgvA4ldbRoCmVGUXqkVw4Ao795j7CiyJopoBv4Rgzh2fhGFD9age46+IaFl6wH5aPMOF6iFpUxkDKFEBJ0A6VH8CNJUD7CtVGajvQckBrKiAKgdLNYhgTIdRdlUFIHIRCmA5qBFylDy3eD76OsODgafrwK4eaRykfpEZQVR+kWvpRobg7fTOBHyrA1CwMfoeXxzRiaZyOcPEq3wHfBc0C3gv+Ap1loAG4eJSuDgY/yUUIG7Sv4IBaeDZ4H0gchUFJHKIXw3aL8KL94LhGyWA5uUJfQC98BCscJ7OAa8N1iWcK1QeooQPhuoZwIQvn4QuL5Ck0KhFIoIRCqIJ/UUFILjvc9lJS916HnBv976pcaKFHsf+E5iMKF5AN5T+ErkCIIaQ8Cx1e0Zx1iRtBnGccjaUosTeBJgakJPF8hhUATgogucXyFj09EF+hS4PoKAx+kDK5bP9hvSUgLgRQQ1QW2J7A9hVKFLpXBfkuXCKXwC/IIEcjs+gqtMGrNugKPoI+0wiA3j+hpLpoIZDVlof2ApUlsz8fWBEbhOKX3n8fwlcKQEikUnlJoQmBogoSpowmBj0IKj7ipYWqiUI8iaQXl5F1FVBd4KpDBUwrH98Gh0G6Jj8KQYGpBeaYnijJD4HnL0ATlloGvFBEjuB4yjke5FYSuT9kuLRkHTQpihiRmaNTEDMosDcf3sTQNTUJLxiGiSyxNFhf6l1k6VVGDymhQVsbx0IQgZbvkPR8pBOWWTszQMDSHnOuTNDVihkbK9nA8RV3cxNIkhiYxCn3cnXepjBpEdEnO9TGkoDyi4xbWHiVNjeqYiZROUd6EqdNtu3TbHlFDK55fKQSmLrH+f/bOOzyO4nz8n5kt19RlSa5yr7iDjU3A2KaZ3uGXENMDhoQkFCchCQEHvkkoCRBieoIhJGADBkKvxkBoBtsEY7Bx791W15Xd+f2xp7NOOkmnfpL28zx6dFtm5p2ys+/MvvOOLtGkIM2rk+k3yPEapHl0KiM2mR4do1xQkWaR5tGpCFsETKcfNCM2uQGT/ICH0lAEQwo8uoahCUqCEby6k1ZZ2CLLa5Dh0fFqEikF2V4DTQqKKjUyPDqGJikqD2Pqkh4Z3mjbhzSPTsiy0aQgx2sQjj4XRUGnL/BqTr1ULdkKRqxYeVV5V8tP8+Azg7Hf5T4LSykyPQamLsnw6PTJ9CGlIBixKQ1GKCoPk+bV6ZXhdcpMCryaxIy2Zcu26ZHpIyfNRBOCdK9OTppJaWWEA+U66V6d7lleNCGcMg2Y+A2NXaVBLFvRLWBSFrYwi504QxGbkkqNdK+OFq3rnlk+0k2NomCEirBFXsCDJgWllREy/Y7slq0oKjfYW+b4gQ9FbHyGRm6aSV6Gh4qQRWkwgmXbsf4uN82JR4uWkWUrfKaGJgS7zUpMXeJTDc89prJOkTT+njB5nrNY94ufw56P4H83wdpHYdyd0Oecer3xZGfDsGHw7bfw6adw8smtJ2pXZevWrfzhD3/gkUceIRx2nvsZM2YwZ84cJk6c2M7SNY42mdG/4oorWLVqFcuXL+eUU07hiiuuAOCMM87g66+/Zvny5fziF7/gvPPOi4W566678Hg8rFmzhjfeeIOrr76a/fv3A/Dkk0+ycuVKVq9ezWeffcYdd9zBt99+23jBklkMI0T9RvcNJVHjf+MjsOOe97osd5RsxTFbzdXjtp34vhqIZFadJxlXHMp2FN3q1Dyuuq+hqEQTH4EmhFPVBh6pgkxywVBLfTlK5pGzm/i0NOMxbRFac+1VsvXUFBL5F9DasJlWKZgNnXNpGlaNhy6Rm+dkyrvmPZatYgPYxsSTiEgjXU+nrE7RWHInwHEfwhH/dlxvlm2ED8+Dt4+GfcvqDeqa77QO+/fv5/rrr2fgwIHcf//9hMNhjjnmGD788ENee+21DqfkQxvM6Hu9Xk466aTY8aRJk7jnnnsAOO200+LOb9y4Edu2kVIyf/585s2bB0D//v2ZMmUKL774IhdffDHz589n1qxZaJpGTk4O5513Hk8//TS33HJLQhmCwSDBYDB2XFJSkvC+joH7AnRxcXFx6Zq0t05Rlz4RDodjM7+Nptc5UHASctWfkavuQuz+APX6oah+F2GN+j14u8firvo/caJg3jydjz+2CTfVdXcrU1PmVGb37t3ccccdPPDAA4RCzpeqI488kltuuYUpU6YAbZ8PwzBaJJ4296P/17/+lVNPPbXW+XvvvZeTTjop5nt006ZN9K22t3O/fv3YtGlTndc+//zzOtP84x//yJw5c1oqC02jyjxHiBozf4KG5yKr2eiLuq64uLi4uLh0Ldpap6hLn3jzzTfx+5vr6vpQvOZfGRH6J32s9xEb5mFtmM9q41zWGaeCMHjrrbcACIUygGl89JHNSy+9SorszZSQKplTkZKSEl544QVeeeUVKisdV+ZDhw7lBz/4AaNHj6a0tJRXX321XWQ7/fTTWySeNlX0//CHP/Ddd9/x4IMPxp1/8sknWbBgAR9UbfcWpfoiVFXj82N912py4403ct1118WOt27dyogRIxotf8sRv7g2eTWfBEt5U1PV31NcxqerNjF44EAG98hpb3FcXFxcXDoZ7aFT1KVPHH/88WRkZDQpH7W5iMjeT5DLrsPY/zmHhJ9guPkhSyLnMWrGbzFME8uC3/5WUVqq06/fSaTimtBwOMxbb73Fcccd12Kz0y3FgQMHuPfee/nrX/8a+yozfvx4Tj75ZH75y19immY7S9hytJmif9ddd7Fw4ULefvvtuFHv/PnzmTNnDu+88w75+fmx84WFhWzYsIG8vDzAWflc9bmu6tqECRNi1woLC+tM2+Px4PF4YsfFxcWNkl3V8Tu5EC1Maur1tXhn+RpWb93N0jVb+e3FZ7S3OC4uLi4unYj20inq0icMw2hZZbb7UTDjU1j/JHz5K2TZOg7nT9gff4oc+VuM/ClMnCh491344guD8eNbLumWpsXLphns2bOHBx98kD//+c8cOHAAgDFjxvD73/+eGTNm8Nprr2GaZsrI2xK0yZKrv/zlLzz11FO89dZbZGVlxc4vWLCA3/72t7z99tu1Hqpzzz2XuXPnArB+/XoWL14cs78799xzeeihh7Asi3379jF//nzOP//8tshKo6k1a0ATFu2JhD+d4xRV/A+UJucmzMXFxcXFpTF0GZ1CSBhwIZyyGmvYL7EwkLsWwbvHwPPduXHaJZw6/j9sWOu+b+tDKcV///tffvjDH9KrVy9uuukmDhw4wCGHHMKzzz7L0qVLOe2001JqN9uWpNVn9Lds2cL111/PgAEDmDZtGuCMiD/99FMuuOACunfvHmeH9M4775Cbm8vs2bO59NJLGTRoEFJK5s6dS06OYwIyc+ZMlixZwpAhQwCYPXt2ym5WUBJyFsmEo27oHEeHBxuTlAK7yu1FHR8C9pXU/RA3ZLbk4uLi4uLSWeiSOoWRhj3qVhZtHMCx3T9FbnsRgns5dsA8jr1+HpYIwAcnQp8zoefJYGa2t8QpQXFxMU8++SQPPvggX331Vez8oYceyvXXX895552HlsqLG1qIVlf0e/fuXacyWt8K5kAgwPz58xNe0zQtNjJPdcwq59HRf0Wl5Wia5NABPdgfVCg7wvrt9e94sb/a7LhZ43NSZx2Buri4uLi41KQr6xQVsgDrsAfZsu0hfnzuBxw3/HkunP4CWcZm2Pys8ycNKJgOvc+E3qeDr3t7i93mLFu2jAcffJB//etflJWVAeDz+fj+97/PVVddxWGHHdbOErYtbe51p6PTXLW6d34uACeOG4jK6c3Tr74bu5bM3Hxmmi/uuF+Bu9DVxcXFxcWlK2BZcOFFOouXTGO3nMbVj94LxV/Aludh8/NQ/A1sf8P5W3IV5B3hKP19zoS0Ae0tfqtRUVHBggULeOCBB/j0009j54cPH86sWbO48MIL48y8uhKuot9WxNxrJnFTPdTyuuPO6Lu4uLi4uHQJ/vIXyeLFEAjAk0+CbgjIPcz5G/N/ULzKUfi3PA97P4Pd/3X+lt0AWaMPKv1ZozuF/rBq1Soeeugh5s2bF9sAzTAMzj77bGbNmsWUKVO6vOWDq+i3N421sXf96Lu4uLi4uHQ51q7N5JZbHB8qf/0rDBqU4KaMoXDIr5y/8i2w+QVH6d+1GA78z/lbMceZ3a9S+rtNTrld2+sjHA7zwgsv8OCDD/LuuwetIvr168eVV17JJZdcQkFBQTtKmFp0bUVfaghNAwTCNJGmF2VboGxUJIwwTFB2jUAKhEBoOkrZzohY0xG6DpoOVqTGAyNAN0GPRNPUsf3ZSMD2ZaJktYUghgfLlw2GF6WZKF8mSupxzvaVGb8hh+1Jw07rhu1JQ+keZLgC2wxQElZk+TJRmkFY9yF1L8r0U2YJ0nUTQhKhbGwhUZqBMgOooGPLpjQTNAOERBleEBLbE0BYEZTpR4UrIBxyykdKEAKlm4iw5sjtTY+bKbC9GRTbBj7TxBMsQ3kC2GaAMBKP4YUKUJqBpXspDVr4dIHX8FEetknTvQgrgqV50GUQFapE+D1gObaYZWEbU0iwLZTpQ0UqISJBc+pO6R5QCmGFQNkIO+IUpaY7x8p2joV08qubhISOV2ognToVVsgpg2hZAQgrhNI9CDviyFJV59H6VEKidC+IsmgzcNpJWEHYUmgKvEIQsRWGkIhICGUGiNgKTUiEsJ30iUT/g9K90fzYlFsCreq8pfBJDSUEStmELEVJ0CLTo6EJqLRsfEISshQ7y0Lk+A0MqVEethACDCuIrnsQ4UqkEAjh5EGLVILuRWkCQ0UQwSDC8CHDFSgh0XQfYVthagIZLMWQjlmZYQXRZPxaEl0KfMJCBEvBjiAMP8LwIqPNJGSBJsCOtnNLKSRgyOgzVNWWlEITAkMKvLqMngOfLpBCUhFW6NK5bqPixtGWAkMTGAinDiR4NA2PLtCEQCmBMsCrSUxNYGqCkKXIMJ3yKBM26bpCSQ3LVoSjXUN52CJT0/FqAiEkQWnj0yW2gqC0sRUYUgA6tlJ4NI0Mj4YQ4NUEIVtRHtbJ9MhoU9Hx6BItJEgzdTK9OjlejRyfTthWGNL5rpduahiaJNOjY2gCWykyvTrd/Cbp0bh8ukQI8OiSYMQRuJvfxOcULEHLJtOj4zUkUgjKwxbppsSMtnOPphG2Ffsqw2R6dNI9GuVhG0MKcvwGpSGLSsvGo0syvY586aZGjs8gzZB4dMH2Eo0002mrmhQYmoXP1CitjOAzNdKiMvdK95Ll0ykLWaSbOlI4zgzSTQ0pBH7DubeoPEyaqdMjzUN5WMerS7yGRBNO3Xl0iUfXKA1F6OY3yfYaGJpzvZvfRAqBRwsRtJx8bPTqaFKQ6zfRBBiapJvfoKgygiage7oHW4EUYJSJaLlI0j06lRHbecYiGl5d4jc0qnwr9Mo46IKxV4aXfRVhbKXoFk0nw2vQO8OLrRQlIQuPLrFsRabPID/NQ5qpURG28BlO+wtFbCrCFr1yfOT5TSxbkebVKUjzUB628JlBugVM8tM8SOG0nWyfgd+QaEJgKUV+wIPfCDthPToVYQtTl+SkmXg1iZSCwkwfmR6d7aVBiioj9Ej3UBR0+ttsv4nfOPjOCkZsdCkoFxZZfoO8dA/5AZPysM0WXwUhy6Y8ZOE3NXpketGkQJMCy1Yx+bVoJ2DqkowusDCyqZSXw1/+cijhsOCss+CSS5II5O8NQ3/i/AX3wtaXHaV/+xtQug6+/bPz5y1w7Pl7n+nY92up6UN+06ZNPPLIIzz66KPs2LEDACklJ598MrNmzeKEE07oEotrG0vXVvTBmVGv77NOsqPcZD8NVb+vRtwJ5/ZrDDRqb5iVOK5EYZPNi6gRTtUMV2vwkxxSiJb5VFiVfnW5pAZ2DblqHFcNbOKiqpm3usqoiWXZUJg6SyMJuZRSBz9JioNKbyxIHZHLJMy/ZM1TdnJbrNf8RGorR4FvDC3lSKqueKwEzVcKYgoaJNdMa0YvhEi4SLBWWSaBnUQhWAo8NeLWapY/Ci2J73612gTR57UelALLjpfTViouXKJ4a6IJUSstIeLbsnNf4vQai5bg0dWkiGunidpITWrKUl2mhsrOqhE02XxUr1/LVjEluTo1004kZqJw8fLVDpQojC6dyYq60q6SM1FZVT8XsmxMvePMKLcHv/ylZOvWdHr2VDz8sGj8q9STCwMucv4iZY6yv/l52PoSVO6ENQ87f0aG47mnz5nQ40Qw0lolP8liWRZvvPEGDz74IK+88gp29L3evXt3Lr/8cn70ox/Vu4+Si6votzqqIbv7JHbjcj1ouri4uLi4dE1efhkeesiZqX70UYvc3GaqbnoA+pzl/Fkh2PVe1K7/BajcARufcv6kB3oc78z09zoVvN2anZdk2blzJ//4xz94+OGH2bBhQ+z89OnTueqqqzj99NM71aZWrYmr6LcxLb0opKsvMnFxcXFxcems7NwJl17q/D7ttDUce2zflk1AMx1lvsfxMGEu7Pn0oAef0jXOjP/Wl5yvxnlTnJn+3mdCoE/LyoHzlfr999/ngQceYOHChTF3qdnZ2Vx88cVceeWVDB06tMXT7ey4in47U33GP1LT9CQBbaXXl1UG2bG/lL79AgmtVLbuK2FfZYQBPfJI86Rh2zZrtuzC9Prpnd2b8mCoxWWybZsNO/YT0cqIRMLgLSd3WH7DAV1cXFxcXDoYSjlK/u7dMHKk4oc//AZoYUW/OkJC3mTnb+ztUPR1dKZ/Iexf7sz873oPvvgZ5Bx2UOnPbN7mYgcOHOCJJ57gwQcf5JtvvomdP/zww7nqqqs477zz8Pl89cTgUh+uot9IWtOKZs2O/aTKXnzPvr+MTbv2c+rRglHDBsddKy4rZ977KwAozNvBhSdPZeW6zby4eBkAl+f3obQi2OIyrd2wkWf/+3XcuVH7KjhtgjvCd3FxcXHpXDzwALz6Kng88MQTETZtatr6uCYhBGSNdP5G3QSl6x3Tns3Pw+4PYd/nzt+Xv3E8/fQ+0zEFyp2QdBJffPEF999/P0899RQVFc7GoIFAgAsuuIBZs2Yxbty4Vspc18Jd/dJImjuhXt+MvNdMZtwl6jlqOTbtcvzRfrN+c61rZdWU+CqFvqyi8uC5snL8npZftV9aVl5bltKyFk/HxcXFxcWlPdm3D264wfl9++0wcmT7ykNafxh2LRz3Ppy1AyY+AnlHOdeKV8HKP8EbE2HNo0lF98orr3DYYYfxj3/8g4qKCrKzs7nvvvvYtm0bDz30kKvktyDujH6UfeVBdu4sJhh2vIv0zw2QZTju0ap7REjGdKa48uA23GFL8e2W3VSEqs41XjWXQsRkqJV+K9vyJBu7Vc3syF014OLi4uLi0nQ8HjBNqKiAHj3aW5ooSjl++Le/Dttegz0fx1/XvOBLTti8vDwyMjIoLi4GYP/+/dx+++2sWbOGc845hyOOOAIp3bnolsAtxSj7ykIxJR9g0/7as8cARhKKtVnDf9tBJR9ysjLrDliHXdCkQwYCMGrIQMwaq8zTA21vt1bdhWDVr2/Wb4mds2y7VWz0E3sfcl0Subi4uLh0LgIB+PnPnd9z5oCVnIfjlie0HzYugE8uhRd6wWtjYfmvnA24VATSBsGQn8DRr8DZe6DXyUlFO3HiRLZv387ChQv5wQ9+QHp6Olu2bOHee+/lqKOOonfv3lxzzTUsXrwYq90y3zlwZ/Sj1FQi6/KR3FSyAl7OPu4ouvUqjG32lCzTxg1j1IDeZHfvTXF5Zdy1Hnlt5+6qPjICfnbsccx9fF4vaT5Pq9jpu7i4uLi4dAV+/nO45x5YuRKefVaQnt4GiSob9n0B2153Zu73fhK/j4zmh4Jp0PNE6HECpCfanjc5/H4/Z555JmeeeSaVlZW8+eabPPvss7z44ots376dv/3tb/ztb3+joKCAs846i3POOYcpU6ag667q2hhafUa/srKSM844gyFDhjB27FhmzJgR84mqlOKWW25hyJAhjBw5kqlTp8bClZeX8/3vf59BgwYxZMgQFi5cGLtm2zbXXHMNAwcOZNCgQdx///2tnY1m0zMnne7dsuv9FFWXz30hBHlZ6Ugpa7nTTBUzmZpyNLRhTNOoXT7ufL6Li4tL16Er6RRZWXDddc7v227TWm9Wv3IXrH8SPvohLCxwbO2/+h3s+chR8jNHwLDrYfpbcM5emPoyDPlxs5T8mni9Xk477TSeeOIJdu3axcsvv8zFF19MVlYWO3fu5IEHHuCYY46hZ8+eXHnllbz11ltEIpEWS78z0ybDoiuuuIITTzwRIQR/+9vfuOKKK3jzzTf561//yldffcWKFSswTZPt27fHwtx11114PB7WrFnD+vXrmTx5MtOmTSM7O5snn3ySlStXsnr1aoqKihg/fjzTp09n2LBhbZGdLk/cHl9tqGknTMvdTczFxcWlS9GVdIqf/QzuvhtWrRJ8+GEvTj21BSK1I7D304Oz9vu+IO7NrqdD92MPztoH2nbnWY/Hw8knn8zJJ5/MQw89xLvvvsuzzz7L888/z+7du3n44Yd5+OGHyc3N5YwzzuCcc87hmGOOcTfQqoNWV/S9Xi8nnXRS7HjSpEncc889ANx555289957mKbjoaVHtRUn8+fPZ968eQD079+fKVOm8OKLL3LxxRczf/58Zs2ahaZp5OTkcN555/H0009zyy23JJQhGAwSDB40IykpKWnZTCaBaK2591Sd0ndxcXFxcWlh2lunqEufCIfDsQ2eWhK/H669VnLzzRoLFgxlzpwmplGxDbHjTeSONxA730GED8RdVlljsLsfj+o+A5U7CWQ1pbmJ+aoqj+aUixCCY445hmOOOYa//vWvLF68mIULF/LCCy+wZ88e/v73v/P3v/+d7OxsTj31VM466yyOOeYYPB5Pu8jbkrTUwKXNDZ3++te/cuqpp1JcXMzu3bt5/vnnee655wC49tprOf/88wHYtGkTffse3BiiX79+bNq0qc5rn3/+eZ1p/vGPf2TOnDl1XhdSJlRUhaajamxipZQNVeeEQNk2QtogJMIwneuJzFY0A9ufTbmRgemTGEIQMtNRQqsWt0L5MqlQGr40gzJlELEVOd50sCPYvkxs5Y2XJ60bYU+A/ZUWoaCNz/BRWhqhqNIiIysXpXvYXRahlydAyAiwpzSMLz0DI1SOEmUgdZRuEhI6Ht15MJRe7QGRGsqbju1JR1ghQtJESbOazDZK00EezEdE98WVge3LZFdZhHSPpMCbgTJ8lIQVIcsm1+NDCgmGl7KwTVHQwlYamhRURhRpGmBbWHXM3Fu2AmVjlxVDNzNWL7bhQ1ohlOFFRELOSiY7grAizryF1FEigqw61gxEpBIsHyFL4VW2szW4FcEu2utE68sEzXDyq2wiSExA2BFEuBJhhcFMA9uKlR3KdmZP8ICyCVuKkK3wCidfqsqSywo7+YjGF/tSYduggZI6SjMIKxBIKiI2SimEECil8PidthK0FOVhmy3FleQHDDQBpUEbTQjKQhZbiioYmO3HbwiKKiNoQiDL9zvlFKoAqaHpuZiacx5fJl7Dhyw5ALaFEBIRKgdNR+jOQnBphRHBUoTXjyZABEvRzBwspbCUQiqBIQWyfB8iWIJQNrYnBGRhaIaTX81EE8IJY0MoohBegSYFYVtRGbEJ2zYlQQu/AZoQeDSBFGAp8BkShY0QoMX+DsZXFIxQVBmhR5oHTTqetLToQ29KgalJIkIRsgSmJvDpMhaPXrEPgDR/DrJ0D2g6ppaODZSHLfZXhtGkQJOglEBT4NMFzjIfiYzGE7IEUghMXeA3nPN+QxKM2PgNjUyvI5ENGNKR3W9oZHh0cnw6RtFWsn3dMTUnbr8hyfQYpHkkhiYIW4ocv0GWVyPXK1FCUBqykdFHMS3qvjfDo5FmSiylqAzbZHg1fLrEUjp7ykPk+HSCEaePMzVBeVjHkJIcn0HA1PBoNoYmyPRo+A2N4mAEj64RMDX8IY1Mr066qZHt1SgL26SZOplePeY5TArQokJp0mkbmR6d/DSDDFMjYEjSTY2QZbO9RMNnaFRaNh5dxp75dNMpr4Ap8RsSUxMo5UUKQaZXx6tL9pRLeqR5SDMltlJ4dEmWV3PahQ1By8KjafhMDVOXdPObhG0bj6bRza+T7TPw6pJeGZ64D4e2Ao8m8Rsa5WELTYIRtsn2GgRMSUnIQhPQM91DUWWEsK3o5jdi6756pHkIWzb5AQ/5AR1LeZElwVh5+A2N/IBJminZX2GQ6dUJ24o9ZSFMXZLjM+me7qEoGCHXb1KY6aU0ZOHVJPlpHnpneLAV7DY18gKm05ZsRXnYopvfwFYKszJMmqnHrnXzm2R6dKQQ9M30kmZKvLpkiwhSkGayqUgjFLHJ9OqkmTqagGDEoqg8TCR0sH/WBGT7DAzNirYfiSYFPlMnJ83EZzrlXxG2sGxFfpoHKQSllREy/QbpTbAmbmudoi594s0338Tv9zda/mQYPFgnPf04tm5N53e/+4KpU7c0GEaoMDn2txRYS8m3lpFpb4i7HiKNXdpYdmnj2aWNJRjOgc3A5hLgrRaV/623Wja+U045hRNPPJGvv/6ajz76iE8++YT9+/fzxBNP8MQTT+D3+5k4cSJHHHEEY8eOjQ382kvepnL66ae3SDxtquj/4Q9/4LvvvuPBBx+koqKCUChERUUFn3zyCZs2bWLy5MkccsghjIw6jK1uj65qKHr1XavJjTfeyHVVhm7A1q1bGTFiBMlYeNe0iU+GhLEmiCYZo5OmpJ8sQtlNsnEXqrahYKt9sUgSoWkN32QnYeDYmu68Em0xnASqieE6AkLV3gCmaa2yNk2NJ5lHznkuW8dsLFF31lLdgJagKSVj/aYlkb5sYh8gZfv2HU3FbkWzwWTqu67JjwbDJeFoIhlfFFaCe9q6LttDp6hLnzj++OPJyMhoqazVYvVqxS23wMsvj+MPfxhNwvWoZRudGfsdbyB2LUJESmOXFAKVcxgqOmsvcg6jQGgUtJrEzsz4W2+9xXHHHdcqZjWnRu2YLMvio48+4rnnnuP5559n+/btvPfee7z33nukp6dz8sknc9ZZZ3HCCSfUu8Nua8vbXrSZon/XXXexcOFC3n77bfx+P36/n7S0NH74wx8CUFhYyPe+9z0+//xzRo4cSWFhIRs2bCAvLw+AjRs3xj7XVV2bMGFC7FphYd02ZB6PJ+4zTpXf1rYkqe4vOc2/mZK0AO1kF59osbJroe/i4uLS9WgvnaIufcIwjFZVDq+5Jsyf/xxkzRoPzzwjufBCwKqEXe87Pu23vw7F38YH8uZD9xOg5wxE9+MR3vbx0tfaZWMYBtOnT2f69Oncd999fPzxxzzzzDM8++yzbN26laeffpqnn36aQCDAKaecwjnnnMOJJ55IIBBoF3nbmjaZKvzLX/7CU089xVtvvUVWVlbs/Pe//31ef/11wNks4bPPPmP06NEAnHvuucydOxeA9evXs3jxYk477bTYtYceegjLsti3bx/z58+PfZ5LCZqoCDdpdr0dFH9Vx+82Tbh9JHBxcXFxaWe6nE4BpKfDmWd+x6CC79jw5n3Y754Ez+bAohNg1T2Oki80yDsSRt8GM76AM7fDEU9Avx9AOyn5bY2Uku9973vcc889bNq0iY8//pjrrruOwsJCysrKmD9/Pueeey75+fmce+65zJ8/n9LS0oYj7sC0+oz+li1buP766xkwYADTpk0DnBHxp59+yh/+8AcuueSSmCurG2+8kfHjxwMwe/ZsLr30UgYNGoSUkrlz55KTkwPAzJkzWbJkCUOGDIndO3z48FaRvyGzoKRpIX28rdX64tKyWue+27Tt4PXyIAdKytrkQ8OWbdtrndu2aSNwWOx4/bad/HfZNwwfNpRDB7bMdoIrtuxl6abdCHMjh48fw6CB/ZMOu3zVOr5Zu5FpR0wkv2fr2G+6uLi4dBU6uk7RaCJlsHMRcsurzD3hedJO2OGcj/7D1wt6zoAeMxxPOWZWe0mackgpmTRpEpMmTeKuu+7i888/j830r1+/nmeffZZnn30Wr9fLiSeeyBlnnNGpZvKraHVFv3fv3nUqy926deOll15KeC0QCDB//vyE1zRNi43MOwotZsPexjP4WgLb94+Wr4w7/vK7DW0iSziBz1xvjcVP7372FTv2HmDjjj0cOvCcFkn3v2u2s6e0EihFfLmiUYr+K+9/BoD++ZecfVrvFpHHxcXFpavSJXQKpWDdY7DxKcc0xw6hAWmApQze+/oolmyZwfV/mYGROzI1THpTHCEEEyZMYMKECdx+++0sW7YspvSvWbOG559/nueffx7DMPj3v//NVVddFefdqSPTeVf5NQJbKcqCtd0plVWGKK9xvmoBUnkwTHkoEutwIrZNWWWIslCEinDTdrWoa8Os+mht0x2/19vgPZGIFb+QqZVk0aILZTUpyElz5JIyfiBSXtnyu/FWX3TX1B2TyysqWkocFxcXF5fOzJoH4dPLYMfbYIcg0A9r4JV86vk13x6yk2P/+A43/nM2S9eOcpX8JiCEYPz48fzxj39k9erVLF++nN/+9rcMGTKEcDjMyy+/zMknn8yFF17IgQMH2lvcZtOlFf1gVGtfU5x4d7VVW3axauvuuHNllmBXWYhVO/azelcJm8ttbKX4ZkcRq7ft5btdiX301/Usxs1MJKFDtvUj3ZQ+REpBZYKBU3OpUrgtW7GvtNI5WWNmx+yEn91cXFxcXLoIxatg6fXO76E/g1O+hdPWYY+/j83qcC6blQnAoYfCuHHtKGcnQQjBmDFjuPXWW/nqq6+49957+elPf4qUkn/+85+MGjWKt99+u73FbBZdWtEPRz37BaMT8Kau4zEOWjNlBryxv775ObHz20oOzhoHLcdPd6KZ3kkDCsj0meRmpnFI/14JZaiuSPfKSWtGbtoXo5qvr7y8fEKtsDV1RUVlrXMlxUVxx1PGjyAnI40ph49vsXTjxhJNXWjtrhl2cXFxcakPOwwf/RCsCig4Bsb/BTKGxhSFf/5zBJ9+KsnMhGeegUa6h3dpACEEffv25a677uLDDz9k0KBBbNmyheOOO46f/vSnlJeXt7eITaLNN8xKJVSN/z868xhyPBKsMFbRXrTs/IO+1zWD2558LWmzlPHDBnLMoGymD+uJzCsEZZPIoGdI/75s2OIsMu2X23o+eFub6l8mpJT4vSbllaEWTaOwd0+2bN8Rd65bfve44+H9ezOisDtWIBcq4wcBLi4uLi4uKcuKW2Hf52BkweR5cXuvvPCC4D//GQTA449D/+SXirk0gcmTJ7N8+XJ+8YtfcP/993Pffffxxhtv8MQTT3D44Ye3t3iNokvP6NekQSuVxpixJHlvnGmMa2vXeNwic3FxcXHp6Oz+GL7+P+f3xAfBf9B5w9q18KMfOevRrrvOooU2THVpgEAgwNy5c3n99dfp2bMnq1ev5ogjjuCmm24iFGrZiczWxFX0q9NERbt5VhmupprqxFvuNNV0x7XdcXFxcXFJQLgUPp4JyoZ+F0Dfgz78KyvhvPOgqEgwbNhebr219m7iLq3LCSecwIoVK7jggguwbZvbbruNSZMmsWLFivYWLSm6uKLfsJKt7IMPVUtP6Ne8J1GY1lQQlWi56q8tZisMYBIMxKrcliorCU9Hsrar0FrYrdiJqqbFLZoYriOQqA3KFmo7TY0nmUeuNZ/LRPMNLZWclaApJTO/YSWRvt3EKQ+7iZ6s2hvZil9gk6lvrYnpa7LhcEncgpbgno5al+3O0uugdC34+8Bhf4u7dN11sHQp5OYqbrjhc1x/E+1DdnY2Tz75JAsWLCA3N5dly5Zx6KGHctddd2Elo3+0I13aRl8YJtKXBkWOpxwrsyeWocC2kIYPy58NykbYEcdWTojaPbDUkP402Bfv1lGZfmR2AQCRjHwQkiItgx0lYQKGpGd6AbvLIijPwS2YZXoWxZZGacjC9hgURVcJZwuJkDrK8BGujG9QlcKkMmixrzJCWcgiw6OztzzM1pJK+mdloyKK0rCN8vqoiCj2V0TI8+nouolQNrbUQeqELIVHN8GusYhWKRCSiAJN92AneOML26b6vHd5OF6bsE0/O3eVAB7y/H5ClqIiYhOMKDI8OpruJWKmcaAkzJbiID3SPCilKA7Z5GT5EVaI0pANWu0ezlKgDB9aIIOIJx0RKgcrjPKkoSJBlOFzZLRC2GXFyDR5cN2FrKZkVtWr4aUyokjXTUQkCLoZp6ArAKmDkM6L3o6AHUFY4VjZCWWDkCgtfqWU0kws5ShbljyowAs7ggyXY9sWSionrmhaVXWkNIMwkopo2R6otLBRSARCQKZXYauDSputFLoUSAGaBEMKDE1g2QpDE/gMSbpHJ9Mj0fbuQBk+RLgCpXsJdOuGR5fI8v2gbJRZiVa6xykHIZGVxSjdxDADWJqJCJYgy/YRSO+OVBZa6R7SunejNCTQhMDUBH5Dou3bhV2yDxUJo2UXOPUgNVAKM/qsSd2DEGDqAq8u8OkSTdiYusBQGuVhCyMan19TTvnoBlrFAfy+LExNYGoSUxOEbQuhRFzbNHVHJr+hYUTv9RkSny6J2ApLKdJN55y0woQ1He3AbqetSB2tZBfK8ODPycTGxlZQHrawbIUZ1Y50KfARBimRhoYQAk1AyFIETA2fLp1ylwKtshjTm4G30sK0gqBsTM2DFAflDBgSo2QHcs8GMgZ0R1ghlGZgSImhCbyaxLLBb2h4NUnAEMiK/SAk6d5MUDaVusRvOANdn+6UnzfktH9TCryak17QspHCWZQmhDNct5XCVgqPLvHqAimkU0eawFaK8rBFWsRCKaiM2IQt5bQ7K4hXj38GqgYapZURSiojmLrE0CReXRLQJemmE3fAkJiaRBOOYlqlQFq2irZhp86UUqSZEq8mqAhLgj4Dv6Gha9DNb5BmOnFWWhoSQcBw4vQZ0mlTUuAznXLzGxphW2BI6ZSPLjGkU75Vz1JZyCBs23h15/k3bKfcpLBjdW9IgSYFHk1gaBJbWRhSxhRsTTqDBKf9ibiBlhVtg7oUmFLg0SUeTYuVg0eXZHp1uvlNdniCFARM8gMGAdOp257pHnJ9OpZSgEm2V0OXghyfgSYFGR6d/RVhNOHEZSsVlVXGnok0U+LTBV7dKQNNCIIRm6LyMAFTx5ACKQTFwQgHysNUhC0qQhF8hoYRjScYsakIW4Si4fRomWjCKR+ibTHDo0fLxLluyi4497jlP7D2EUDA5CfiNrx66il44AGnX583z8KyajukcGlbzj33XI466ih+9KMf8fLLLzN79mz+85//MG/ePAYMGNDe4iWkCz5VddNim1qleJoujaMlZlPdeS4XFxcXlzgqdsKnlzu/h18PBVNjl779Fn70I+f3b34DJ5zgvkVShe7du/Of//yHRx99lLS0ND744ANGjx7NI488kpJmuq6i3wgapZJ3sYW1bdO0E5judK1idnFxcXHpDCjlKPnB3ZA1CkbfFrtUXg7nngtlZTBtGtxyS/uJ6ZIYIQSXXXYZ//vf/5gyZQplZWVcccUVnHLKKWzfvr29xYvDVfSr0x5KY2dRVFNvENsqNHmw3kXKx8XFxcUlCdY+AtteBmnCEf8CzRO79OMfw4oVUFAA//43aEksL3NpH/r378+iRYu46667ME2TV199lZEjR7JgwYL2Fi1Gl7bRr1K+qnSwhs1o4u19nbAqofKXvP4uEvxKHb7buMVZaFLPAqAV67aQldX6ewA0dfZ+5+69vPDy++wrKSMr4GPC2EM4bEJyfnBt26ao8uAuv9t37U5435drt/DB/1ZzyNDBTBvRp9b17bv3NE34NqIiGGLB259SVB6k76ANnDhjRtz1/65Yw9LVmxg1fAhHj2y8A+dIJMKTb33K3qJiiisct2THHnEYE8cc0iLytyZrt+7i7SUrOHziYXz3zUq27ytm+KgxjJ30vTaTYd2mrby5+AvSczZxzumnoidYr+Li4tJBKFkDX1zr/B7zB2dGP8pjj8G8ec6yoKefhu7dE0fhkjpIKbn++uuZMWMGM2fOZNmyZZx//vm88MIL/O1vfyMnJ6fhSFpTvnZNvYPROEWzCVppitihhMLhuOM9+/bXe7/HNPB7va0pUpQE5ZNEmX38+VL2lZQBcKCsguXfrEk6xf0H4jfdSg/4E973/per2V9awYdf/C/hda8ntbcw3LJrH5t3H6C4rIKvvvySSI2djd9dtooDZRV88PmXTYp/z+7drN+xJ6bkA7z90efNkrmteOPT/7H7QDEvv/kuqzbvoLisnOXLlrapDF9/t559pRVs3LSJnbt3tWnaLi4uLYhtRXe/LYeCaTDs2tilFSvg6qud37feClOnto+ILk3jkEMO4ZNPPuGmm25C0zSeeuopRo0axccff9yucnXpGf2W8AgZthTBGkpRY0gR3T6OmotJah57DJ1gOEL3DC87iiuRUqTm54goFZU1PCI1wv6m1r11VFgoUr97rVRfdN3aC4hScYFSshSV1t72vK3zo6r1Vh25LF1cujzlG2Hvp87vrNFUf3n+61+O3/yxY+FXv2oX6VoNy7II15hETDXC4TC6rlNZWdksl5m//OUvCQaDzJ8/H4C///3vjBs3LuG9mqah6zqiFZXBNlH0jz/+eHbs2IGUkvT0dO677z7Gjh3Lrl27uPDCC1m7di0ej4cHH3yQI488EoDy8nIuu+wylixZgpSSP/3pT5x11lmAY07xs5/9jFdffRUhBNdddx1XVw2DG0FJKEJBtZdmUwrashVrdxbVOi+TcUSMk5fG0Jq+m+uirhT1arIEfL62EaYJNLaM66OusrAbUL58Pk+917sKpi4JRTrWvgBWa+6t4OLi0mhSVadIirQBMHw2fHMnrLoXKrbDpMdA93PSSfCnP8GqVXDgALSzxUeLUVZWxo4dO1J+kkIpRffu3dm8eXOTFe9QKMTevXuZNm0a06ZNwzRNunXrxvr16+sM4/f76dGjB6bZOl/+20TRX7BgAVlZWQC88MILXHrppSxdupRf/epXTJo0iddff50lS5ZwzjnnsHbtWnRd56677sLj8bBmzRrWr1/P5MmTmTZtWmzTgpUrV7J69WqKiooYP34806dPZ9iwYY2SSxOCSLUNPgJ+P1QW13l/Q2102oTRFB3Yz+6icg4ZNhQobVAGXT9YBYYmaWi86w8E4o6llIl3wWlJkmjwk8aMYP++fQwbPLAVBUlQAUl0HOUV8b6HG9PXJHtrZShxzZ1wxHi+Wr2eIyaMTz7RdqC1u9/qM9IeXRKM2AzpV3stg0ti4tpsar8rXVxanVTVKZJm3B2QMRSWXAWbFkDpOpjyIkce2ZMxY+DLL+Hvf4fZs1sn+bZECMH27dsJBALk5eW16sx1c7Ftm9LSUtLS0hzdqhFYlsXOnTspKysjIyMDKSUFBQXk5OTUmWelFKFQiN27d7N+/XoGDx7c6HSToU0U/aoHEqCoqCiWkQULFsRGORMmTKCgoIAPP/yQqVOnMn/+fObNmwc4q5qnTJnCiy++yMUXX8z8+fOZNWsWmqaRk5PDeeedx9NPP80tdfigCgaDBIMHzTdKSkpq3aNJmUQDrPsN2y0zjSPGjkBWFKF0D5HsfNjTsKIfiFPcU+MBaMqgOysjnQuOPwLbl0n9Fv1Np6mTAZkZ6TXWGTRG00/u3sL8HDbt2lfr/GEjBjFhSCG2P5uUnhduwFyr+fFX/XA2KApGQvTr1TFWmWlS1prVb/uZKZXgl4tL16Q9dYq69IlwONw405TCCxG+/mgfnYfY9znq9QlEjlzIj398KFdcoTN3ruKaayIxjztVcae6+Ut1wuEwmqZh2za5ubl4PKn9ZbtK8fZ4PI0akOzfv58tW7bE6iY7O5vevXtjJLGNscfjQdM0Nm3aRHl5eVwZJRM+GdrMRv/CCy9k0aJFALz++uvs3bsX27bJy8uL3dOvXz82bdoEwKZNm+jbt2/S1z7/vO6FfX/84x+ZM2dO/QI2U8duiVFq6gx041WJlBErBUjl2YiOgFt6Li4uLUF76RR16RNvvvkmfn9iZw314df+j8PF/5FRuRnx9hQOSf856em/Z+NGD3PmLGXSpB1x97/11luNTqM9qbJ5Lysr6zCDlESTwYkIhULs2bOH8nJnHZdhGOTl5eH3+6moqKCioiLpeCoqKli8eHGcI4zTTz+98cInoM0U/SeeeAKAxx9/nNmzZ/PPf/6zltJUc5as+vXGXKvJjTfeyHXXXRc73rp1KyNGjGhcBnBn0tqf2jXQlInVxgRJ9t6Orv+3ftt2n57mEG+645ali0t76RR16RPHH388GRlNdDMdPgf7kx+i73idI+w7ePZmHyfccDOffDKB3//eWRQaDod56623OO6441pspre1CYfDLFq0CK/XS1paGt428c7XdJRSlJSUkJ6eXu+knlKKHTt2xNYdCCHo3r073bt3b9JkYGVlJT6fjylTprRKGbW5152LLrqIWbNmxY53794dG4Fv3LiRwsJCAAoLC9mwYUPctZNOOinu2oQJE2qFS4TH44n7HFJc7NjhV3+UU90rSltSq4/r6FqsS6NJ9UVTLi4uLtD2OkVd+oRhGE1XwI1cmPoyLJsNq+7m+B5zeOonq7jkoX+wapWPkSOr3dqcdNoJIQRSylaxP28qoVCIm266ieeeew7DMNA0jWuvvZazzz6bjRs3MnHiRPbsid//RgjB1q1bOf/889m5cycA3333HSNHjkTTNNLT0/nggw8aLYuMmo63Vt22uqJfXFxMaWkpPXv2BOD5558nNzeXnJwczj33XObOncstt9zCkiVL2LFjR2yFfNW1efPmsX79ehYvXsyDDz4Yu/bQQw9x1llnUVRUxPz583n99dcbLZvQDfD6gTIQYOsehO6selaRSpThAamjlA1C1j8pKXVsfzYIiZI6Yd2HTOsGQMSXg6UUJeURDlREAJ2yiLM8MayqzSL4MglZiqClKA3blIcVQoDtz0ZYIVA2ZTW+fIUsRdhWVIZtSkMWXl0StGzs6CJjXQoMKcCOYEgDv6FhagJREQI7grAjKDuCqL7zXk2PQVIjZCmkrbAUxAwwqh5aIVCa4WzfJ7WoLXr12RHnf9i2nfzV8LoirBBSWXh0QaZHx2cIfIbEUiDDlYhQBb5ABiT0fqKcBESVLNKRRWqgGSjNTDBQESipO9ufGd5YHgCwI072hR6t8xqyVovLUgpdM537xMEOrCp9G+GkL3VUtF1FbIWlFJYNSupYtkJJiRLSCaNA6R6UkCjNdO7RvYQsm5BlUxFxCrMkFEETIuaFqSJsI4TAsg+uzbaUApx7hHA8Npn6QTlj1WxbtcpWWmGEHXHaXSR+W0al6SCd8lFKoXSvU96xG2yEbaFJZ7G7JpyF79XL30lEonQTEQk55S80EBIpLCwFtnLyYCuQCGyh8OoSQ0qkAGGFnbZjW2BFkFbYSUs6eTOkQEabh9/QKA9baEJgagLLkEicZ8MpR0cqUwoUIJRy6r6eMa5SB8vQVgeXG1tV7VHZCKGjiYPesgwp8GoCPSo/dgQZCeLTNUS4FGybgN9Hjs8gaNlkeDT8hgR10NWbCJUhy/eTn5aBT5dkezV8upOXXJ+G3ypHK9kNUiIiIZSQpPlyyfBo2CjSPRpeFSLdo+OzBH5D4tUlIUvRK92LJ1yGYfiwPBqmFHRPNykKesmMyhKyFIaEdI9GYaaPsK3okeYhy6thKw8ZHo1Mj4Ys3Yvpy6QgzcSrSzQhsFFELBicl0am36Cb36RHmodeGR5y/Tpa+T6yzQCyZDd5/nz6ZfvwGxpppkamx8DQJKXBCH0zveR6nGdIqyxGlJaQl9ETTTr1a0hBhW6T5dUwIhWEPB40IUgjhLAi5Ph8KOX0jwOz/UghyPRIwrYTNl1X9Ez3YGrOeU0KDGxCft157qP96v5Kp+34DQ2PLsgwJd38JqYuyPRo9M7wUBlx5LAxUQrnd6ZTnr6KvXQP5GBqgm5BE0MKuvlNuvk0MkxJRYaXNFNiaAGkEJSme+mf7SPPrzOyIJ00U5Lr00kzbLyaJMurkanKUVLHl+7BawcRVoiCND8ZXo1uPh1N+pDCSSds25SGvPRI8+A3BJoU5MggsqKUPH83NCHI8WkM7RYgP2CSH/CQ6zfQJHTzm3RP8xC2FeVhi1y/ycBsP93TDHJ9Bt8bmEtlxGZPQRo5AZOh3QKkmzpew+mDLFuR4dGiaRgYmsCMNGzqkMo6RbOQGhz6F8gcAUuu4v9NfpoB+Wt5/KEXufO+Hm0rSyuiFJTX9ljcovj9Dc9PXnzxxQSDQb788ksCgQAbNmzgxBNPpKSkhNNOO63W/VVmR2vWrOHuu+/GMAz69OlDbm4uH3/8MWlpaa2RlRah1RX9oqIizj77bCoqKpBSkpeXx8svv4wQgttvv52ZM2cyePBgTNPkn//8Z8wLzezZs7n00ksZNGgQUkrmzp0b211s5syZLFmyhCFDhsTuHT58eBOkS2LWspqy19ImH3YSNyXppTMFqZ25ZFyD1n9PPQUmkp8pqHe2ukY8KtlaT+arh9RoyxW5yZRIVXknnc9GkNDcpGYxJRi8JfNctOZjkUzcTf3ikUwzSZj/aunVlXJTP7y1VM03da6uPVwGt0T6ybTTppLM5/+GXPrWRUt9rEuUvtYGE7aprVO0AIMuh/RBhBedzcSBS+iVPYHiDf/B12tUw2E7AOXl0No6cWkp1HBQGMeaNWt44YUX2Lx5c8whSr9+/bjzzju58sor4xR9pRS7d+9m69atsXP5+fn07NkzzmtiKtPqUvbp04fPPvss4bWCggLefPPNhNcCgUBss4GaaJrG3LlzW0xGaL7pTmeybqndf3eizDWbrlEWruGOi4tLKtJRdIpmUTAV/aTPWPf4KQzI/Zbwh0civvcYkNo27h2FpUuXMnjwYHJzc+POT548mW3btrF7924OHDjA6NGjCYVCcXvxDB06lIKCgrYWuVl0jOFIK9F4ZcZVf9qThDNRKWJL3unU/xYu19SopSaSApXrLsZ1celaiIyBfOj/hNVfns+MMW/Ax/+PIcYPQJ3Y3qI1C7/fmXFv7TQaor6vZrZtk5GRwT/+8Q/AGQj26tWLgoKCGi7ROwZdWtGPIwVe5m35VWBfUTEP/vsN0vxefnLpD+u9N1W+Vuw/cKDWuX27dzY+nqK6N0WrSa1tsFOkLFqalRu2xR0rpbh9/puEwhZnz5jWqLje/vxryuR6xk05jqoCKy8raylR254EenV1F2htwcbtu2K/DxSX0reee11cXDoH5/4gk76FL/PrGTfw8xPvZXj439if2TDpH6Cn7m709SFE/WY1bcG4ceNYvXo1e/fujZvV//jjj+nRowf79++PzeLn5OTQu3fvVtu1ti1InSXQ7Uwypjv1mna3iDbcdlrkOx85PoJLyyvZd6Ao7lptJSY1tFu/r3bH5vE1wW+xL/nPn5XBUNxxapREy7NzX/zgZ/PWrYTCziDnudcXxV2LRGoMfqpRWlrKJyvX8dWKFezbfVA5LYsq+sFw3WE7GhWtvaKsGj7PwZdMcWkHHjS5uLgkjc8Hl16mc+2T9/DnDx7ARkNuehremQqVu9tbvA7L4MGDOfXUU7niiitiPvBXr17Nz372My666CIikQhCCIYMGcKAAQM6tJIPrqLf5AVNHZ191Wa17YTebOqmNRZuJoOMrvQyNElBpjMl0BR3XY0JoyV5b0ffSEvWWPUdCdc9Y13fM1O9Ldn2QaVeRrd3TPN2LLdwQJ2ju7Z0QVq9HSbbJl1cXDo+V1/tOLi74cFZvBn+P5SRDXs/gxW/b2/ROjRPPPEEAwYMYNSoUQwfPpxTTjmF73//+5xzzjnk5+ejaVrT90VIMbq06U5ZZZhvt+xp+MbOSCvrKOWVwYZvaiI56QGy/CY7i5Kb2WzRPRLqUOi1tnA3kSI0Z0zTEZXUjICP/cWJ2prjvtTFxcWltSgsdP42bIAvd0zm2HPnon/yA9j93/YWrUPj8Xi48847ufPOO4lEInz55ZcopejVqxf5+fm1fOhD4smdjrDnTMd767Yg1V/RI4YMbFZc6YHGm5DUpu0aTH2z8gmacv1xtZXYLbQYt0detyaLUJdaN2H4AHwek/Ej28klW5tS/46Bsd9tIUobMGPSWNL8Xk487pi485rWdvMkcWXpji1cXLoUVXt37d7tR+U4m3px4CuwKttPqE5EUVERSim8Xm/K797bFLq0ol/18kz3eThx+lHNimvS2EOaL1Bb0pG1sMYqOjXun/69w1tMlCoG9u7O9f/vRE44+ogWj7st6MjNobUZ2LuAn33/FMaMHBF3vm3NtdwacnHpqhxU9H3gLwRPN1ARR9l3aTb79+8HICsrq30FaSW6tKJfRTLv64Y/zzT/pZ8yX4BqCFJTrrr2PmptEk7oNyGeZulnHdwWvyVIugRSpkF3LlrUFM3FxSXl6Rt1s7V7d3TL15xDnRP7Pm8/oToJlmVRXOysWczOzm5naVoHV9F3qUXDpjs1BwJtpNAldqTfYDBXLUqCFqrDjmCv2GK04aCvKxWri4tLPHEz+gA5hzn/933RPgJ1IoqLi7FtG9M08SXw7NcZcBX9FqKjTfS2l+eclqDxM5otVzkdrJqTplGtobMWQkfBLX8Xly7FwRn9Gor+XndGv7lUme101tl86OJed2JvTCFRhr/abx8qXOn81gznv1X/BjnK8KF0D7YvM3bO9mYglI2lFCFLYSvwG46bwbCt0ATIaiMEW/eilMLUDp4TApAa2BJhRzBlvHvCiO2oaH5DI2zbaFKQ7TUIWzamJtAF+HSJsEJ4DR/ppsQMl0E1N4giHMSvKQiGQClEJN53vFKOIhi2wZAHlUIR9aCihECZflS4AmXUXsgSthVeXaJLgVIKXQq8OKNMQ4CIhBBWmDTDhIBOwJAEdIEmJKKyFBkqxRfIASsclceOjawEIOwIKBthR1BCOvUldZRuYiMc32TVMXxOvUbrzclD9B5lo2sCLBulGSip1ciNcOLXPYQthWH4wJuOCFWAAcqbjm1HsD1pVEZsdNOHsm2U7gUhsRUEIwoJKMPAsnDS0EyUZmKFlVOGQoLUUNJDRcTGshVWtOAtpbCjfx5NQ5NgKRAoLKXw6IJMr4EmBULglLcm8BuSHule0k1JhqmRFzCRykI11r2qJx1bN1BCYtlVbd/EVopIjbkDUxN4dIlU1dKoPiqWEqX7sXUP0gpjI5DCyY9SirAFIVsRtm0MKfFoGl5dxuJRUnfi03SUkBhSYUZdhQoh0KKt1ZACQwospdCEwKdLLKXQJUgBtnL+65rA1ITTpmwLJcE2/LF+oWbe8gIm3cpMsn0GpiawqiKywiAkUoKOjbBthJBoQqBXxW+FEZbz36PrEPVGakhBts8gbCt8usCr19DshQQpMRCxZ8jWJUZEYVS1Xd0EqaM0HaSOZSs0CXq0fLGdNiiEQBNOEZqawG9oKEmsr9GkwJSC/ICJ35AY0bamS4FQCp8h6JHmwW9omJqIPedSWRB1r2pI6bQDTRKxFWGh6OY38OqSbn6DHJ9BmimR4Uqn79FMsC2kIFbfOT4DnyHJt03STC16fwVK90TbkYaOjRGVF0CT1fp3Ozq5IQBlIwVompP3HJ+BoQl8hoRw9PmP1kP1vlgGS0g3M4jYynm2gJIQTp3qzv0eXdLNrxOyFD5DEjA0DCnx6YIMU3P6Qk2QZkonD0VlpAdysZSGV5PYyoff0PDqAhEJ4jecsqmISHpneAnbNt18OlkGhHxOX+klgmEaVFpOexElJeBNB+lBhMsRVgTDCBCK1rUmBOkejYApsWxJwNTwGwJTc+pXWCGwLUxN4NMFuhROGUlJrt8gw5QI4bR9gPKwRUnIopvfIBBtByEL8gNmrM/K9hl085vo0TLVos+433CeiYI0Jy5V0Xre2joy1RfjAgdNd4pWQKSiw26e1d7Ytk1RkbOPUGdW9Lv0jH5MYa1vOl4kV0Q147CTmCJNZhZV62ifCtqIWqWSZD0lDtyIeOoKm0T6SjZtXJ1MW2oqokoBb0QaybbIppqbJJNf2cTHQrbk152a+ncLxZton4JkvO40tatIprxbsx/qqF1cMs27qXlLJliTn69kJE9C8ETpJ5Pfpj67XZkqRb+83KCoCPD3Bm8+KAsO/K9dZevIlJSUYFkWhmEQaO/teluRLq3opx7t416zfgv8BGcaDtAqJDI3atrLrulvms76jmpcMdZTCnEV0nHNw1KOauXqLsZ1celaBAKQm+v0AZs24Yyost0Fuc3lwIEDgONtp6NvelkfbaLoH3/88YwePZqxY8dy1FFHsXz58rjrjz/+OEIIXn755di58vJyvv/97zNo0CCGDBnCwoULY9ds2+aaa65h4MCBDBo0iPvvv7/V89AWiwzbbcFdXW51qg5r3h49I2octzrVvf2IGifroTM/wKlGnJrf6fV8t125uLQHnUGnaCx9+jj/N2+O9ju57oLc5qCUYteuXdx3331MmzaN4cOHM3r0aP71r3/F7unXrx8rVqyICzd16tRYuxo7dixjx45lxIgR6LoeOz7//PPbNC8N0SY2+gsWLIj5J33hhRe49NJLWbp0KQBbtmzhoYceYtKkSXFh7rrrLjweD2vWrGH9+vVMnjyZadOmkZ2dzZNPPsnKlStZvXo1RUVFjB8/nunTpzNs2LAmydcyr+umxRKJ1G/731ocKCmP/f7fqrUc1WcwZpJhLavK3trJ874DxUQiFjWt2VuC3Xv3s2Hdd2T1jHCguKTW9cqKCvYeKGbt2nX0sDPoldXwxmXJ6P0VlZV8++0qbL3GmoNONmgIhcJ8tW4b+0uS22UYGlMEnVvTb8uWsLeoWttPIuF1W3awbNV6jp8+hUBa59jGvbOhlGLl2k2QUUl+v0HtLU6HItV1itagsFCxfLlg06ZoB+C62GwWpaWl3HTTTYTDYb788kvS09NZt24dJ554IpqmMWvWrAbjqBpgbtiwgcMOO6zWgDNVaBNFv/omBEVFRchqiyOvuOIK7r77bn75y1/GhZk/fz7z5s0DoH///kyZMoUXX3yRiy++mPnz5zNr1iw0TSMnJ4fzzjuPp59+mltuuSVh+sFgkGDw4CKfkpKql2b7KyK7du6M/baii9fqozUGBp999S25vfoydmBvAMKRGnJUK6bqXzaqr3H9dvV3jOmb1+KyvfDGu+zZfwA4uDGIrVTcbPFzb33A7v1F8MU3/PKqS+LaV1N576PPWL7im2bHk+p8+dVXvLPk2xaLLxwOx34HKytaLN6ujN3IxdKRiMVTr78PwM7nXmLWRRe0hlguzWT7tq08/+5HAJzzw4tIy2r6jt1djfbUKerSJ8LhcFz/19L06gUg2bDBJhy2IWMMBqAOfE2kogj0hie52pqq8lBKYds2tm2jlKK8vLyBkM3D7/c3+CV/2bJlvPfee/z3v/8lEAhg2zZ9+/bl1ltv5frrr+eKK64AiMldnZrnqn43tq+uHl4pRTgcRtMOTpkahlFPqORpM687F154IYsWLQLg9ddfB+CBBx7gkEMO4fDDa+9UumnTJvpW+ZTC+YSyadOmOq99/nndo9o//vGPzJkzp9Z5parMQJo/N9fUKEzz4Dy6SmJVXKRaR1K9QTSW/OwMdu0vjh1XVNS9lXZdpjkBz0HZKypbZyvuisraXhi8ph7zqKEbBiVlBzuNRCZWtW2aG66sbTt2JTzfuebzoaKiZZXx6p2rblRr2ykwqG5xhKAtJgssK37g3ZCNfvX79x8orudOl/ak+rMXrKggLav9ZOmItJdOUZc+8eabb+L3t56yXVExEBjJkiU7efXVL0ApZpCJhyI+fu1h9mtDWi3t5qDrOpWVlZSWlhIKhSgrK6N3796tmuaWLVsaXFz7ySefUFhYSEFBQWzDLICJEyeyZcsW1q1bh23bnHPOOXg8ntj19evXU15eHhemtLQUpVTcucYQCoWoqKjg/fffj5vMPf3005sUX03aTNF/4oknAMd2bvbs2cydO5dHHnmE//73v3WGqa401FTg6rtWkxtvvJHrrrsudrx161ZGjBhBMBzBq+kdVnlr1gav0f+6phGx6v+SUJ9ioWuSiNW0UWxTMTRZj/13K9dmJzPdaQrNXfNwoMwZFLol6eLi0lTaS6eoS584/vjjychoPTO5NWscmfLzu3PSSSdB2Xr0Vx3FcvL00yHQv9XSbirhcJhFixbh9XpJS0vD6/U2a4IyWTIyMhpU9HXdUX+FELF6U0rFFuimp6cjpeTZZ59l5MiRsXDTp0/H7/fH1XVaWlpcPI2lsrISn8/HlClT8HpruyhvLm3udeeiiy5i0aJFfPTRR2zbto3hw4fTr18/PvnkEy677DIeeeQRAAoLC9mwYUMs3MaNGymM+piq71oiPB4PGRkZsb/09PS46+mB5vug9XiStXCPpz7vN4nvbxkOuhZNFHN8KoFA3bMUevShDYbife9PHjcKgDFjxzVDSihLMOOsgHB0cBIJh6kMHfzKIZPy3dZwKfYvTDzjsH//gSTi73x4TOcTot9XfycUqDajFQikHbxQrci1TuJfryVMxJpCQ19HdP3gi7Rv756tLY5LE6n+Hgqkpddzp0t9tLVOUZc+YRhGq/6VlDjPdXa2cM5tmIdAQffjMLKGtHr6Tf0DR5mWUiKlJC0tjdLS0lb9S0tLi6VX199RRx3Fpk2bWL16NUoppHT2h/jss8/o3bs3BQUFALXCJTpX8/xLL73Ek08+ydq1a+nevTtSSn7xi1+wcePGOuURQiQsu5ag1Wf0i4uLKS0tpWdP54Xz/PPPk5ubyw9+8AMuuOCg7ejUqVO54YYbOOWUUwA499xzmTt3LvPmzWP9+vUsXryYBx98MHbtoYce4qyzzqKoqIj58+fHPt01lt75OZwzvfZnvmSoPhue1g4+WNvKGCItEKC0jmtVKluPgvy481MmjmNAYW+y+jVvMdP4kcNZmsBWvmr2xTQ9oCxC4Ujc+eZy9OQJ9O+ZR4Wt8eKrb8TODxvSNRbN1SzHH501gx27dlHQux9CiDrbnj8Q4Mozj6UyrTsis/aajYPbnCn69ChoYanbFqdzb3hdTVujaRpXnXsi67btZtToUe0tjksd5OUXcMkZx6Eye+LJziYY6YTmba1AqusUrUV0XycyMwErBOv+7pwY3PCi0VRCCJESPusPO+wwpk6dyq233srf//53+vfvz4YNG7jpppu48cYbmxV3bm4umzZtYu7cuZx22mls3bqV8vJy+vdvn68ura7oFxUVcfbZZ1NRUYGUkry8PF5++eUGFbLZs2dz6aWXMmjQIKSUzJ07l5ycHABmzpzJkiVLGDJkSOze4cOHN0m+oYU98Hs9NHaJa1ZmBqWlyXsqqZNG+yNspZdB3ILbxgevWZ+aptG3V3fK9OY1sTpnkKMyev1+RCQUU/STIZn8aZrGgD69WLfzQNx5bzVbvc5AnZ+oazyemekBsvy9sHxpoOo31crLziCc252dFdW/ViVYO+GaQTWNJNpvTmY6OdnZ2M18/lxaDyEEPfNyiWQXcCDUtuaPHZlU1ylai6IiJ3+ZmcCW56FyF/h6Qq9T21ewDooQgkcffZQbb7yRKVOmkJaWhqZp/PjHP07K40595ObmsmzZMgYOHEhubi6///3vufbaa1tI8sbT6m+BPn368NlnnzV433vvvRd3HAgEmD9/fsJ7NU1j7ty5LSFekxGIOCWpq29i0/ZKmzv71Zq0bnuO7sPQtR8ZFxeXJtBZdYqGiJqOk5UFfPeAczDwcpAtZ+LR1ejZsyc33HADP/vZz+jXrx85OTlxC2qrm3NVUbNdgbN4e8+ePbHj3NxcXnjhBdauXcu//vUvvvnmm3Z11drld8Ztsq4hktuWviEavY9oC+m3tfbIqiPi9p51bSj9pkmXfCF21eFEi9d7woJ0Nf2m0Ck9GLm4uNRLlelOYebXsGsxCAmDftS+QnVwpJQxW/wdO3a0WLz5+fns27eP7OxsfvKTn/Dvf/+7xeJuCl3+u67ty8AK5GIbXixbITUTWzMQnjSUkCghkcoGu4ZpiJBU116U1MG2IBrGSwQ0AwUYAiwBPl1i+AVa9LcEqq9LVIYXvyHxVztvSAF2OBa/V8Z/4vVoAo8m8OkSnyHQhEDzQMCUaFIgK4vJ9KRBGGSojGyvHyI2B2dVownZNkiJkh5sUWP8p2wQjkymVu2a4UFVhZc6ti8TpXswlECZzqJMTQosW5HrNwjozoITTTjnNalA2dietGg4SMORG2VjahpoCZqo7kVVLYQUIloXUVG96aAUEQW6J52wrQ7KGEPG8mX7Mp3wVhhb2SjNRAOU4UNpJkqr4e9XM1CaAabfkVMIlO6NyaA008m71ECBMvwIO4LSPdgIqoovbCsiaNhKEbIUmieAjUAKhdI9KKkTQRKxFBFbIQRU975qRPPv1SW6RqxMATQh6JnuwdQEtgJTE3h0SbYUDOsWIGBItEglOV6DbXX4/VU1yt1Ky0OEylGeNKc8lQIhESgqLYXfl4kUgpBlO8+T0NBEJCprNeVUalTZ6KObKMOP0gwsWyGiZRgwJJZS6FI47URBwNDw6II0U6JL4bTDiHLiEzJW/romkAL02IMl0DVFgTJJM3V8hiDN1NAEhGyFIQV+wwkbscFQTjkqWyKks/hNeQIgJHaNgYlHE2R7NPpl+QiYGlI49asBImyjAMtWGJJYe1ZKYEoBtoWIVMbMoEwpABM0J30nnx78hsSoaSolNJA66bqGFCAiQTy6B58uHQmVjdK9TjsVEuwIUgePJh35os+DJgU2KtZufIYk06thGwYyEsTUBJZynvlcv45PF+jRdmYrUEKQZki0gEHYduLx6Y5HLFtoSNOHkjo+w0YTAkOCFAJTc9qnrcCnO/URMCQiWIYyHLmFZuDRBJleDVNzwphSYAQMLNsgzZSIam51EdIpB80x9atqAwpQmoGJcPoCzZn9NIWI9X25fh0tKpdlR88LgampWBkIBUg91i97tIPrVDy60+9GbIUUkGZKysI2EVvh1QRKOb2tqYnYc1x1v5VeQFg5j5MmiLYjqHA6MFTYImwpTCnI9umx5wIh8Om281vZSGVhSEHIUpjedJTuwbKV0zdpNkTjt5XzTsn0GPgNp66EcHpESym8UqKEidLM2POklCJgaBhSxvLvvAsE2T6DTK9OZtgi02OQ6dFINwSg0T/bR8hSpJsa3fwmWV4NpRQ+w3mGI7bCozltCnSUUkRU63tk6ahUzeiP8j0CYRyTHX/ruqnsCuTl5bF9+3YqKys5cOBAuzlZaE06X44aSYMmCjWV3li4+FnxmrGoOsLViqcBg3EhQNRpE30wrJXIf3xTjO0TCtFwXlpqAjg5hyzVTabqpu5yq35TjbzVs9A0ToJa4Rouo5obfTWHmvUtROKW3JDr2ZbErpFWg6Xf0l8NatRBopwnm2JSbSeZeGrkMZkvJclWWc26lcJRpBuiZj01tY3UDNbU2kz4zCdR/sn2sa3VfyWx7UmTSdYxVUNll6gdJyV3gjKrWUY2qsUeYaVUu389TnWKiwV+TxmFkX86JwZd1b4CdRI0TSM/33EmsmPHjjZ9Z7YVXV7Rb28avRa3FdKt60xTY2pJEqqvqnnmC40J2/ke+ZqkpsmWS910wveQi4tLAxw4AOdPmo+uiiBtAPQ4rr1F6jTk5+cjpaS8vLzFN5FMBVxFv6mI+MW47bGysGVe+A3YwCedr1bKf0PRtnGxdxX911X0XVxcXFIDpRxF/6pjootwB12Z1Jcql+QwDINu3boBsH///naWpuVxW0oL6TNNjqaR2nqLzeZF4xHxh41PI7bzVvNFagpN8g7TqPx17unTtspe9XSqvqi4g4mm0rnbpIuLSzzl5TCmzxdMGPg5Spow4JL2FqnTUVBQgBCCiooKysvLGw7QgXAV/SYSiTTW835i1q9fH/tdGQw2eP+BAwdHm7ZtU1R0oNFp7tq9lz1FJXHn3v/wI0qi+wKUplAjT2iC2sg4Nm/eHHccDIfquDMZOpdyumfv3oTna+bSspq3MdSmTZuaFd7lIN9+t7bBeyqDIR7+93O8/NaiNpDIxcWlNSkqglnHOJt72b3OAm/tzQhdmofH4yE7OxtoWQ88qUCXV/Sb6i+8uq/Vqpiagr/aDnGVlZUN3r+/aul9lB3btjU6zY1bt8Z+52Qe3Hp9245dAFiRg0pdspOuraf+NrRYuuEYevfqFXccCoWbLk3n0vPJysxMeN4wzbjjA0U123vj8HidjcbCkdTbSbaj4atrE7lqrN20hb37D/DVN6vbQCIXF5fWpGTPHn5whOOiUQ26sp2l6bx0794dgAMHDlBSUtLA3R2HLq/oJ0uqWnA0aYV4NEim30v3bjl4TKP66ZSnMhhix+59Sd/v9flaUZrOSW2zmpZpHRkBL3ZruitxAXDL2MWls1D8HdlLvoffU8E320egco9ob4k6LV6vl0B08nXVqlV89913lJWVtbNUzafL+9FvKVdKTZ3pVdX8mCcjSUu+wGXUN5uuaQRp+ix361I7v9v3HFTylVIYZts1486mQNWVG7sO//pNTidabiXlB79aJeMK0qX2oEsl0QYNo8t37S4uHZ8d7xJ89xzyffvZuKeQN8t+wyC332wR+vXrh9frxev1UlFRwSWXXMIvfvEL8vPzKS4uZu/evRQVFVFUVERWVhY9e/bE7/e3t9hNosu/DZKxi3eo/+Wq63pSvp9rUl7NlVNWZkaD92dnJTa1aAx1u5dM4HQzxfXa/gOH0C8vg48/W8Lg4SNbPb3O6HorEWYN053mtoOiqKlbdVO5zIz0um53qYaux3fT5UmY+A0q7M2Q/n3pXpDfWmK5uLi0Jt89hFryEzxE+Gj1ZBZZzzLysCXtLVXzUQqsVl4HqPmTmn199tlnGTlyJNu2bWPEiBFMnTqVYcOG0bdvX3r06MH27dvZu3cvBw4c4MCBAx1W4e/yin5GelpS99XUczweD8HoIEHXm76bX8+ePdmyZQsAht5wdQSq2fQ3mTqUtlRU6hsSaeiIkfTPMhjRuxvh7D4QSXbg1jRyc3NaNf42J0Gl9yksRNNadofKvG65bNmyJTbIzM7MQCS5OZkL9OmRz+btzhqawt49G7xf1zXOPulYZ2fpFtr8y8XFpQ2wI7D0elj9VwTw5IcX8NT6R3nueY033mhv4VoAqxwWJKd3NZnzSkFPXlfq2bMnQ4cOZePGjWRnZ/OjH/2IjRs3UllZySmnnMLll1/Onj17+PWvf81nn32Gz+fD6/Xy8ccf4/U2vGaqvenyin5Tif+c3vRPaY0O2Qqf7Tr0h8A2F75Dl1bStHYrc11rNo743sYtOxeXTkmoCP57Pmx3NPpfz/8//rX8Rr74QqBpqWpe2/H59ttv2bNnD1OnTuUHP/gBN910E1OnTiUSiXDKKafw5Zdf0r17d5YuXcqCBQuQUlJaWsrmzZvp3bs3vhRfB+gq+smSitPdLU4i0512zndXKPYOQLu3AxcXF5fOTMlaWHwqFH9DyPbz/+79J6/87yz++1/o1g3CnUXP1/zOjHtrp5EE55xzDkIIVq1axd13343f7+f999/n5z//eeye0tJSvv32W6ZPnw7Afffdx+jRoxk3blzMhj8nJ4eePXum7Ox+m3jdOf744xk9ejRjx47lqKOOYvny5QB8/vnnTJ48mXHjxjF8+HDuuOOOWJjy8nK+//3vM2jQIIYMGcLChQtj12zb5pprrmHgwIEMGjSI+++/v8myNXV2rPqMZLPm1+LiaTimrjaXV/d6gvahs01E11m+LZzRzlZubY5bgC4uMVJZp2gSOxfDGxOh+BsqZS+O+N0HPP/5WcydC4cd1raitDpCOGY1rfmXZH/57LPP8s033/Dmm2/yq1/9inXr1iGE4NNPP2X58uUsX76cNWvWcOONN5KZmcnXX3/NzJkz2bdvHzNnzqSoqAiAffv2sWLFCtavX5+Um/S2pk1m9BcsWEBWVhYAL7zwApdeeilLly7lRz/6EXPmzOG0005j3759DBs2jFNOOYURI0Zw11134fF4WLNmDevXr2fy5MlMmzaN7OxsnnzySVauXMnq1aspKipi/PjxTJ8+nWHDhjVaNqXpKDOAsC2nMJSNDFeihASpgbJRUsfW6xmpCYGle5EolLJRMmrfbIOSGkqBLsGrg2WDLgWmJpA1trC2TT+aAE0KdClIUyAFKAxs3eN8VBDxi0GlFGhS4BVgRNPVBHh0Gc2fiVcqkDpK6nh0iS2i8kkdpemxrbSV0FGGH6V74stI96BZCkuBXX1m1/TFHihb6timYxNnIrA1H0LZGAJ0XZLn0zE1gR7bitfGNDSEFUZ500HZaEJD1wVCKYRtR8un/gfWp0uUZmL7MlEKbN2DtJypD1sz0GyV8GuMUDZC2ShlO/mXGspw6tijCbBJuMW4Ek56ghCmFrUxN3yOXSVgI8AMgJAYCpTwoPAQiYrgNyRV0UshMDWnvlS0/Xg0AZZCKBtN09CkQJNOYCcrTj1o0XLXBJiawKcLJ75oXr26wKdLLKUQQuCR4JGCHmkGPl1AxCbbqyX/xUTqKNPvlFOsvQiMaFNSnnSkEGjS+W0rhVeLyihFtTDRMpUS25MOQmIjUErF2mWaKbGjbb8qf2mmdMomGp8QoDQjWpkSdA9KCMzo86ALUJozdNakQHoh06OhS4EhwdQkhlJoQiCtMEpIp/1FxVNSj7YTUGbdtp5+Q9Inw0PUgVUsPSUd23gpIIJElzqmOCg/aCjDD5qJ0j0YQqDQQQhspfAbEo/m3GsjQBoHE9UMbE86phVtF9G+ydSc51OZAZRmOv0XIKwwmnTamtOfOGXnwelnqmTXhCDDlNF+RjrlpiBgCLy6hi5AWCEMqROJ1qOpOX1Z2Hbi9hvOeUspNN2LsCNkeoxo/NVLTkMIMKv6QpQjc7TslScNTTryANiaQBMCXanY46xM/8G+S+oowwcRFcsPQMh5WJxnTggiCKTuxY7YoJx7fbqMyVY1gRNR4NOd8tGkIGIrgkYAEe3Lo0VPlldDRsNFs46pCcBpwz5D4tGdPkUT4FECI9pvCCCsebBshakJbCnIloIqp0oqFtfBeCyl0IQjnx7NaFW5+fRoe/Cko4RA2TaWJw2hFHpY4Y027oAhMaTzfGrVCsuKJhzSfWhCYFl2bCaw6plUypFVCEFAl/h0p3vN9upoAqcMlI1Pl2R6NGzlPHdV1+xq/bnzDhRElIq2T4GVpIKWyjpFo1n7d1hyFdhhgmkTOPTnL7JyfQ8uuwwuv7z1k3eBY489lquuuoqbbrqJyZMnc/vtt/O73/0OgG3btmHbNh6PB03TOP744znuuONYvHgxZWVlTJ48mW3btnHgwAH27t3L3r17yc3NpWfPnng8ngZSbhvaRNGveiABioqKkPKgAnUgugFUWVkZpmmSk+Msdpw/fz7z5s0DoH///kyZMoUXX3yRiy++mPnz5zNr1iw0TSMnJ4fzzjuPp59+mltuuSVh+sFgMLZwFqixEULzZ/Sbiq067wy9aKEFgA3qoVX1kEApbw3ao76qlN7WIXEJt3RyNeNz7cwbSZyRvlt2ydJRS6o15W5vD8Etkbf21Cnq0ifC4TDhxtjXKAv5v1+jrb7bCd/zXKb/6jFWrg8wfrzN3XdbceY6VXE3Ko12pkpWpRS2bbe42+bmUl2m3/zmNwwZMoR//etfPP7444waNQqAtLQ07r//fizL4sorryQcDmPbNpMnT+aEE07AMAzOOeccnnnmGcBpj1UKf7du3ejevXstL3aJ5FBKEQ6H4xxhGIZRT6jkaTMb/QsvvJBFi5zt2F9//XUAHnvsMU4//XR++9vfsnv3bh5++OHYzmSbNm2ib9++sfD9+vVj06ZNdV77/PPP60z7j3/8I3PmzEl4Lel3Zo1Z4ZZajBtnupOEMC2ziLFGT19PlO1um91A+m2/Frejqg6JqbN4a/pub64JVScrt7bGLT0Xl3jaS6eoS5948803k3a7qKtyDg3+he6Wk8a3xv/jZ3/8Ax99GiA9PcSVV77Hu+8mduX81ltvJZVGqqDrOpWVlZSWlhIKhdpbnBhV5l7FUdfPmqaxdu1aACZNmpQwzDvvvBN3XFFRQUVFBe+9917sXHp6Ovv27aO8vJw9e/awZ88eMjIyyM7OrlNxD4VCVFRU8P777xOJRGLnTz/99KZmL442U/SfeOIJAB5//HFmz57Nq6++yp133smdd97Jeeedx7p165g6dSoTJ05k6NChQLxSW1PhrO9aTW688Uauu+662PHWrVsZMWJEo+RPLUvxZhLNTK29T9tbqXdxcWkQV+l3cWk/naIufeL4448nI6PhvXAo24D+4ZmI8q9R0os18VE+eOd83nxTRwjF009LjjtuWq1g4XCYt956i+OOO67FZnpbm3A4zKJFi/B6vaSlpaXsYtUqlFKUlJSQnp7e5EnVjIwM8vPzKSsrY/v27RQXF1NcXExJSUlshr9m/VVWVuLz+ZgyZUqrlFGbe9256KKLmDVrFjt37uT555/nX//6FwADBgzg8MMP56OPPmLo0KEUFhayYcMG8vLyANi4cSMnnXQSQOzahAkTYtcKCwvrTNPj8cTZSlWN4JpDR/iSHgwG2bD2Owr79UezgqzfvJ4+AwYRrGNU3R6KvmVZrFu7Hkua9Bs4CNOMfwBKShvYfroZhX+gqJgde/czcMAAdE2yeet2ysMWhQOHEKmsYNPmLdiy8zmmsm2bdRs2ktujD8VxZmx1Eww2byYmVktVg8xUfWgaQUs8L/uLithzoJRe/QcmH6gTlJ2LS0vR1jpFXfqEYRgNK+C7PoQPzoTgHvD1QEx5kf9tnMA11ziXb71VcNJJ9b9zkkonxRBCIKWMM7FKRarMeKrkbQ7p6emkp6dTWlrK1q1bKSkpYffu3ezZs4e8vLw4kx4ppbPOp5XqttVLvbi4mG3btsWOn3/+eXJzc+nWrRter5fFixcDsGfPHj755BNGjnR2Nz333HOZO3cuAOvXr2fx4sWcdtppsWsPPfQQlmWxb98+5s+fz/nnn9+q+QjW3EG3A7xs337nHV54+VVeevkV3nh3MS+8/CqvvvIK6zduBA4urK1SWPZHV5C3JV/+7yuee/l1XvjPf/giwafSL1d83Wpp/3PBQp7/z8t88tkS9u3bz5PPvsDCF19ixVdf8Z9XXuP5l16J+yTXWVj59dcseP4/PPfsM6zbsDGpMJ8uaZkdGTvTN6MtWzY3O455Tz3Ds8+/wNcrvmoBiVxcOj8dVqdY9zi8e4yj5GePgxM+Yy8TOOssCAbh1FPhxhtbNslUoqtaDKSlpTF06FCGDh1Keno6Sil27drFV199xaZNmwiFQq2+dqHVpyuLioo4++yzqaioQEpJXl4eL7/8MpqmsWDBAq677joikQjhcJgbbrghNqKePXs2l156KYMGDUJKydy5c2OLambOnMmSJUsYMmRI7N7hw4c3Sb5kZxar2021Fi1to79ixQoA1m/YEDu3du1ahgwayHZ2omnOOC8cdvLmb4dNH0rLDs7Yl5XVnr3PyEinuLjuWefmDLeq0t6+YweFfXrFybF+o2O7WVRj8JP6w7uG2bBhPQC7du3C7/dRXl7bFrRmO2u5GfiO3dnruh7rCxK118ZSWelMIOzevRuouw9rMXe+Li4dnFTXKRKyeSF8crHzu89ZMPkJ0AP8+FLYuBEGDoQnnoAUn/BuEpZlIYRg9+7d5OXlpfTXXNu2CYVCVFZWtvjXB8Mw6Nu3L6WlpezatYvy8nJ27drF7t27CQQCSCkbXLTbVFpd0e/Tpw+fffZZwmvHHnssX3zxRcJrgUCA+fPnJ7ymaVpsZO7SdEzdqX6fz0sobiV/vDJW10j82zXriVhWi8mTcMFnC+iFDS4krXW5YyujzaYVZ17KK1LPx3CTacli6uJNzsUlWTqkThEpP/jbyAThmGfs2+ecOuMMqOZIqFOhlKJHjx7s2LGDDdUmHVMRpRQVFRX4fL5WG5AopSguLubAgQOOu2zLokePHowaNarVTJs6nwFyI0l2FXhNf6g+n4/S0tJGxZGI5n7O8nobPwtfNZPdXN2iJZV8gGBlMMHZ+qU0WmIELMBXrRy9Ph89e3Rn2/Yd+P1+yssPdtJ1rW/oSPTq1ZtV335LVlZWzBVddUpLS2u39+YuEKrRaaaS94XG4Pf5YusavC34BayWaWANSlvg64GLi0s70e8CCO2DpdfCusegZA0ctZCrr+7GW2/BP/4Bc+ZAoO4tOzo0gUCAwYMHp7xr0HA4zPvvv8+UKVNaxVZ+yZIl/P73v+e7774DYOzYscyZM4fRo0e36peOLq/oZ2VmJnVfoIbbrOOOPZZ/P/UU0DyzhuqKfjLx1BwY9O3Xr9FpmtEGrEVHj7E9rGI2+42OsslUz09192aJrqenpVFSenDr7DNOPdlZoW7XryTVHCukJ+hN87rlcvYpMygPRhg8YiTDBvRl/foNFPTszeNR7w4ABQUFDWUp5Rk1ejR+XdC9Tz+ee/YZ9tdQ9v3+AIEaZXT0UUc2K82aLXvihEObFV97cfaZp7Nh40YCGVkUFhbGNkJrLvkF+fVej/PEkMKfvl1cXBIgBAz9KaQPgf+eD7s/gDcmcuqUlxg48BDWroXHH4err25vQVsPTdPifMSnIpqmEYlE8Hq9Laro79y5k1/84hcxT1HdunXjjjvu4KKLLmqTBcqd0CKscTSmkLMyD7rOqu5Gq8rOr0k0Q6tu6ir2g4OW1LIXMBPsIle9eES1XaOmHfU9hg0Z3KLpDxnYnzGjR2KYJpkZGYwdPQpfjVlbPcU7qmTQdZ2RI4aRnZNDt9zsWtdr5hmopfg3mhrKaVZmVvPiaycK8vM5/LBDGTFiRIt20Lpe/0ul+uDUVfNdXDooPWfA8Z9A2gAoW4/29mTunv0qAHffDSm2n5RLM7EsiwceeIBhw4bxxBNPIITgyiuvZNWqVVxyySVt5oWoyyv67U1qqdpVNEGqFvgM0HoTlQ1tENaVVaf2ybs7Ke3i4tIlyRwOJ3wG+UdDpIRT0k/lxjPvZs0axcsvt7dwLi3FkiVLmDRpEldffTUHDhxg3LhxfPzxxzz44IPNmxxuAl3SdKfKlVEwGKSsrIzi4mJU1F+6iARBSFA2SA0ldYTl2JVVVlZSWeksJiwpKYn9rqiooLi4GIkCZaOkM+srbAslNZRyXFmGLIVlKzQpCBuSkKUoLyuLi1PpQTQp0KWgImwjBYQJY+selIpPV9O0mA9fpVRsa3MpIGITu68m5RUVVFZWUl5eQXl5eSxfpaWlFBcXU1paFhe2uLiYoO1snW7IxPGWRMMChJGYyvFMoqSOEk5eTE2gx+yEnHIqKyuPxVeVvlAKYUdQUo8rc49pxn5X1VulMAnZQYRtETFthABphQkLHU0KLFvF8hiTtaQETTeq1V+5k24khNKDhKWJYYdAKUorQnFhS6PpCiuErTtfIKrkBbCkgVQWCElYgRHNb5WJh6UgFLGxAUyNsK3QBBiRCpQRJqLAsIIgNWzNmeUNWQopnPKvqufSsNOGNcDUBBFDIoWIuUwNWYqwLrGUIhhRqKggpWFFWBcYkQosIxJrC3HtozxatjXaAFYYNAMlZLRuNSLRRmeqCJY0sJTCVBHCQqciKmPYkFTUqIOqukZIbASWUmhR7b8yYmMr0CXoUmApqAjbBDXnuiYFpiYQdnSNiJCx+qgI2xiawBAQVs4wpqrMLeXEp0swNRlLU7PDKCGxhVMfpiYQ0XKMKDDUwbrV7DAoG1v3YNnOM10ZcepHeDRs5TzfMlwJyiakhxGAjk1QScKWwtAEISJgW7EyKY+2K4QgLE3KwjaWDbYpMaSgvOJg+ZWVO+210nJk9OhOfURshSAqrxWGqn7IihA0LIJROQ1NYGATQWIpp7/QpUApKAtZ2KaGZoexNQOlIGQ59WHpAmGFUFIngtPeQpYdTdupr0h0RjKkC0wrCEJQppx2XO2DHJURhRBgROtSF9G+F1CagQxXYnlsSoNOHduAJpx2opRTLmakwumrwelPjDDl0TxWyVSVX8tWRGwI6wIpBJVRQaVwZNGE006D0Qc1rDt9liZFrB8xNOGUQ7QPr2qrEsfsUilF2Ih6MrNULJytnPgi0d+GJghH687UDp63FbHfYV1gaILKqAzgXLeUipVZKNqWqvqYqvYQ0kSsz40YEqEUpWFFxFYENUFlRBFRiogmYnHDwXwZmkCL1m1Ve62MqFj/Y2oCIQTBaD9WNY2i4dRLSCoiSEpDTruJKBXrp2ycOtekQAqnTqvejYYmKI+aZra2u8GWpErWxu3PY8Chz8KyG2Dd4/zqpOvokb6Mv9z1F6ZOTbzuLBwOUx599juKH/2OJnNLyLt//35uvfVW/v73vwOOP/3f/e53XHbZZXE6WzIUFxfTs2fPZs/8C9UFnZt++OGHHHXUUe0thouLi4uLi0sNPvvss5hbzFRnyZIlTJw4sb3FcOmkbN68md69ezcrji6p6O/bt4/c3FxWrFhBZpKLcTsSJSUljBgxgpUrV5Kent7e4rQKbh47Pp09f+DmsTPQ2fMHqZNH27bZuXMn48aNQ9c7hsFBJBJh2bJlFBQUtKrNdarUUWPoaDKnorzujH4TKS4uJjMzk6KiorhFtZ2Fzp4/cPPYGejs+QM3j52Bzp4/6Bp57Oh0xDrqaDJ3NHmTxV2M6+Li4uLi4uLi4tIJcRV9FxcXFxcXFxcXl05Il1T0PR4PN998c63dPzsLnT1/4OaxM9DZ8wduHjsDnT1/0DXy2NHpiHXU0WTuaPImS5e00XdxcXFxcXFxcXHp7HTJGX0XFxcXFxcXFxeXzo6r6Lu4uLi4uLi4uLh0QlxF38XFxcXFxcXFxaUT4ir6Li4uLi4uLi4uLp2QTqHo//SnP6Vfv34IIVixYkXs/JIlS/je977H6NGjGTt2LO+++27s2tq1aznmmGMYO3Ysw4YN4/rrr8e2bcDZne+aa65h4MCBDBo0iPvvv7/N81Sdls7fLbfcQn5+PmPHjmXs2LFccMEFbZ6nmjQlj9999x3HHXccY8aM4ZBDDmH+/Pmxa6lWh9DyeUy1eqysrOSMM85gyJAhjB07lhkzZrBhwwYAdu3axYwZMxg8eDAjR47kww8/jIUrLy/n+9//PoMGDWLIkCEsXLgwdi3V6rE18phK9djU/P3jH/9g1KhR6LrO3/72t7g4O0sd1pfHVKpDaHoef/3rXzN8+HDGjBnDxIkT4/qiVKvHrsZ3333HEUccwZAhQ5g4cSIrV65sb5Fq0a9fP4YNGxZ7DqreV/W1ubakrndwU/vuDoPqBCxevFht3rxZ9e3bV3311VdKKaVs21a9evVS7777rlJKqW+++Ub17t1blZeXK6WUOuOMM9S9996rlFKqoqJCjRw5Ur3yyitKKaUef/xxNX36dBWJRNTevXtV37591TfffNMOOXNo6fzdfPPN6vrrr2+HnNRNU/J4xBFHqMcee0wppdSOHTtUnz591JYtW5RSqVeHSrV8HlOtHisqKtQrr7yibNtWSil13333qeOOO04ppdQll1yibr75ZqWUUp999pkqLCxU4XBYKaXUnDlz1EUXXaSUUmrdunWqoKBA7du3TymVevXYGnlMpXpsav6WL1+uVq5cqWbOnKnuu+++uDg7Sx3Wl8dUqkOlmp7HV199Ndb3LF++XGVlZamKigqlVOrVY1dj2rRpsXfBM888oyZNmtS+AiWg+rutOvW1ubYk0Tu4Ifnq67s7Cp1iRn/KlCn07t077tzevXvZt28f06ZNA2DYsGFkZWXx2muvxe4pKioCoKKignA4TI8ePQCYP38+s2bNQtM0cnJyOO+883j66afbKDe1aen8pSJNyeOXX37JSSedBEBBQQFjxoyJzSCkWh1Cy+cx1fB6vZx00kkIIQCYNGkS69atA2DBggX8+Mc/BmDChAkUFBTEZk3mz58fu9a/f3+mTJnCiy++GLuWSvXYGnlMJZqavzFjxjB8+HCkrP1K6Sx1WF8eU42m5vHEE0/E5/MBMGrUKCzLYs+ePUDq1WNXYteuXSxdupQf/vCHAJx99tmsX78+9pUm1amvzbUlid7B0Dn67vpI/R6riXTr1o2CggKee+45AD799FNWr14dezDuuecennnmGXr27EnPnj258MILGTduHACbNm2ib9++sbj69evHpk2b2jwP9dGc/AE89dRTjBkzhunTp7No0aL2yEKDNJTHCRMm8OSTTwKOqdJHH30Uu9YR6hCal0dI7Xr861//yqmnnsrevXuxbZu8vLzYter1UV9dpXo9tkQeIXXrMdn81UdnqcOGSNU6hKbl8bHHHmPgwIExxSjV67Ezs3nzZnr27Imu6wAIISgsLEzJ8r/gggsYNWoUl19+Obt37272c9XaNLfv7gh0WkUf4MUXX+TRRx9l/Pjx3H///Rx55JEYhgHAQw89xMyZM9m2bRsbN27k3//+d5w9YtVMCIBK0T3Fmpq/WbNmsWHDBr788ktuvfVWzj//fDZu3NieWamT+vI4b948Pv74Y8aOHcvs2bM59thjY9egY9QhND2PqVyPf/jDH/juu+/4v//7PyC+LqB2fdRXV6lajy2Vx1Stx8bmrz46Sx3WRarWITQtj++88w5z5sypNWOfqvXYFWjO89dWvP/++3z55ZcsXbqU3NxcLrroIiD1ZW/O+6kj0KkV/dGjR/Paa6+xdOlSHn/8cbZt28aIESMAZ4ajqhHm5+dz4oknsnjxYgAKCwvjZk03btxIYWFhm8vfEE3NX/fu3WPK4ve+9z3GjRvH559/3j6ZaID68ti3b1+eeeYZli9fzsKFCykqKopd6yh1CE3PY6rW41133cXChQt57bXX8Pv95ObmArB79+7YPdXro766StV6bMk8pmI9NjZ/9dFZ6rA+UrEOoWl5XLx4MZdccgkvvfQSQ4cOjZ1P1XrsCvTp04ctW7YQiUQAR9ncvHlzypV/lTyGYfDzn/+cDz74oFnPVVvQnL67w9DmqwJakZoLLLZv3x77/fDDD6tDDz00tjhp1KhRat68eUoppUpLS9X48ePVggULlFJKPfbYY+qYY46JLToqLCxUK1eubMOcJKal8rd58+ZYuNWrV6v8/Hy1atWqtshCgzQmjzt27Ij9fv3111WfPn1iC8lStQ6Vark8pmI9/vnPf1bjx4+vtVjpoosuilvs1KdPn9hip5tvvjlusVN+fr7au3evUio167Gl85hq9diU/FW/p+ZC1c5Sh9XvqZnHVKtDpZqWx8WLF6s+ffqopUuX1oovFeuxK3H00UfHLcY9/PDD21egGpSWlqr9+/fHjv/85z+ro446SimV3HPVltR8Bze17+4odApF/+qrr1a9evVSmqapgoICNXDgQKWUUrfccosaPHiwGjRokDr11FPVpk2bYmGWLl2qjjjiCDVq1Cg1bNgw9atf/SqmUEUiEXX11VerAQMGqAEDBtTq1Nuals7fhRdeqA455BA1ZswYNX78ePXMM8+0S76q05Q8PvLII2rgwIFq6NChaurUqXEPbqrVoVItn8dUq8fNmzcrQA0YMECNGTNGjRkzRk2cOFEp5QxYjjvuODVo0CA1YsQI9d5778XClZaWqvPOO08NHDhQDR48OC4fqVaPrZHHVKrHpubvn//8p+rVq5fy+/0qKytL9erVK6YsdpY6rC+PqVSHSjU9j4MGDVL5+fmxMGPGjFH/+9//lFKpV49djW+//VZNmjRJDR48WB166KFqxYoV7S1SHGvXrlVjx45Vo0aNUiNHjlSnnXaaWr9+vVKq/jbXltT1Dm5q391REEp1QIMjFxcXFxcXFxcXF5d66dQ2+i4uLi4uLi4uLi5dFVfRd3FxcXFxcXFxcemEuIq+i4uLi4uLi4uLSyfEVfRdXFxcXFxcXFxcOiGuou/i4uLi4uLi4uLSCXEVfRcXFxcXFxcXF5dOiKvou7i4uLi4uLi4uHRCXEXfxcXFxcXFxcXFpRPiKvouLi4uLi4uLi4unRBX0XdxcXFxcXFxcXHphLiKvouLi4uLi4uLi0snxFX0XVxcXFxcXFxcXDohrqLv4uLi4uLi4uLi0glxFX0XFxcXFxcXlxZECEFpaSlKKY466ijWr1+f8L4RI0bw8ssvx50LhULk5eWxbNky5s2bxznnnAPAhg0b6NatW+y+jRs3MnToUO69914A+vXrx4oVKwC4+OKL8Xg8rFu3Lnb/DTfcwC233BI7XrNmDeeeey79+/dn3LhxjBkzhtmzZxMMBgH49a9/zfDhwxkzZgwTJ07k3XffjYW1bZtrrrmGgQMHMmjQIO6///7YtTvuuIOTTz45dlxSUsLAgQPjwlfnq6++YurUqQwfPpyhQ4eycOHCWH4ffvjhuHur57GxTJ06tVZZJ+Kee+5h165dTUqjMdSsz2R57733OOyww5K+31X0XVxcXFxcXFxaASEE1157LXPmzEl4/dJLL+Wxxx6LO/ef//yH3r17M27cuDrjXblyJUcffTS/+c1v+NnPfpbwnp49e/Kb3/wm4bXt27dz5JFHMmPGDNavX8+yZcv46KOPkFJSXFwMwFFHHcXSpUv58ssveeSRRzj77LOprKwE4Mknn2TlypWsXr2azz77jDvuuINvv/0WcAYU+/fv59FHHwXguuuu46STTmL69Om15CgvL+eMM87gtttu45tvvuHrr7/mqKOOAhIr+m1BfYq+bdvYtt3GEjUPV9F3cXFxcXFxcWkGCxcuZNiwYUyePJlbb7017tqpp57Kq6++SklJSa1wF154IW+88Qa7d++OnfvHP/7B5ZdfXmdaS5Ys4fjjj+fee+/lwgsvrPO+q666ig8++IClS5fWujZ37lymTp3KZZddFjsXCAS4/fbbycvLA+DEE0/E5/MBMGrUKCzLYs+ePQDMnz+fWbNmoWkaOTk5nHfeeTz99NMASCmZN28ev/3tb3nggQdYvHgxt99+e0IZ//3vfzN58mSOPPJIAHRdj6U/a9YsVq5cydixYznttNNiYZ577jmOOOII+vfvz2233VZn/leuXMnhhx/O+PHjueCCC2KDFIAdO3Zw3nnnMXHiREaPHs3vfvc7AH7/+9+zbds2zjnnHMaOHcvy5cu55ZZbmDlzJmeddRZjx45l+/btvPHGGxx55JEceuihHH744bz//vuAM9s+duxYrr76asaMGcMhhxzC559/HlfugwYN4qijjooNhKqoK06A3/72twwaNIijjz46qa8ScaguDKBKSkpqnbdtWx155JFq3bp1CcMNHz5cvfTSS3HngsGg6tatm1q6dKl67LHH1Nlnn62UUmr9+vUqNzc3dt+GDRvUkCFD1D333KOUUqpv377qq6++UkopddFFFynTNNXatWtj919//fXq5ptvjh1/99136pxzzlH9+vVTY8eOVaNHj1Y33HCDqqysVEopdeONN6phw4ap0aNHqwkTJqh33nknFtayLPWTn/xEDRgwQA0cOFDNnTs3du32229XJ510Uuy4uLhYDRgwIC58df73v/+po48+Wg0bNkwNGTJEPffcc7H8PvTQQ3H3Vs9jYzn66KNrlXUi7r77brVz584mpdEYatZnsixatEgdeuihrSCRi4uLi0t7snPnTpWTk6O+/fZbpZTzPq2pX0ybNk299tprCcOfeeaZ6u6771ZKKbV161YVCATUvn37lFKqlj5hmqZKT09Xr7/+eq14auoT9913n3rooYfUscceq5SK1ydOPPFE9Ze//CXpPD766KNq7NixseORI0eqTz/9NHY8d+5cdckll8SFufXWWxWgPvzwwzrjvfbaa9Vll12mTj75ZDVmzBg1c+ZMtWvXLqVU4vdm37591c9//nOllFK7du1SGRkZasuWLQnjHj9+vJo3b55SSqmPP/5YSSlj+sTxxx+vFi9erJRSKhwOqxNOOEEtXLgwlkZ1neXmm29WvXr1iukYa9euVZMnT1ZFRUVKKUcv69mzpwqFQmrRokVK13W1ZMkSpZRSDzzwgDr++OOVUkp9+eWXqkePHmrHjobY74cAAQAASURBVB1KKaWuuuqqmD5RX5z/+c9/1KhRo1RJSYmKRCLq1FNPbZQ+4c7oJ8D91OZ+anNxcXFxcUmGTz75hPHjxzN06FAArrjiilr3dO/enS1btiQMf9lll8V0innz5nH66aeTnZ2d8F6/38+0adOYO3cuoVCoQdkuu+wyNm/ezFtvvVXrmhAi9vvuu+9m7NixFBYW8vbbb8fd98477zBnzpzYjH2i8EqpuGuWZfHSSy/Ru3dvli1bVqd84XCYN954g4ceeohly5bRp08ffvzjH9ebpwsuuACAvLw8BgwYkHD9Q3FxMStWrGDmzJkATJo0iVGjRgFQVlbGu+++y09/+lPGjh3LYYcdxpo1a2L6UCJOOeUU8vPzAXj99ddZs2YNU6ZMYezYsbE1FJs3bwZg6NChMRv6yZMns3btWsCZ7T/55JMpKCgA4ttJfXEuWrSI888/n7S0NDRN49JLL623fGrS5RX9u+66i+9973sMGTKEp556Knbe/dTmfmqrXu5t/qnNxcXFxaVDUFPJTURlZWXs3VyTGTNmsHfvXj7//HPmzZsX946viaZpPPvss2iaxllnnRVbOFvf/X/4wx/41a9+FSfnuHHj+PTTT2PH1157LcuXL2fAgAFx793FixdzySWX8NJLL8UGMgCFhYVs2LAhdrxx40YKCwtjx3/605/Iz8/n/fff57bbbostCq56T48dO5a9e/fSt29fpk2bRq9evRBCcMEFF/DZZ5/Vmyev1xuXv0gkEtM7xo4dGxsoVB+IVMe2bYQQLFmyhOXLl7N8+XLWrFnDjTfeWGeaaWlpsd9KKWbMmBELu3z5crZu3cqAAQPqlK8qXF3UF2cy7atekp7774QA6pZbblFKOZ9NcnNz1aZNm2LX3U9tiXE/tbX+pzYXFxcXl47Bzp07VW5urlq1apVSSqk777yzlunOsGHD6jVh/fWvf60OO+ww1b9/f2Xbdux8XabAoVBInXnmmWrGjBmqoqJCKZVYn6hi0qRJql+/fjF9YuvWrSovL0899thjsXssy1KHH3547J27ePFi1adPH7V06dJa8j722GPqmGOOUZFIRO3du1cVFhaqlStXKqWc92b37t3Vtm3blFJK3X///eroo4+Oy1cVGzduVMOGDYu9R//85z+r0047TSml1BdffKEGDRoUd3/Nd/2hhx6qFi1alLBMDz30UPXEE08opZT69NNP4/SJ6dOnq9///vexe7du3ao2b96slFJq1KhRcTrQzTffrK6//vrY8erVq1VeXl6cHFW6VU0d6KuvvlJ9+/aNlUvPnj1jeslPfvKTWH3WF+dLL72kRo8erUpLS1UkElGnn366a7rTGKpm4QcMGMCRRx7JBx98ELvmfmpLjPupjQbjbO6nNhcXFxeXjkF+fj4PP/wwp556KkcccQRSxqtWVTPfI0eOrDOOSy+9lC+++IJLLrmkzpno6hiGwYIFCwgEApx++ulxs/CJuOOOO+Jm4Hv27MkHH3zASy+9RL9+/Tj00EM58sgjmTp1KkcccQTg6CLBYJBLLrkkNlv+1VdfATBz5kyGDh3KkCFDmDBhArNnz2b48OGEw2Euuugi/vznP9OjRw/A+dKv6zr33XdfLbkKCwu58cYbmTx5MmPGjOHtt99m7ty5AIwePZqhQ4cycuTIOAuBZHniiSf429/+xvjx43n44Yc5/PDDY9f+9a9/8c033zBq1ChGjRrF2Wefzd69ewH46U9/Gsvz8uXLa8U7ePBgnnzySS6//HLGjBnD8OHDYy5O62P06NH8+te/5ogjjuDII4+kZ8+eScV5yimncMoppzBmzBimT5/O6NGjG1cQSQ8JOiFA3Mzy6aefrv7973/Hjs8880z15JNPJgwbiURUr1691JIlS9TgwYPjFq0mGoGHQiF1xhlnqJNPPjm2cFapukfgzz33nBo/fry67rrrYiPwX//61+r//b//V0uWmgtW33vvPdWnTx+1fPnyuPtOOukktWDBgtjx7Nmz4xb63nbbbeqUU05R69atUwUFBbFFwWeffbYaM2aMGjNmjNqzZ4+688471cyZM2Phvv7669iIta4Z/UQj8K+//joW79VXX62KioqUx+NRlmXF7h0zZox66aWXVHFxsTIMQ4VCoVr5T5RGzRH43/72tziZq1PfCPyee+5Rl19+eezasmXLYiPw+uL8+c9/rm677bbY8fPPP+/O6Lu4uLh0QX75y1+qRx99tL3FcOmidPkZ/X/84x+AM+L+8MMPY3bnAN988w1jxoxJGE7TNC666CKuuuoqIpEI06ZNqzedqtG3aZqcccYZDY6+zzrrLEzTjG0cAfDjH/+Yd975/+ydd3gc1dXGfzOzXbur3osl23LvxtiAATsY03snQEwJhISSQEIoKfQSIPlCIISSUEIzvWM62BjbuPciual3abV96vfHrLao2SSkEPQ+jx7tzty5e6fcO6e855yPefLJJ+PbdF1P6Wvx4sWcf/75vPHGG33GfsYZZ/DII4+gaRodHR0sXLiQs846C4ANGzbw4IMP8uijj1JRUcFvf/tbLrroIgzD4OWXX45zxrKzsznzzDNZuXJlPAB40aJF8d/yer34fL5Bz60H48aNi/f70EMP4fV6mTBhAs8++ywAX331Vdx64PF4OPTQQ7n77rvjxzc0NMQ9Lvv63fnz57No0aKUQhv74gECzJ07l3fffTce6PvXv/51v/o84ogjePHFFwkGg2ialnLPhjCEIQxhCN8dFBUVceGFF/6nhzGE7yi+84K+3W7nkEMOYf78+fzpT3+itLQUGHK1DbnaiJ/Pf8TVNoQhDGEIQ/ifwFVXXdWHzjOEIfy7IBjGPxvO+7+J66+/nsrKykGj34cwhCEMYQhDGMIQhjCE/1YMqZgDYMjVNoQhDGEIQxjCEIYwhG8zhiz6QxjCEIYwhCEMYQhDGML/ICz/6QH8J6CqKmvXriU/P3+INzeEIQxhCEMYwn8BdF2nubmZqVOnYrF8O8QTXddpaGigqKhoSJ4Ywn8lvh0z6RvG2rVrOfDAA//TwxjCEIYwhCEMYQi98NVXXzFjxoz/9DD2Cw0NDZSWluLz+fB6vf/y31MUhXfffZdjjz0Wq9X6L/+9bxJDY//P4Dsp6PcUP6qtrf23TMwhDGEIQxjCEIYwOLq7uyktLY2/o4cwhP8GrF69mhdefoWR5cP+00P5h/CdFPR73Gter3dI0B/CEIYwhCEM4b8IQxSYIfy3wO/388zzLxCMymzashW/309WVtZ/elhfC0OzaQhDGMIQhjCEIQxhCENIgmEYPPf8CwQ0gZfn/ZKwYOXFl17+Tw/ra+NbLehXVVVx8MEHM2rUKA488EC2bNnynx7SEIYwhCEMYQhD+JZhSJ4YQm+sXr2a9evW8sm0s+lML+Kz6WezYf06Vq9e/Z8e2tfCt1rQv+yyy7j00kvZsWMH11133VBxqyEMYQhDGMIQhvC1MSRPDCEZfr+fZ19YyK6SqewqnQbAzpJp7C6ZwrMvLMTv9/+HR7j/+NZy9FtaWlizZg0ffPABAKeddhpXXHEFe/bsoby8PKVtNBolGo3Gv3+bbtAQhjCEIQxhCEP41+GbkCcURUFRlH/pOHVdZ/fu3fHfa2uDrCz4toQ09Fyff/V1+mdhGAbPPPscAU1g8bSzEzsEgc+nnUPJ+7fy7HPPc/FF/9qiqt9Udp9vraBfW1tLUVFRPNeuIAiUlZVRU1PTZ2Ledddd3HLLLX36kJe/yvrHFzLylEOwHnURHVI6XRGNlfXdTCv0IgjgtonkW1XaVCs5FoVO3cq7Ve1kOqwUeuxUhnfxeavAcZMrsLZWY4T9yCMPwdq2E0GJYjg8dLiKaAtr/PLNzQzLTmNiSTrdEYVtjX6u+94IRtQuIbJtNfYjL6D2rhspu/YmPg7m4rFLHJChoX32LOK8i/jL+nZOG5uHZkCuy4IvqpEbqsOQbKyLZuCwimxtDeKxSRxQ5MEX1fiqzkd9d4S1ezt5/IyJ1PplXJ88ijxmNuXZaajpxZz14g4aG/wIosDBEwuozHdT4LZT4nXgsIqMU2vYHHJyx7IOstx27jiqEm/1Yr744S14Ct3Ur2rksFtOJO2kH6JvXoI0ZiaCHEZe9ynGUZfji2rkd2xFra9GrJhIp7eCrLqvMNLz2SoWUey24o528Gm7jWEZDiKqzoo6H8VeB0cFVhDduYmO8um4xx9KmqiBoWPprGFhWyZnqGtYc+8jFF95KYWlwyDQTnD1EnaO+h7jjBbEEdMx7Gms6pIYmemgtluhLN1GV0SjwR/FbbMwIUuiIQyO9e8QtqWRX7eedQ+9z/gLDsVz2DEY6QXIGaV0RjRWN/r5Xnk6z25soSzdgSgIjMp2Uiz6zfttcxK2pRNSdDJtsKtbY1FVK4u3t8afO5dNwh9RuejgchTdYHyuG49dRBIEPt/TSXVbkJE5aRw9MovWsEqtL0ppup0it5WuO6+g4IQT2HTXn5l4y8/RA13Uvfw6/vpOar+oo3xuGZU/PJc9z71CwcxxpE2bjTZyFhHRTmNAIcMh4bSIOFa+SvP7H2H1unAX5xLt8qMEI7iuug9/VMMmCXiXPYtw8OlIwXa2XnM1XXt8GLrByBMmU3D2D0DXMOQIRnYZuisTqbMONbucr1o1bn57C5qm43JaefGCqVh1mQ7VgqIb5NsNOhSRbN3H3av9zK7I4nBLPXpaFlVaBiNcKjURKy6rSEdEZWW9j6rmAEeOzmVXR4gLRjkBWNwqMD7XRbbuQ3VmYdv2GUbxGNSv3mHxNX/F7rVjS7My7aYfIM44ji0hB4t2tFKe5eLoEZmEVYNuWWO40EWzlMWK+m5GZLlIs0oMD+1Ec+dg8TWApiDv2oyY5kWonIFRtRKpZBSGPQ0tvYg9QYMshwVZMyhoXInu70LKzKX5lefIGDsStduHY/QUDF3DCAepffVtwu0Bxt7/B/be81uK5s7EPuEg1v7s15R9bwJZRx6PVjQWS1cDhmhBc+cgtVSj+7tQm2vo3LCVnMMPR59+AtaaNegZRbQ5ClB0gwa/TInHRmdUwyoKdEVUoqrOzs4Qh5ZlMrzlK2qefJLC+XMQDzwBqbMOZesKECUsucXsLD0UEYHldT4+3tbCpNJ0VuxsR9UN/n7OZFpvvRz1xHMpG1GJ5slnXUuYiV/+mQ1//4wPNnXRWNvG5HQHJ/7scDLHlIPFipjmxZAjBHbu5tGb3qbYaeGEW44n85gziKxbjCWvBD3YTWT2eUQ0g9zGNajFE2mISsi6wSe7OpA1nUBE5bCKbLJdVsYEt+EvmIhT8aN++CQ7Dr6UbW1BvleeQabcjuLOw1G/DjVnOBg6uiMdydeAGPGzxV5Bpl1CM+DWD6vYUdvFnadNotBjo9Ev8/L6Bo4em8fEvDS6ZR1VN3hxfQP+iMrSdQ1k5Kbx8JmT2dDs54iKDCKaQZbSSXP1JixjDsVlFYk+fD05J57JNu9Eij1WltR0MybHRZHbSkTVaQqqjLQFaMFLnhhiW8hOVNWZLm9HD3ajtdYjTpxDcNtXREceTJZVQ/EU8MrWNn7zl+UMG5tL7fY25KAfV0YGOcVexpRnUpLpZHhOGo9/Us0ps8qYVOClI6xQ1RpgRE4a4/PcVLeHsEoi0wvdfLCzg+dW1ODrCDN+ZDZ3HTOKTLkd3eHFUrsOpWYHhhxhU8FMSsuHYxUFmhQbFgn2dEZoCkTJS7MxtdBNIHatRmqNqJllfFkfwCqKTMp34W7dznbHcLa2Bji4NJ2caAsNllxa9lbT5sinMtdNfXeUYQ71XyUyDIpvQp744IMPcLlc/7IxGobBE088wVUT3+bI0Q5Cz3mIBJ3403WsdgFDsKCT9CdYY5+t6LF9Rnxfcltr0ner2Ubor5/EsQbWAfcj7Fvr+PDDD/9l1+mbgN/vZ+OG9awfdyxhhydlX9jhYf2Iw7Guf5cXX3wRt9v9LxvHSSed9I30860V9MGcjMkYqMjvDTfcwDXXXBP/Xl9fz7hx47j/0+04xs+CHRr5Ha9y8nlfXzt7d+lqWsM6HWUZfBsSgum6zvu1EbSOVZx75Cxs6fs+5va/vQpAVuYYcI+Jb98+aTytJUXYhvnY1GQj6+W3uXDsfnT4NdDkC/G37QpsXw7vL+f6n1+Tsv/zHQ0sHX8gfLKOS0/MxIvKH/YIsOdT3gT4cDPnnX4SpJUO+juGYfDe5jpUQcLfrRE4ch4fNcIhG3cyZ3bBN3pO/yyeXlFN3dRDePP1ZQBY0ivJowP50Dw2DS9F/2In+VnDqKuzQt0KjjrCxdipfXNS/91ehiqLsBsseFDxYvnjHzj13AVkZybuY2tHF29UHoA4XCO3qZmVWg7ywo84ffYkhmen/dvOe3+wdssO3lvdBt8/CXeXD8Mi8dmKeua7t2MZNvlr9/e3Rcuob+uKfWuET7Zz9ewReAZo/8XWvXy2aU/sWx6s7+aIbJgZ2/L5ng5WZo9BytR49bEXIGssrO+G9e/DAbOhGzIXreJHF41N6ffhRV/R7g/HvhVg/XwH6Rue5EdHTPra5/S0ZyQsq2OOsIbZI/MA2NER4bUVq4BVnHv5Nf0ep6oqTzrK4YMvOWxGiIPmzgdgo0/noxmHwJgQ3qp6um0Sj1ME22RABoKxHjLghyfSGInySHsaB67dzsFCvz+13whHovzfljBs+SPD5pxs/sZ/AHc99FcAMlZWseCiS/6pvlbubOSDjTWw9Glzw2fbuPHyH/yzQ/zauP2lz5O+LYp/Ov3Sn30j/e/YspFdWzehuzKoPOrob6TPfwb/rDwxf/78f2kWv3vvvZc333yT3xwILimEyxUip0evMGJ//wUwBAlEW+zPnvTZiiFY8QUieDNyECR7bL81qY35Z/R8lmx99iX2W3v1v//7Ea2DKiSGYeAPBFG2L2bTyMNThH1nxM/knZ8zafIUzjzzzH/HJf2n8a0V9EtLS6mrq0NVVSwWC4ZhUFtbS1lZWZ+2drsdu90e/97d3d2nTXcggKaDrBnohkFI0XBZJcKqDhYdLTbpNR103cBhEclxWRl+0FQ+bJHIzkiH5iaMaARB1xAjfhAtGJoMmJ4Bj8NCoy/M+GIvYVmjsSuMpoOha2gRGXSN4pOOg+Y9uDIL6AirkCGgh4OIgKzqyLpBRDXIx0DTDdOS2tWAKGUSUXRUTSeiCqi6Od5IzBLmj6jU+mWynVaOmzuLsCsHp8uObpj7QwEZySLQEZQJRFUkr4MaX5hCT+K6yZEI4ZCMKIBgtdJRVowmiGCRUAyB5rYOhLHHIMhBEGLjFiCo6BiSFT0cRDJ0nBYBwWLFEEwrtl/WcVsdKLoGgCgIBGWVkKIhjj0Mlm6Pj8EQRFTBgkXTUHSDDEticVZVFUdeX6FcVVX8UQ1FB90wkATQDAPNMO+1JlqRRJWjxhaiunN46eNlgNlvOBQBTUY0NCQRMh1WNAMUXccvm88IYC5IchhBldEs5r1RkbCKOrJqXmNV0ZAkEV9ARrKYi0x3REEQwCoKOGPnEpbNc+uBoukYBiiawebsEuo6g6nnJ4hoio5qGOZnzSCqJ65L1NeKXQRBAKnnZabKqEkLnRo7X1VR0DUFQRAwVAXR0FEd6WiShG4YRPwyqg6yqqFgQetsRcwsAk1G0FXTemoYqIpGNKwiSSJ+WSdH8SHYsjEM8x4CoJvXRtEMBMF8/iURBDWCTbLhton4ogKKZuCPqCiaQUTTEZQIhiCi6TZzDjjSscgBDDlCa3vCpa7qYBgCim4gR2UsQKHXwVd7Ojm5MoOAbmAY8VtNVNXjc8aw2kGyEAgE+jxPWjSCoMkgiwhqFMOwxZ+pkLXviz4SURHTs9Fa64lqoIoShj7wW7k7HEXQVFCjYLciGDqBcDSljaIZ+P1+jGgYQY0gCGCTEvfcIYmEY9dWMwyiqrmGGVLCFRyNRhF0FdGTiVpfnTg/Qzef74iCL6TQHpAxdCOlUmkwGEBHQDcMbIqCLlrQJPO++lWNgRzOmiRiSCIKAqFQCFXrRkoPo/vacYgGQQU+XbuNXZ9tYvZxpyHaHHFrvqzqtIVkPHYJraMJa9EkVPTE+chy/JuIgREJIkT8GDYnOgIWTQbDnEtgrgWyqhEJKQRkFc2wmn3rBn5ZM+eAYbYLyRrh2DOtKpo5ZyURJwo2W2KNDMRoHGpENr1dBogCRFUNWTOQlBCi6Ig9dyK6ARjmfWoOymC3IEfC9EaP0KnoOrK/A1XOJurvIhroQAn5cKRVIokCcuw+R0IKYVnDF1FQNXOehRTTy7NsdwftQZkDikYBEAkrREIygUhs3ksW8/keADrmpNENA0XT0QxzXREF8NgkdMODIZjzlqT7Iwqg6AZhVUfQVaZOHE++x06zJSf23P3nJNVvQp6wWq3/skJKzz77LDfddBMAq5w34HMWUlI4k/PPM3BYZV5+USY3WwY99qdFE5+T/7Sez9EBtvfa32d7P/0bqV4YwdBAC5t/vSAAmQAd1X32/dshWEAaSBGwcV6hix3bJnPYmud5/+BLzWMMg8PXPI/HIvD9c8/51hTO+tYK+nl5eUydOpVnnnmGBQsW8Morr1BeXt7HzfbPwiYObnLKSveQI2X32W5YHKbgM1jfln+MWLePIQEgDdImP9OLmlWAEGjts2+wMcmiPeV7Bgot2BG1xGLeHQiRaQNiQvvXRW/5p7+JZEl6eViSTnQgC4xFMoXxfV23XLcDKdNFcjPdMPbLFck+7jWAJPXtx9rPtsGworv/9pKWer1FI3GN1KT7sz/Q1NRzkdRI7FPvC/jPv5i1/gReyQb7upwDkFIddtsAB5i/45f3fZ/EpPNU+xnfYM9EVpIn5B9Ff49xRaaLba19lY5kyNq+74cSTiiJPTqf7u9EFPY9j5LhsCXmZWJe7Xth0po7wWuaIfWe3xGllDZLdzQAsGv7FkZONIPgpAEmb7IV1tD7ec579d0fRGE/FtR+0N+zq34D3OP+Ln8gGMLRS4cU9uPcrJIYV2B7kOW20R4cWJAHMMT+RYOCwsJBj1N1Y5+PQc871WKxMLqyks6m6OAH/Bvw75In/lG88MILAJSVlXH2xb/ks88+o4NprNlrQVVhdT0cPfE/NDhDB10ZWBFI+lPlECtXLGXG9ElYBH0QZeNrKBr7u9/oJZMYKqgqCY9jKjzA9yta+Nt2geG1a9hVOo0RdWuoqFvH9y++GI9nIL/ufx++tYI+wCOPPMKCBQu488478Xq9PPXUU/9wX4Zu0BXRSLdLeO0WQoqG3SISVkGwxqxAhmktCcb2uW0iQVc5gY5OMCwYqoIum0KRYXMihH0ImookCqRbRA6uzOGjzc0EoipdIYX2zrBpZZMjyN1B0nQVS8UE5I1fUFh2GI2BKGBBDUWwAL6QQlgxegaMIAiodi8SDTgsIv4eK7gooOjmCyOq6rQHZAIhhbWNfk4Z6aU7fwJOQ8YQLQjRAOGATKg7giAK7G0Lkp1mI+joRnCk0RFWOeXUU9m+ay8fb7HjDMhxYVy0SLQ1t6F3+BBzMgFQ5QiCaL4o5K4ADmKLv2FghLpB07AIYNjSkDOH4QwqcUtOVDUnom4YdARksl02sPcVnKKGiE03z1VQEy9WQY2iZRT3aV9cmM+GRg1NN1BiwkCPxTzHKRFWNCyiAKqCYLH2kV8FVcbX3obPnkmB24Y/ao4zrJj/DQBBRDB0DF1DVWQk0YJmQLpdJCxrRIIKqqLhSLMS9svYnCZfvSuixM4ZOiOmJd8fUYnEXs6GASFFMz0/gzy/Wjh2HfuREqIdLVg69iBaS+IKoCFH+rSL96WbXg90Mx6CmNvSEKBb1bHoBoig2T20dbXx5ivvMeeQWVSmaQiGTkTViYZVIiHTc1HXLZPtsZFhhWaVmCVTRzB0QjHvhaHErMuSgBAN4HK4cKpBHBY7EVWj1R8hGrPsooNg6Ci6RPWO7XjHj8IVbEfIL0do3Z1yHsSUHCOmCLmspsW2LWIgCAK6AbrdDWriOoNOOLMce6QTl0Wgt0yky1GMaAjBppsvImxIooDbKmJz9KUyqVHTW2FEwxgxBVgYRJg2DCMe/yBY7AhqlCMPO4htr/TltRpyBDE2B0TMuRNWDXJdEhtbZHxRFaso4AsraDoIyVKYrmOE/dhGTmJ341qgPbbZvGa+kEJXSCESNPuv6ZY5+egjqNtVxfQpk1F0A0UzsIQiQIKnKusMaNFXukPobmfsOsrI4SDWkJ9ohw9v+y5yMhIUO0VR0A3Tw+ULKURVndXLvsA753C08UdgiXajOhLrg6zpqJphPrOGjqEoCHIQw+5GUiPorkwsUfOlrmPOJ3/MmxlRdTQdukIyJVnm+MSYl0bRDHxh8xqEA1GiYQeiYCofm6t2kZuRukYZhoHsD6GHg+gYCJjrzY6WblS9lcoxY2NW8R5lQUU3DHP9s+k49L6Cb1SWSdOihBSNcGcT0Ug5ofZ6Im17saRlIEqj0HTTcxNVdcJ+GV9IIRBV8csa/lishiBAR0CmKyTji2oomk4kqODvCNMVUsxnT7KlGKlUVWXp0qX86EeXc+CsWXTpBpogEFF1gooWV9iWfv4px86bS9SaiU1T4musKICgqwiC+T7qlnUKdBWnoCEG2kh3ZMav838S36Q88U3j9ttvZ8mSJdTU1HDuuecyZ865XHaZiKrCMcfAvHn/wcEJomkZl+z7bGooCi2WKEbxsfDvtobrGhjK1/J4TNeirH51PcqaZ+n0FjB39bNMmjyF6dOn/3vH/k/iWxKr3T9Gjx7NsmXL2LFjB6tWrWL8+PH/cF89i5XWyypkG8w0HkN/VllBDrNhWxVbq3fFt7W2+9j96Svx7xZrPxaZ2Dj27trJRYeOx9fd14onCHDGWWdz162/jW+7+RdXcf9vfxn/3tsApoT9dDTUpPajqxi21OAhm0WkYfsGzp01mvamBj5982UqKys54JDD0YS+lvEHH3yQ+199CYC6ujqqaurNvg0dofd16WWB+vLLpXzxxZL+Th+ArraW2DZzo8tpvoDtYoL+kWyMU1QVVVWpLE2l7wxUZXHdiqUcdsBkzj791MTvR4L0FqlfeGsRBWXlKdsCkV6W4SQL+jHz5/Gzn1zOju3befP1V+PbJYuIEk21Kthi12jL5k0s+ewTqtat7OPC7rE47ti+ja6urn7PBUDRiV9AX3sHjY2NAESUxG8O9C597733ePHFF9m6dStLP/809feVHhdsz8U2O9ENg7+vriEYlln49ocI+5H6ofe5yZoen3tt7R20tjT3a03sY9EVRHyd7cw96ACefPJJc5MmYyTdu+RfMgyDi049hk1ffQlAMBBAlk0JXoymzjFREDAMA03TyHX2HYtuGKZC2Atr165FUVVWrlxJe3t7v+ev6zqKoqBaBrax9HeL3JLGW2+9xWeffdbvMe3tbTS3tNLt6+Le234T3+6ypt4TUUsS4GLKjx4Ns6EuMd5wMEhISX1OI+0NtDQ3kZOZzrBMJw6bdUCvYTAaYeHChX0ya9hjwmPPM/B1xDpJFAh2tnHHpWfSWLMHgK6uTp555pk+7eJjjsqs3rQNgB1VVdizTGv0QALlay88w9xRZqRVf+cW7scbNH3aNMqGj4hbXPtDd3c350wp4dk//Y7JU6ch7MPb+cJ7n/Luu++mbNtZ04BuSRWkBEkitPZpQutfYs9rd7Hj09ex9/LIWiQxfi471ixnTH56v55Nsb93WGzdaW5u5tNPP6WkrIzsnJyUNroqc9L4QrZv28oFp5/EF0sW9+mnt+OjevN65p914X55jv6d+CbliW8akydP5u2338bpdPLuu+9y3XXn0dycjdV6KAUFP+Ivf3mQzz77jLa2tv/0UP97IUogOcDqBUcuuIrBXQHe0ZA+AVylptU/sAuaP4NdTyFsupVzsx/CrXVz+kf3kGaEOPOM0//TZ/K18a0W9L9JyHKUO278OSPyvrlg0qnHn8fEeaeyZPHn3PybX/PmA7ew4bn7iAT7pvdctGkn3f4AtQ1NnHf3X/nwvXcIdndRtXNnn7aRcJi3336bN19NVGh7+dmnePmpx/sdx961S6l+9QF+cuzBONz7DhaSwyEAbr7wFH5//RX7XJCDkQiiofP4449z/5/+0m+bQDDEw+8sJhAMxbcdOW8eF5xyXL/t/e0t/PToA1j+5VJuueUW2lpb0bS+bnFH7AXV2dnJuCPPIC2nkO9f/CNaWkwlYcb4ygHHfe15p1BXs4ePPvwgZXvye1DTNKr31ALQ1WkKoqqqoioDu77XrF7Nwuee4UeXXsIPF1wwYDuAqrUrOGRcBfMPncUPzjiZOy45bcC2B8+YzoMPPtjvvt7v7juef4lHHnmE6upqNm3dxt+ef6Xf43qwYsUKtmzZwsKFC7ny8kvJ9qbhC5oCvtgjGfT6kYcff4JQWyOBSBS7bSDKjIkvl3/Fnx58aNA2Jy/4EfNnTQWgsaGB+oZG9u7e1YdK1IOrTjkCMAWRfiEQV3xkVWXtV8tZ9o6plJ5x4rGccOScAcfypz/+EVdeGTMK+2ZUGGg2zDt8Nm++9TbvvPPOgFklttU2cccddxCOKWH7Qle3n+3Vu9B0ndWrV6cK+knz8rgj5nLA2OEcM2Ukjz34f/zu7rv67U9IMej3T+lS1dR5pmsqq+89j59ccDYloycx8ZhzuP+hRwYcc3VTHVu3bqW2tjZle4GaytnVv6ag52837/MtV13C++9/QH7FGH5yxRXk2MBmd2D1JMrSd3V14TnoJGYdczovv/Y6k6YfCEAk2j9NpL25kdtuuBaAaLh/V/5g2LZtG7quUzFyVJ99DQ0mFendF57cr77+/s7HfPXVV7z//vs88MADwCB0KjWK2rmXrq1L2PDmE4P2u3frBgB2LPtov4Tso2eagd7BoHk99u7d26dNV4v5HH/+6ScANNTX77PfD959i0+XrmD1mjW0d3Ty6P/d+18n9P83Yvbs2bzxxhuMHz8eQZCALhTlC5544hGuvPJK5s6dS25uLgUFBcybN4+rr76axx57jGXLlvUbl/idhNwJbV/B7mdgw29h6bmw6AB4OQNezYePDoUVF8GWu6D2ZejagEfq4LyRn5NhDXPwaPe3irLTg281deebQl1dHY8//jjDho8E4MMHb+bi628nFHNLGnbRdEOKEiFFxxdSqNq8kev+cDfXPfCkyYEUHKZrKGat0TJL4v3ff89dfLEkYbnuaKyjzV5IV2uQiKJjRCNc8Le3+JWniC17Gnl16VpYuhaAPc3tjJVVEETagzK+qEKosxOA2pq9/PjKK+OCkMPpIqhoaIbJ19UMg0BU5e07fpxyvs+sqaUw08PxFWUImkKgK4K/eS+SxUZLk4fO9g4A2hrNRfuxFXs5ZVIJgS6T7qHoIDjSEgIg0FFjvtTfeO8DpJEfsHfZIpzBMDYDgrLOy+9+yLWPvsK1j5oC51U/uRyAihGVpjwmiARkLe7CbfOZVtZFi8xsD6+9+Sb1tbX84KzTsOeWkWHodARl0jPTUZR6/vjHP6aco9rVwjU334TdagFDj/VNLDgR/NG+wqNgcyA40lIEqO//5Odx4eDz99/hl1dfQZrbTXpOATc8ZyoImg5IZhApFkf82DWx6nnBrcuIRooJ+2UsNhElouEy7LSHZFZ89B5dnR0p47BJIt0RBSPWd0BOWABVVWXz5s289NJLjBw5kvPOOw+AaEghoumIvcxnyRbP5/JKmH/yGWZA7CDUnR5c+8KnHKcWMO97c80NoohP0clSdWRd5pG/JVzbN998Mx+u3sbcYyqJajrhgEwkKOOvXs71q5+kfssatm/ZzMKXX+WZtz4wPWWGTiCimDQlUWbF6nUAfLJsFedcsIBwKExUljni/MuRZn2fiGrOPUHT2bRtFx0tTYiiyJ133MG5Z5zGGMlPQ2NC6Fd0EGJiuS82Z5r3VDO7UOKB9eb8EgUwJDPqIxLzLigarNlsWoIrTr8CgL/f+1t2Bs3nXQuH0YN+BKuVzz/9jIWfrmBUmUkZu+Ouu4HUWh1KWMZQZPRAF1Gfea/vefRRRo8eja7rfP/73+9z7QU1gubv4pe/f4LHX36HxmVvI0kSmqYRCoVwuVzm2hQJIWgyra0tKcffdcftXHDlL6jrjqLoBoGIatIEk4R4Q5UxNA0xzcuIsiK276rBYrEQDUcIyzaiYYWa2jq2PHkzAJti1wzgleVbON1v3juLPwyWhEL0wcaVgJmbfPjw4fHtUth85qKajh1o7AzgC3WzoWUNewQvux99kTTBgFjAcGtjA6OmEE8m8PzPzXzW1Vs2csXPr4v3e/zsadQWzeSrBr9pPdY1/u8PCYX4nvv/EP/c1tIMbtNSqxtm3+FAhGvOmE80Yo6v+eMXuPn393DXg49xwqlnohkGXSEZWdWJ+rtRomlouhlAn4zTKtPJOuYEBEEg0u6ju6WJX917OT+6yFT2QwHzmeiOaogICKoMQlqcJqMZYFjs8X43bdoUf44+XbGGGYcdgazqhDubUaIq4c6eZz1GfQyHmFjkJaLphANR/FGVsGJS42RVp63BXKNfu/On3Pb3N/mqzhT+ohGFSLePUDADRQdNFHn9tVc4/chDGWfx80SkleeAc88+ix2NHWi6AJJJR2qurwNg1cqvANheVYUvolHUtZ0sZwW+iIokgCGH47EvYcVUMNetWsFaVwYP33cn048+laLikv2KP/su48gjj2Tt2rW8/vrrfPHFCB54YBuwieHDN2EYm9i9ezfNzc00Nzfz8ccfpxxbVlbG+PHjGT58OHl5ef3+paen98k+9F8PXQW5A6LtEG1L+ot9jzRDYCf4d5jbBoQAaWXgqez1N4rpaeVM0oU+nrZvC4YEfYgXv+iIUUUefuRRWgIyP7/j/hi1ItXypUQjXH328URj2RH6c/OKoU4cdjuRaDRFyM/MyaOjsQ7KC+OZV3rwyDMv0trembKtvr4BeqXmDSVlAnnqrwkrvjMph+9gjKPHf30l51z+Mxg+u++4LSJKOJXKsG3lF6yVRwzcIfB/T6Rak155/zPOS3IepMVoNz144KGHAcjIyk6x5vRY+Z674ngAPlpkTqz6mHVw7jEnsmbdhnh7iyj2yYzygwUL+GLpYkZNnMrebRsHHLM3I5PuLvN6+7u7yQP0YHeK4TrZAvjLq02hLxgIEAz0yhpg6ARDIVp8fV2nzz9wF0U/eDDlfhuGwasP3sWXr/blgapyFEhcL2uvm/nSS6ZVurq6GsMwueZGb2ZLP/d/2ao1zJo7n8zMjNTfG8Bivrc9QNWuPcycnCpE7mlt5ZG//jVlWyAQYPmOOuYeY37XokFaljxN1/q32QU4Yvd/9coVdHZ0kJ9rBrDLal+r8pU/u5auLl/8e3t9DXm92kydcywA1998O3f+5kYmTJnGng+fp7s7cZypQZofr7nx1wDs3rKBMw8a3CUvieB0pk66839xCzfffLPZbSzrFMAdv/8Tn3+5vE8f9fX16LqOKIopHgBfkgKwffv2PsclY9WWah5/+R0AahpasVgsaJpGe3s7LpcLI4kuVlBQyK6d1YydPBWLILBx3RpaW5rBkZHSp6FrbNu2jfb2dspyM2B0Hjf/3yPc9tCTzJkzhzlz5qBpKmB6aDa/9QS+qq9wFVUSaqhKnEdrU79jVmLUoGG5eSxatIjZ06eiWm3Yk8YqWEwKX6bTwsjrzfXLYrHEn8NRo0Zx7rnnoidRXHoHvjbXJbwFe+obsJam0gLrYpblqeNHs3bTlvj21o4uGJ7SFLmjFn9nQgB4+Pf3APDUww8wZ95RkBR3EW2toptG4GA+fef1lH5a2jvJTpp42/Y28OZLzzP3kJnklw6juda0iJ964vFcdNUvKJg+HLyZ9EbPGpisLBqG0cfqLfaiQipBP7u3bEBN2p6sjHS1JO7Z47ffwPV/eYEdG9cBCU+IpmmMmjSJurp6pi55jwpJpLktcW1Wr1hO5bSD4t/97ebasHKFOQd27zSpqp8uW4Xj4PI+5wbQ3WGukZ9/8SUvvfYmAFUb11JUXNJv+yH0hc1m4777JjJixDSuvhp27YLDD4dFiwJ0dW1h8+bNbNq0Kf7X0NBATU0NNTU1g/ZrtVoHVALy8/NTvufm5uJwOAbt72tD12JCey9hvedPbodIr+9y5777TYazKEWIT3weYVJ7Bhzbf3eRr8HwnRb0J6YLVEUTVdr83d384hfXce+9v6Nh/ZdkOCw0B2RGOiGk6ChpNmpbm7n9hCnxPmq7QgSjGtWFXkb62jGiEQxRQk0vIiszg4amVFrB7BF5FGhdGOlOltR30RaSEZzmi6S3kJ+Xn8+7q7fxk9NGYQgiHYEozQGZLp+P3JwcnnvhBY5MisJx2G1MzPewut5HMBZ41e7v66pev/hD1i/+kO/t7WBEpovujhC+mq3YPVl0Npfi393M6AMOYfuqpQD85bof8hdg2q/eo6slaKbq8xZgtUpxK2NvhCNRonqANKAxEEWJWbpXPvsAM75/Vbzd2pXLuewnV/L2X/9IRNXxRzWS9Z+qHanC0PYdVYiGBrpKS3cU7yGzcD62MKXN+PETeCrG294VtlKebqPe14BmpGO3iLSGzGDX9IwMzjz7HB7/y5854Zj5vL/4S4YFd6UESrqcDkLh/q3fq1auZfzkWB5zXeecy6/l3U+XYrfbufqHF/C7Bx8DoGF3FT+eXc6jz67C6Ukj0NYGZLH62Uf77bfhtf9jwk9vjyscgajar+AOpjDg9XrpUg0iuoHDMCkZ/kiEH/7wh7S3t/Pqq2acwJ/+9Ccq8rO48OrrUvroTbEAOG5SJe8sXcq8efOQXAmNTTN0Xn3ttT7tfT6fWThEV1E06N61ga71b8f3R8IJ2sYdz73H0ccezaXjPLQH6oiqOurIqfH91Tt3pfSd67IgyxoBWaUrrCDICdrUYacvYPikA7jk5PmUH3kOQFwgVw3AMLACe/b2PUeAfJeEaslCimjIqm4GTioK1Tt38uMrrqS+oZHvn3QUZy24lJIsDwWFhaRHdqDF5npx9sBu3HA4TFpaGlF/GFQFpbMTqxLq0y4QCPQtutJWy7X3JWhwLzy/kGg0SlpaWpxKoesGerAbQ4lSWGgK+gfPPpQLL7mU2VMncN1lP+CRJ5/BkpnDh9tUArKKYOhxPvmHH35Iw4/P47Y/m14fIxJkbOVI8opKoLoDOayipJnpBXOnHMW4Gx6lceUHTBwzghfuvoFn1tRTmuViRGsXFOYCEIpGEASBk6YcxAMfvsHbL7zEqOGlTBs9gkg4xs2PmutttDshyCYrmzt27ABAUxQznaSq0+gLkz9+Js2bVwCgyIl17ckdUX4zz2amsI0pBC6LwA2XL+DhZxP0RoDvLfgpq6rOiKWZNTB0g/avXgTgpzfeTNTi4OFbrwdg2+aNHDSmjE0NPnwhc8yt799JK/DYmSdy789/FO+3qLiEGks24wVTKI92R+mqNQPDa/bupXx4Jfc9/CTnHz+XpV8sYekXS/j7obN56vX3EKJh7JZMrKKAkjsSVU1dT2VZxmazIfpMmowmm3NJCQfMDFWxVJi6KvOr847DarUy7IcL8YVk/LKZUjPdacHf2cbEqdPZuHY1e7dv5vK5ZpqWQ+7+hL2rdhPqLmBvcwd1daaSNPbQY/jllZdx3xMvcdbl1/Dxay/wzlcbuWTCDDKdZoGvbp/pFaivMy37y778glcWPs9Pf3w5W5eNwlY0FQs6RrAbT6GI126htqGJspKSuJAP8MFnS5l//EnYpCEKz9fBVVdBbi5ceil8/jkccoibp58+kAsvPDClXWdnZ1z4r6uro6Wlpc+f3+9HURTq6+up3w8KFoDX6x1YMcjNoSjHQX6mhRwPeO0KQrSNkfJSxPWLQe3HCi938Q9nc7NlgT0b7DlJf7Hv7uGmMO8eCdZ/XYGr/1Z8pzn6c3NFOjs7UwKpjj3xJACWbdqBphu4rBKGZI3lCRb4/P13Uvr4+eGVfP7MQ1hFAdGdgWA1LWGiEo5bLXswoaKYioIcdu/Zzc7WAJLFgigI6Enu9OnTp/PI354EoGL4CDpjVhhDlAjFKByhQAC3x83Mgw5O6b+9rY3WoOlilgSBqGogJaWUOun6PzDjqJPj36urq1F1A101XxRq5162P3AyqEGy8/I5+pp7UvqXY4GkgiCAYTDMbcHpdHLQQQkLz9VXX43VakVToohWC5ph1hwIBoMcMa6CKaOHo+5ey2GHHR53Ea7+dJFpEZfN7BO9Odl/fOzJlO+iEo6nNxTUKHc//3p8X8TXjj3JGju2KAtBV3HaTCuXohk4LAKvPvUYtXt2c8xJZiBu9dZNpnU8GkixnI0sHwbAPT+7hBlTJ3HzL66O72vZvhZJNPO0C4ZOQ7OZrtRus/HjBSalpqdEdqCzHdFi0iFEqw09mhD4TvjRL7C7vUw//lwE0cLalcsJRE2hRTMMrJKYEqQ8atQofvlLM/D6b3/7m7nR7YoF2hpxS2B+fn6fgLKPvlzJrupq9HAQIcbR7skuUVxczBFHHIHNZkMqNws2BQIBwt0JBbQj4Ke1o4OCggL+8vt78C1+kcKcLKqqYtZe0cwmpA1iQ3jn9h+bgpahx/PJB7pMSsud99zbp31bc3MKTay5LUZ/eeIlrFYLk6Ye0O/vmJZjs//c3Fy+d+RRfdq89OJCJDWCGqM3vPPqQg6syGPFZx+SnpHJg489wUnHHs3UKVO45KprKcpwYSgagsUGokRWVlZKf0fEaE42my3uadrryY5TZvyBEAcddBBXXnll/Jj77ruPxYtTgxhFZxrpaQmvzh9eNilsOTk58X51XcfQ1JRUtoVFJZSUDuOk085g+bJlTB49gq7ubjTdwC5J0IuX/6s/J6hdeQ6Bk487CovFQiBizkWL3VTQc6YeiWSzM/zwk8gsLkfpbqW5Zg+SAKItKb9+NILL5iDDZRovlu+s5ukPP+WnDz6OEqPL9TzL230Dp1XUdZ22liYkEilOdSW1/Y/veghX+QzCna34ZfO8LKKAoKuEwhFcDjtr3/o7F5x/Xjw2qLvbb9ZJMAwzq46mY/HkMHz6ofzwyp9x0rkX8tBDf+aVtxIu+p7AZC3J+5RMMXnoo/UcMvtQ9tbWIQkmJUgJyARiwbt/+MMf6GxrYcKUKSnj7/Z1pXyXRIGbb76ZzmBCKRZFMR6A/9XWXYRj7wBDj6XX1DWk3NTiaopi1uawWaR4nY+nr7uAPZvXce1NN7NuZ6rSq6sykt2JIAqo0dT4hHv+9AiapjGscgwz5synoXormmEgawZ2i4gc8pOVa/rbRowYQWtLCz/9sZlzfOfuBKff0DVUzWDHxrWs+PR9Tj/lpPi+8355O3XbN9La0fUfzaX/bcU558CaNTB+PLS1wbHHwj2pr24yMzOZPXs2P/rRj7j99tt59NFHef311/nyyy+prq6mu7ubUCjE3r17WblyJe+88w5PPPEE99xzD9deey3nn38+Rx11FFOnTqW4uDie9rq7u5vq6mqWL/uSud7X+UHho5yXfjvn2q7idPVcZrecSuX2E8lcdSLS0tOwrLqM8crTSDt+D7uehPq3oG0Z+KtilvnY/bdlmoJ5zkFQdDwMXwBjfw5T7oYDH4NDX4N5S+C4rXBqC5ytwOntcMIOmP8lHP4mzPobTL0Xxv0Sys6AzCnfSSEfvuOCPsCu7VsBs2BGS5efSZOncMh4k6ayZ2ffog6dba2MPHg+p99wf3zbJ0//CX8yZSCGnKxMzjv5GG683rSgWiSJ0txMWhobUtpF5ISgf/fv7uXkU0/n+eee49wLFtBWtzul7Z7tW7ji3JPxxCyA2+pa8aans/WDhciyzOt//VNKezXGxZ589eNUHjSPC377e275YBvF0w7jpSdTA+qMqCkgRjoacKa5GTX7mJT9DR89nPLdIgjIsszUqVOZMGECkydPJjMzk4qKCiKRVCu4PxjE7UhkjXjz7bd54GWT4x7ode2i0cSxmxt9jBxlVuO99a57EQSz0E5/OPkw04px8qmnMffwQ+PbeyygyXjodrP4SFFxCd//kSm8r1u9sk87VVO58ZJzuPq8U/ny7RcZVmpysYsL8gj6Uj0whXmmVbPb76e40Mzeceih5jiWvfZ0SltNTpzDvO9fyiVPLuHoH/+K/O9dTm5+31zVT/7FvK8/v+Q8zj33XJxOJxnp6XR1dfH666/D8CIEqwUMM2jOMEw6hCRJ3HzzzfHCL5FIhI8+MIVGo1eWnEsuuYRDDz2UG2+8kalTpyKKpoKWbG3tjlkTBUHAZpFwOuw0tnXw2WefpQTFGmr/QtykExcA9CkK9PlSMxvO+QsuZMSIkXz68lOcNncWd33/KNauXI6WJOQFY96BqQcf1u9vhGP7LZkejJiw5XI6OfXMs/jjE88DcOR8s6rrZZdcnHLs4g/f67fP444zqUJVu/akbH/o6RdTvrti9DmPxxNXuByxIPJQVKG+vYu0tDSys7PjngeATz75JKWfpas38P5qc2269IS58e3p6ekp11kzTAvyli2bufq2+zl3gVmV9fIrfxpv8+VnqX33uNt716jY3di3roauKaSVTUSyJZSO9LwiAFa90Zd2tqulATVG3/n9aeem7Lt3kWkkMaKmYWHhQtMT98gpcwBScpY//bQ5XyKhBC1PkyPMOf9Krn38Nc564C1mzDseizs3hZLSg2A4hMtpp6yogEcf/nMK77h3ELKhyuSWJ4L2F1x4IQfMnJXY34/w+eJvLo1/9mRmUVJayq333M/ipIxVoWjC85TmSU2CUFhcwpoNm1I8Xa2N9dxz730p7XJycujoMBXbZMHZHJcOhoZUMJms2Zem7FO6Ui2ydZvNeKGsnFy8XjPhxKzDzWD2SGfi+gV70SBPO+EYrvrxZUydPZcJBx7CJy8+mXI9IsEAM+eYc8naKyD/lbdT59KXSxZz/blm8oV53zuc3ZtWs7ZqLyMmTqN122rOnjlqKCj3a0DXYdUquPVWOP982JJgqPF4/3k5BoXT6aSsrIwDDjiAY489lgULFnDddddx33338fTTT7No0SLWrFlDXV0d0WiUzs5Otm/fzpIlS3jrpce4cr7AwaNgdBFkexKlTjqDAlVNsKwK3loDT3wO970D178AVz7j4KndJ9M6+RU4bkuS0N6RENrnvAWznkgI7SMvgdKTIW82pI8xM+gMUPdhCCa+84L+W4tMYdMpJdIwnjrbLNKyZeP6Pmnm/nz3LbTu3sbEuanZYhZ/8lHKd93qRJYV5h1yIL+56UbAFPRz0z10tpscxR7LdTjphZCbawqLJ598Mt+bdySN1duob++K76/aaAbEuWIWM4fDwYrtNYyqKKO8YjhBv+lK7bGM9GSHceYUp7zsSqfP5bW//zXOrQTixO7OTZ/34X9CwqJmGAadXT4ee+kNFFmmoNvPJTMP4epTzDLmhdkZWHqlawsEQ6TZE4KFJEm4Y+XCFTkaX+BFQYgHxfWgoMgULIpLS/G43ezYm6ooza0s5Z5LTmPh7T8DwO12s+j1l6mPWdibW1IFGDmJ+pGRkcllv/g1w4aPJOD3Y9jdKRx9RVGZWFmBFCu6NazEFPRHVgwj5EtwVw1BJC/b5NtWrTcD0+prazjzjDM46uhjiAYDcc8JQLTN5Epe/MRiRClxrS2eHJobU1/SiqZz362/MtsfP4fithamjRpG1RYzVmHdunVAgvvcmJTRRdJUyjpauG7+EUiSxCeffNJHCcvKyuKYY45BEASyY+nZBEEgIyODUCiEYE94SHyxjCRWqzV+z96/xvRevP3m6/F2ydbXE+54jpPuep7D7v2IA8+9CpszjWXvmJQKIWYaPe3cHwDmy+bL1euYPXM6z932M35y9EHY7HZCzQluaSAYIiPdm/I8v/vJEpa8+QIF2ZnxjEuaL4jaYc4HWZZxudI47MijqesI8MYbb5CRbgo8yWkgk5+9Sy9LUDNuvOEGJlRW0N7ZBZjCIZhzYfTYcSz+9GPuv+dunEmxKB0N5n0wYuOc9Ms/8eay9cwawKiUrFAtW7sJgKUP/pofHJWIpWloaGDlypVxupxhwKsfLKazo4PikWPi1WsnTJqMPxji9LPOZueObYkfEUUyrBZ+ce7p/PlXV3PY1PHMOXAqZ512Cqu276Z6VyptytC0PoWZeq77uvcWxuOU4uOu2kw05r2wShL3nHwW5881ld2ewm16xLx2PZSxo0eXc/8tv2bBggX89gcXM2LEiLgynyz4qdEwxWMnUz5uMt78kvg43n/u8T5rRjgUweV0pgQfv/2BGZwY6JWBRJfD2By90gzbbMw8xvT29ba8A+xe+2XKd2/sWdq4fn18WzCa+O17n0hVCJ999S0A3oilJga4ZF7CM3XDSYfxm3NPJhKJsGKFSVeqHFGR0kePMi3Y3KSNmM2ZT6zgyVXmPIm2mUqB0kupyczOxgCWr1zNPY/+HYCm5W/F90fCCQPEbb++gecf/RP33nErrjQ346abyk9Lg0nT0Q2DSNBPepbpue5Jf5yW5qasuJAnnnuJ7ZsS8VS+pOv4vcMPo6iwgPSMTIpGJDIVNe5nNqrvKjo74cUXBf74x6mUlVmYMQN++1tYscJcCyZNguuvh391zGjP+2HUqFHMnj2bY0+7BGHW49BTVNOaAXM/gLMVMn+oU36lTMVljRSds4ra4luwzfwjb1aP5cH3Iiz41esUTz2bBVffw6bq5iGh/V+A77SgX3TJHfHP3YEgRlMV7mgHlx42kUNK83ntiYdId1hAEAkpWjz7iWCYWSxGzjItIhMOm8+qbTsRMvLjhXkQRKKqhjUtHTFgCk9FORmk+f2EmvZyycHlBJp30xKUCReMSYwpy0tDQGFbR5QW0nDkFPGhczIAbW0hGn2moGWxO7BHTUu4rBmoGSX84KKLCDTX4bRJ8WJZWuxFN6Eynyy3DU03KMl0MmOeGez67pdr8DdUY+gaSrALAENX+XDhE3yxJiFwjj3rWkQtgL+ji25Z5/n3F/P3T77CAE4uNDhviofzLz6fm04+iElTptKxZyeSzYJuQEdYoT1ikDGsAl2OoDvTCSg6lvQcSkZPAGDFng7CssaernCKILq8rou3dgUpPfw05JIJdPv9zDzoIJTdm/GFFcIZZYg5+XgkAyxWLO17cFhEMHRcLheZuQUs3tFAU1cE3YAsp5Un//4sABf/4jcEsRFSNFwZWby3fhdaemE8UwtAMBzBEujAt+RD5KVvUNRu8ocL1SAuJRAPEhTUKMFQmN/9/DLKtXbEiJ/sDC+irnLCkYejVq1g5JRSgq01+BuqqXn9dgDW7w3z1AdVrNjUxNLtrWDLpKmhgWlFXjTDfJkm12konXgA3z9yNHNOOougPYvGN02vzK5du0AU0EUBr9fLmDHmM2WoOt2NfsSQzrRppgJrGAbdje3YQzGur6JQFFOm1KSYDrvdTjQapbmlFXvsnnQF/WR6vJxyyinUdgZ5/r1l7LTlc9rUsUybOhVUGV03UCMJL8r2RierNgbZ9MlyPv18N6oOC+/7DYtbBTqbA3SEEwpQZssmvDaz+JjozgDdYPyokWQbXbT4o+xtC+KTPLjTXIzIdOCLqNT4wlSMm8SMuUczdfp0Niz/Ap/PB5aEgBqVZUr0DiYIzRR0bce6fTGN680g+S9WrUMQzIDPorJh8WPaDSc13VFkVzYhTWDarNk07NmJb2c9Wms94Z2mAP3yX+7joFHFXHXu8Zx3xsmU5OXQ3t7Ou5+YgmWHPQ21o5nWbvOazDrqe1x/aAVX5YV544YLeePs+YiimJICzxIwrbjejmYKd+9mygRznsyYMQMgHlTXUNcYz45VXpBLXpoFt03EaxexalEmluXzl/vvojscZU9XCCm7EN3QmKl2cUaxnfd++X0W3XElj99tKpLjp81kpN6MphuxQkp+DEMiElIIyxoehxWnTSJ7/CEAPPne+kRFWgGy3V6mllcS1gxqQiptqsiYjDJ+Mnce0R5FppfR9qVQBn7DvFeyYGX+/Pl0dnaiaRotNbuwiAIt7SE0OcruTpVPt7awqyVAXVeYzEmmceHNTz7HaZPilJpwwIc9vwItvxJ0jdaQyqjJpiB9w48vJNtlwS6JCIKAYMg0BAy+rOlEEgW6ZQ1fVGPeleYcfeDOmwl2R5GTamcIVhcTzr6WX7y+jo31PkrHmjEmnYEIdX6FrNH5tNUkPC+zS92Up9u46Ve/4tpf38aw4SM4/fijCXd1IEaDfPh6Is7o6b8+xu2/v58bzj+G4cOHs3v3boLBIMNskZTK5Y40N0g20svGIVpsZLntbG7o5sjjTmBcqYCm67isEunWhEJsdWdSlGZhamUZlXleikdNoHHpK0TbduNrC7G9OfEMXnfVj2mxF9BqpFHdHmRVq44zr4K7n1mEJAjoukFHRxder5flu1p55LWPeGvxKl78ZDnXXvtzAM4/bo5ZIC/oJzfdNE7ll1WwwW+jBS+NAZmOsM7kKx9GsjnYvqf/WJrvMlQVfv97mD0bcnLgvPMsfPppGS0tAh4PnHIKPPYY1NbC+vVw111QOXBW6X8dKs6H2QtBcoHSBYtPghrToGO1WikoKGDSpElMnjyZyy+/nE2bNvHWW29x2GGHoSgKTz31FBMnTuTYY4/lb3/7G0uWLKGpqWnIy/MN4Dst6CfDUBRWbTIDPwVB4NjKUmrrUy3HPS7fs241hasDTrmQg44+idzS4TTs6ZvvXpYVbLFS8Yv/73r+8rMF5LidtHamWpTCSYJt7xytoeYafnLBmXE6gp5U8KY3Jk6cxKfvvYWSRH3RFBnRYumTMstidzDrhLNoTbIeG0l8/oxRqcE89oxcokkZZX56dYKr7u7lss3JzqKtV6GvYDCA25Waecdmd/Czx14nq6iMTevWxLf3BNp5ho0DzPsx9syfkeZJ59IfmWk5R5xzbbx9RJZxWPu3AmTk5NLRlmrR71k4Tjzvkvg2q9XGwjuuJRqNplj0dU3DkcRBLso2LXcHDCugdnfqPfcHQ3h6nSPAuDGjWbWlippPX+yzrzckexqKHE0JNkxe6Oz21Gud6UmjMC+PnTt34hhVgmi3oapqnJahJxVmOvzwwwFTsN+jWomn5YtGsfWTB99msxGNRlOoUmE0JpWPJDPT9F7sNhy0ODxkjRrPG2+/Gx9r+5KB86yXnfRrBGvf7AaeNFc/rWF4eRm+poQAEAgESXP1rUALMKpyJKu3VvHBBx8gpTmQ3C4ikQihUAi11wvDYrEwedIkuroSFKxIOExObh53PfZsn74LCgpoak14cUIxyl1BbqKI0FFHzOW+n14aj1vpUVp9SYXS8rMTmVbmTa5kfF4mmTEaVg9ue9oMVCxId6MhMPfIIzn77LOZOXMmo0ePZs0ac7681SaRm2k+k9l5+X3G/L1DzXHsXpqgUYRkNc7d7oHDYY+vESkvVl3rU+gOYPxFphBc9XIipkJKc9Ie6Kbd3w+N0e2hMxiLf4kVDQM45JBDCGRlEPth9GCE3NxcRFGkpaWF2t0J+qQqR5BsqUWj7FmlWJxubv/hWfFtf/jL31i8cl2cRtWDnvNb8tmn8UxrYFr0JXv/zx7AWwv/3meboYSwur1IscJpUw48iIt/8tMUb1xY6btWX3/DjVx4uZmMoGJYKbW1psK2fo1JrbFarZyZVMCvh/r3hz/8gWgSxRNA8zcjufMQhNTXeFl5BV2NdfHvdbvM+JlHvqzqUzwwp9T0Eughcw4ocpSK4SOItNXRH1yFI/DXJbIvRUN+0jxeLLF3TMXISvILiznhhOMZU1GacmzcY9WP4OYpHY1osbKzqqrPvu863noLrr0Wli5NhNjMnVvDBx+otLXBq6/CJZdAyb8qaZFhQLQDujZCwyLY+TfYeBt89SP4/ER4bzq8WgAv2GHxyaDF3hdaGFZellJMMhmiKHL88cfz+eefs3z5ck4//XREUeS9997j4osv5rDDDqOwsBCv18vUqVM588wzufHGG3niiSf44osvhpSAr4EhQR+YVlbKccccw/jKhGv0sGGF1Dc2E05yZXbG8p27s8zgo8LRk7nizgcpHDGGPds29elXVpR4IaEZoyvI9KSR43bhC4YIJ/HGQ+EIWW4XwRfv6SOQT1xgVrl8520zg4ked9n3fcAPnm2+FNrqEzQHVZaRLP0XM8rML6a1IWlBT3LzDjvmspS2jowcor6+HF7oWxm4pLiYutZU/nooGMLt7D91VXpuAS8982T8uyLL2Jwupl3Vt8DS9TeZaRLr2xL9R6OymS+/v76zc+loTc18FPR3c8j841I4pT0vwzXrNhAmIdgoqprSt0WS0KqWcVhlKbt3bCUcSGQOCYZCfZQZgFkzpmO3WQkP8PJMhhDLTtTekhhzD/3qz0893+8x86dNpKmpCSFGAVIUJU7hsLUmcvQXtXYBZqYe1RAAswKsLMvY7TEBKun5s9vtyLKMpmlx+omiqlh0gfQkgRcgu8KsQbGkV6rJ4T/sO2Z7dhmGEiGYdO0Ajj78oD5tAQrycln2zP/FvweDAdwDKAUHTJ0CQFqaqQgITht33303kUgEZz+p4IqKClOK/MjRCOf/8EccNHd+n7aFhYU0tiWuZzBGuUvr554fddRRZHi8bIkRZ5OLsRb2CtIHaO/s5M03E1lIbEnPnI7Jze/x0pSXl8cpDkHdDIyfNmUSrrS+nKBZ06cwY8YMOvaanijDMAgpKs5+KvM2PWfWAGjrSMwtQ1MRpL5te9YpX/VqMpVU+k5ZTl+FIyvNjarr+CPmevrZ+2ZBsfx8s212WxuOHTXo4Sie6jqK8/KpqalJWQ/VaATJ1vceVh5zPgBVq006zXW3/Q7oazQB+MHFPwTg7bcSdBVdiSA5+n+eHv7UTM8rB/qm8LM6U/sfNXYCHy96J742h3pVBu6N8tJiHn/sMTRNY/Q4M2h+7Z7UeIMFB5rxYqqqsmTFqpR9WqAFi7fvtS4dVk5nkmLcVLeXYaMnYLH2fQ8c92MzVsmI3UNFlrHbbQPmUncVjsRfZz5LVetXU7t2Ke5e8QcARYWFfPxXM96gx0jVk2Z6IOFMCfl56bm+StV3HfPnw4UXQnKG6sWLS3jwQZFFi2Afj9ng0CJmJdiWJbDnBdj6e1hzLXxxNnx4GLw5Al50wSvZ8O4k+OwYWHExbPwNVD9iBtN2rjFz1WOAYDErzGbPgtLTYPof44kzBsPMmTN56aWX2LFjBz//+c+ZP38+FRUViLH02evWreOll17irrvu4qKLLuLQQw+lsLCQ9PR0pk2bxplnnslNN93Ek08+yRdffEFzc/OQEpCEITIUcNfs8Rx87HgcGS6EcCd6Zh5Zupm3uHHrOoSMSXjsXp79u+lePXqSGdhY4wtTnulk/KTJPHfrRr5olDlo8hFI0QC61Uk0GsXqdIMoITjSsBSUUWEYwOPUvPkXcoYfgqLrdOLC6fYgZeYiqBFEwUmjP4ovqjL8kGPI6N7Fh4u/pEWaR9NeUwCMqDpbQg5W1LVjlQRKRufQGVQpHjacAiGE0yKi6ZDnlrDb7Zw5tZhMh5WQopHusKBoBkpFOa99+RmOCUcQaN5jat7ObAi301znR9Ni0T2CiIwXNeiju3YbDf6jOfv8Bbzw9ycByLn+AQQ1yqoOnbziMoQ8lZquIJ5hRSAKuKwSLR2dMOV7MO5w6hQ7bT6ZlmCUuo4wxTOPZstHL3G6y8qXu9oZTQiHw0F2hpNtjX5CshZPr6ja0uP37cCKTBoCChEsuAqKseQWozs8hFUdD+CQBDJzcqlpaGLMDBFZM7BJAl2dnWRlZZPjsmGVBCRR4KxLr+LhO25iztHHs+gvv2N5kymQyIpK14r11OgW3IVeRJuFnNYW3I2mwLfjtUfJPfR+dn21hi9Wreeac45HD3UjZBXGs6FIFiu/nj6O94V2fKPHULNmRfwc6rfsRJXDpOWaz5Qnxzy/5Zu28+yD9zF67on835VmQaXJMw9Gd7uwTTqMmoBCrS9K0diDOf20Ft687rZ4n8kW/YisoSo66YAkmONZvXo1h7YUowwbHo9X6BH0tRTvgUndKSwdhmvNZyzDbvZtseBr80OSwOq220j3ennxjXe49OZEyldEK2G/n3BnE5HuNnz1O5Fi1vyf3vMKvq4wT3SbQsmCX9yK2rALoWAsmjMTSrNxyBHOK5nFQ399mu2bNtHS5mJndgS7J4Msp4VCj53OsIJuQESwMffU8/jljl2s+SIWFJkksLS+9w5djZuwZ3iQ7HaswyOU5GVRX19PgRBgXL6HTxUFm82OP0bTU2LULAPIyS+koTNApN1H19Zqxv3KDE5XPnkRobDEnOMVE8x0mnYbw0vK2L51G5MmTaJueaLYVG66B622ESUYRgmGUcMy5x9/NG8sTvC+jxxeTLprOO2bdlNfG4RZiToWI0eO5OOPP47n6d9TtQO7oTI534XF14ieloWgKKBEQFc54eDJPL+iir+vqGH4gVnohsGIU47HkWZHba1HcKYhGDpuCUqy01n+4D2cdONf+WxDEw26im4IhPxRCjMczB6ZTbHXgazqrCmqwN+wmxHnng6fmTQmm8XKyPxU02KXohOIZaypaqpjesVocjLMbEWjR49GC4ap2ZNQHFu6w2S702lvb0fxtTFtRgYbazvRZFPQb2kP4UqzYbOIZOa7qZx5EW1fvYvemGoN1tOyqIq4KPZYaAxEsIoit9zze9avXcuPLruU1vbTmTQskxV6FFmWePLTXVQUezj3gFI0Axp9EcB8VuuWvEHZvPORPAVoflMY37WlEffIdiwWkQOGZTLje/Npv+ISbn3lS57/ze8Rr7kGvljPGccegRD2YXfnIBgGiq7jD+oceczxcP3N7KxrIhro5rhTTkNDokmRKMwsQcqsY4JH5udjK7lvaxWhut0cVZnLTUDbrmoiOz/DXXkY7vxSnG47w7Jd+EIKlswidq3+gu/npNEZVvjdT82A8/IMJ/luK2LUD7pKutPNmPJiJs07iT1tEpFuHyt3d2JIVnarbnKdFgJhFU2H1u4ojb4wESOLtu3rWNvkZ9mnZnzbnpDAJ7va8IUUSrNMhclrz6LogKORJIm9Dc2MkSPx1LKiILCxxY8v6qS+O0JLdxRRFBh5ytVE9/ZNiPBdR1oa/O1v8Ic/wMKF8Ne/6nz1lcibb8Kbb0J+PlxwgakMjO1JwGToEGmFcD2E6iHc0P9nuWPQ306BPRucxWYeelfsv7M49bMjd78E+4EwYsQI7r034SWMRqPs2bOHqqoqqqqqqK6ujv/fu3cvfr+ftWvXsnbt2j59eTweRo4cSWVlJZWVlSmfc3Nzv32Fwf4JDAn6gMdm7bNNEAQmVhSzceNGjj/IzJV++69+2e/xhSUmr/exv/yZg/5glp4XDB1FkftQLSySxLlzZtDc1oEao8qEwyFcA1i7ZVVn7IGH8uHj9yEcMQ8laLrFB9JWs3Lz6Whpjss3qixj6YeWAZCeX0R3SwNxO6ChITgy8R5wLpLdjRYyf8uWXY7FlY4gWdCjZqo+ZRAzQlFpGTX1jXSHIvTYetpamiksLOi3fd6oSXzx6K2E/N3Iqo6iy/1an3owevgwtu/aG7OmZxOJRMzUgf0gIzuXrhh1p8fx4Pd14knPSGl30vmX8PAdpnUref6rmsYuTy4jfX0tehUVFXFB+a8LXwcY0GtR6nGxe+sesg5O3DtHxcEpAbrmbwsUVFSiqyrvvbqQLz5NVDe09aIt9GB4WRE+nw9N05AkCUVR+mRU6UFeXp65QI4exYvvvM2kSZNifdt6BhBvGw6HWbFihVkgKrZN1jUcGR4Ml53ey+RNv7yWL75cTigYYDD0LLB7Fl6H5/DrWP+AmTHE4XCAYsY7JGPaFHOMT151KtN/s4hQIDBoGfKioiI+ieVot+YkFMOVOcOZoZtVWXswfvRo3luc8EIoioJlgGuXX1BAXUMjilbJ8Q+/Ek/7GD+v2HEtFtP0lulNZ82KpXz88cdYjjoKh0Xiw6vPRhRFeleeGFNRxnPvfRgX3ncaNg62SsiCxJJZqWl0s7Ky0DSN7u5uAoEAjz/5FnNmTB7wehwyfRK3/PlpKi/UmDbZzJ2e5nDQQ90ykqh+9R3dvLNxJz3+PENXEQYIjjvoinv44MYzyZhzdqJ2gaZhGWAuTiip4JPNa3Da7NhyMygpKcFut6P18ggAZHq87OpopiMQxt3eHJ8nks1Bn4sHTDzke3T2ouh5vH0tzQCZWVkEQ+H4PNSioZSsQr1x2PGnsbU99qO6QtbsS+lc9yb2/JEp7ZyuNLJKR9BatQGYRigS4ZfX/YLbLjqp38zgw8pKGT18GDtr6vD5fHg86f20gjPKSmjOc1OX5MXUIib905Zd3qd9SYWpFHY21lKcObpvh3oqpcidlYsey/mvKYOvvdaMYlBChAJ+3Fk58WN6IAkJ75UkSeRlZdDc3MwYwBnLutabPtQDZ24J9Sv61ugYgon0dDNf/oUXajzyyGfs3n04Ly+UybNvonPVOj5uWU9ozAZKs/eQ5WzEIg5M802B5OgrsPf5XDh4Mal/Eex2O6NHj2b06L7PcTQaZffu3XHhP1kR2JcS4PV6mTJlCs888wylpaV99v+vYUjQB3Jc/QtQUVnl5puuZ8GJ83hx0SsDHm+xWjn8uFN59qknufvGa8nLNwXaaFTG1o/QUJSdTkdXF8TW9UgkmqBO9IPycZPZXV1F+eEySijG7x9I0M/Loy0p3ZwqywMKLtkFxfjbmkjrycNt6CCKWNKL4m1yj78TR2Yhgihi82TFU3BGoxGmTDuAX15/Q59+e9JDFl50K8Gzzf2tzc3x69Ib3kJTUXrl/25lwgW/QpGjWAcQagE2v78QS+UsNi79mOMnX0w0GsXej7IGpqD/2l8fZPKZPwbM8wp0d1NQ3Hdy3/b8+/zusjORkpJkq6qKbHcBfQX9Cy+6mC9i7vSel1d/HH2AojQndbW11N1zHN7DzUA115ij+23rcLkJB83rnOZNx99pxkaYVKO+Us6wIvO6+nw+srKyUFU1wU9OCt4TVY309HSqqqpoaW6KV00E4lmFjCQhrbra5EcLgoAUe94URcFVnIcwLDUFaKEewVM2lutu+i2eIjOJc/aMM/o9v4Fgs9thAP1x8rTpcR5zINA9qKCfn59PZyxGREgKyLXZbHRpMsnEmSkTx3HXA4nCVMs++4jD5sylPxQUFtLa1s74xwYXRtI1maBkIzsWx9DZ2Ymu60RUjbQBntPMjEw0TaOmpoby8nLCqobd4iBoSW0vKgq6bphF0rq64vETAwnXANPHj0FTZLa8mkiP63LYoFdeejCV0KeWb0oI+praJ+tODxwZiXrFgUAAp9OJbuhYBxhLj4L3ztplHDfrMCRRRJdV1PbuPm29FjvV1dVEo1F2blzNzkVm8T7J7oBQ37Uvq6CYpq2pL/SeTDi98eBjf2N8RQnd3d10tzSgyWHEQQT94vIRrFj2Ahy1AENTsaYXYRl5DKK17zG55aNp2PAlsIBgKExZmhtJkhhI5MrOSGfpynX4o8KA4wUozvKmZF/r8RZ6Rh3ep21BSRnTZsykdvMaJowzBaQrb7p1wL7dGdlE28yscZoi9xuv0wPJYc67qg1r4pWLS8ZMGrB9OBplz+5dHF4G3YEARcUlXHN///E7zrwyOpv2r1DTdw6GAeFG6FqP2L6Gk3MXUTyslfumVyHQPwde1wWaffnUdxZT31lMQ2eR+bmjGF+0iIhUjG4vxuHNIC9PIC8P8vLMAlw9n/MckO1IyWvwXwO73c6YMWMSiScMg7q6OrZt28a6det47733WLJkSb+V37u7u1m8eDGbN28eEvS/KxjIhfPoT89jzi/u54VXX+e3vzWDz35z2539th0/fSafv/MqH3/2OeecZQaGyYrS76KZ5UljT0t3XNCPRiNxa0d/8GabKTeVrnrUkCkADmTRr9+zmy8/WsRNsdz9qqpgsfbfd2auKSCGa1YCkmnR7+V2kxye+EvQ6slEC5hWM1mWOfG005l/dF9h1dKL/2sYBu2tzeTl9+WTglnK3epM46v3XmXCBb/i+T/fT3Pd3n7bQuJ+PXXLNdzwY1PQdwwgQLliAuFnT/+Jiw97mLqavXzy9qtMnjGrT9s0bwb+bh9jM2x8UW/GUKiqythoV799V46q5NnnzWJr0TgFpv+XZH6SAtD9ucldFQaInXCkuYnErOKhQEIIMpWJvoK+02FH13Vqa2vJcLlRI1EsWbF7ICdlCgEqi4qpqqqiPdB/LYLkwKmzzjqLhQsXUlRcQkgPk755J7Isp3gLJF2nLNTJdGuY8DBTYXv2MTO2Iueg78eLJPWGffxpaDWfp24bRLm74eY7uPRis/jYH++6lUMO7T+HPpgVpQMBP+ENO3FOSlBeLBYLBqkelEnjx9Lc3MTO3XvQpBIUWebDd95k5snn9+m3oKB/RbU3emZmTqyicDgY4p13zBzyLlv/S64Ye5N+tXQZ5eXlRKMybnsGRrLfpLmDXH83e31RfD4fL7zwAscdZ6b5HcwN7XG7OPDY06htSiQXEEWxXyvzbefM59fPf5DYoGsDWvR7imkBLH//Qw4+xixIJg2gGHxv/DS6ggFqO1poaGzEElEIb+ibxAAgIxYc+8EHH7B69erEuC02oK+CkpVfzIaP307Z5vGmE+3nJL3edOx2Gy+99BJPXnkliCKSvf/gboDsgiKi7TUYhmF6OKT+1xqAgjFT2PzpW4RCIYLhMK4BFP8eNLd1cNdDj3PqGWcyvKB4wHbFWems3L0j/r39C7OqtuTsXzmYMHkq26o2A1BYVs6oCQML45qqoLTvQQt1oruUQY0sAIK7gJb6GiLBADlT5+PtJyajB6qq8cGi9/jBpUfjDwQ545zvUz5qHL5+1gV7ei6ONA9hf9egv/8/D12B7m3QuQ4610PXevNz1DT4SEAJQE+Ikz0XMqcQtE1me/Nk6nyV1LQVs7uxgKYWC62t0NJi/rW2mll8vg4EAbKy6F8R6Od7RkYih/6/AtFolOrqarZt28bWrVvZtm1b/K+/mjk9KCoqYsyYMYwdO5YxY8Ywffr0lGKf/8v4zgv6r91yBbZwANHmQDB0hHBCsJrgEDj10ANoSlpgr7ziJ/hVAafVfJJzXTZ8EZXzL7qEZYteZ2u3QFNXkGHlubicTpyyD0EJI6Z5wOnFUlRB7vCRdFQv5Rc/mI5VFPGHItjd6VhGH4BqS6Ozw+TnOywilfkect3mC7X+lV/Ere2+qMLTq+pYsbWF3BwX0wq97GgPMXzGoVRv2YDTIlIgRZiW6+BVh50Sr50Mh4SmW3FYBMrSHbhtFmzONBzhKkLSGARBwhB0uut2oGYHEEQJVZRILyrFneEgULsd2M5Nz62lrbGL0pDOq1tb0QxId1h4aXUdE4rTkVWdxWu3cNjUcSjNuylLy0ZVVWojEvmKnZ2dETrCCh0BmSZfmOauCCNOuZrQ2rfZ1eRn08plAIzK95DltuG0SdgsIuNy3bhtIoZk44yRpUTGTmFrTRPt7e2klY/FsKehpWWblWpVGTHcySmnnMpDv76GlW89h038C6fONy1gtTs2k+GwoGNWyLRaRCpLYi+sA46n6OXfUjuqAsMwUJdWs9qnU1LQhaAbhLpCtG5pY8x5Dmp378S76V2isWDe8JqVRMLluHOLEaMBDJsLBJHMEYU8eOJhXPFmogJqWk4phq4RbKnBYpVwuW14M534PV58sQwsyTm/mwMylekucOdQ3xVlW1uAyfn5eLymAPraa68x8YZxyEkcfVk3CKs6FgHcFpGZU6axZe8e3tyS4DMfdvAh8c/J4uLw4cMBaGyoZ8rZZ3HpttXc+u7LKcrr8e4QI0ZkYcnKRZ80JWVujZ9cQF1dN801KmokiKFpRH1tKBYruiGg+tsId7XE2z+4zscDJ5/E6sYABW4vmmEwavRsWlUbnqxcQr52pJiHYumSxWxoDlHvj+CLpT0UBWgNKoQdWbR1B7ntlgVc99dE0KUgCMiBCHqGDWteEVJ6Nh6HeZ3GTT+Ix/5uBg5XVo4iIKt0hhXssd9TdAObxUqgoxV3Vm7KeTYs3UD+dBnnsGFIZSK6qoENvG43hRnZ7K2tYW8su8reRVsYdnAt0aYmAvWm0hzpCpNVEGHevHls22zGxYSjUXxr69nTYIETzTzjigEdQQXNgOKsXOo7WuP59CMNDdhrVqM21yKNnI4hiAg9FA1R4tpzT+TS62/DarOhyDJC5QzE+m2orfVI2QVozkykzFzmTh4Dz3/AxNbl3HraAVzxmYuOLvOpyEqzc0BxOllOi5m20WWl/fef4V3yIF27N/O735lBsL29C1bRpHPYLFbOnDWX+99dyNq9VZT0uo7JyEwzFfTGxkZGlJWws6aOUeMmMiLPw15JpDDDybBMF8NKvAzPddPUlUNHUx02KfEEixYrNW0hsl1uOsMKVkkk0ymh6JCTncOar2KxMroOVie+9hA1FoEaX4QclxVJFOgKKZQcMAcAIxoCTaG7waw1EGjaDZTHq247LCK2nBLaqjeSWTKCjFEzSO/QUArG0hAR0fwKaVaRjrBCSNFp9bq550dncfPf3ybU3UV2ZgY2ScBpERDCQfRgN4YcwZZmpSQ3i4buEGPSFMYceSIb733C/E2XDatDIj3bxbh8D43+KAFZpWDUBL786glcVglVjlKS6aEs3UG+VcXS2oBuT8MiiBR67PzgR1fy6d8fonvDayypXsKk2fPY1BxgfJ4bWTPwRVR2tQZobg0RbKlBcGTwwbJ1WCWBoC/M61/swWa3IEoCmzKd8Yry4QIPv7jxN3y8ZCmW3GL8ne0Uj5mMKAisr/URVXU6gjKabuD12LFZRLwlIwhvTSh2//OIdsQE+Zgw37UefFtAl/u2FUTwjEZPn8TWJjujZ52BJWc6OApAEEgDpsX+BoJhQFdXQvBPVgD6+97ebh7T3m7+bd2671OSpFThP/lzdrZATU0BWVkCRUXmNrc7lS7bg87OzrgAnyzQ79q1K77u9YbFYmHkyJEpAn3Pn3cAKt93Ad95QX/yyDLYuGXA/dWNrby6JJHtwGKxgJr6kPVknfF4vbQ1N1K907RShcLhfqk72ele2ju7aAtEKct0EY1EBqTuhGMFu46/7FrefuR+VJ9plXMMlF7wgEP44KmHyEtP48VnnmL1us3s2d7/+Sm6ztxzfsiWLVshQk9d9QGvRcn8H1H3wV+I+DrQFBnrAJ4CgKJi0zpV39SEnG1GAaQ5BrZuufKHUVO3l9Jo/xO4N6bkZPK+z8cpM0zXtMPS/7jT3B6OOPE0Pn7zFURBYPpBh/Dxu29x6dXX9mlrdzix2+18+rlpae5ZTHwVZTTNPpAUp/Jw8K7ZQigcxhcIISsqh1QUMTIvs0+/PThpyqgUQR9AV/ou6C6PN57NR++HXtEfjj54Ons7Q4h2K6qqJrwqvSyagihis9nYvmdPfFuy4K4leSR6nsm7776bF24yU5FG5N78/8QPWCwWfv3bm7ntlpuZce7VyGr/LmUArDFqkRpGcOUieoviVmlPP1bv7NxcVFlG7jaF44OPPbVPmx5k5eaiqiptLS0pmWwA9uJgTK/2p5x4PO9/+BFOpzmmW+76HV819+WN95zjQBBiGWHaHInsN5PLRtDYlQg0XXbMfLS9XfS2IwnAmDFj+Oijj1AUhWg0Ss2cObjGJEab7MUrzMymvqM1Tr2KiFK/aTB7MGXyZLobdjO8cjQ3xQr4xZFUVGriMFNp3FXfCOlmOl9xEAs2mPfmw3cSaTAtTjuohrmeGJjBMbFnIZmf7Q8P4FWKYVzlKLZU7WDixIlAHR7vwNQWT3YebW1tKIpCutfD0YceOGBbgPqGBp78+zPx75IjrYcN0weONDeixYYS7IzFLEiA3i+lyZWZoDPpqtJvpqdkVBTmsWnrdjZt3c7xp589YLvSnHS27qrh/gceROke2PLfg1ETplC9YTWRcBg5GsWePI5e6Q4liwVv6Si6qs2sOJLVmpIlqg9sXmo+foHCA45EsAxu/S8pLaWpzlRy/cEQaW43+iDZUCpmH0vz/7qg37IYttxrCvWhAeoGWL2QMRkyJ8f+T4H08WBxoikK1e++y6iCo2AAWu5AEATIzDT/+qG994GqmgL+QIpA7+8+H2gaNDWZf31hAWZyZxIxwuEwlYHcXJ3u7tsJhz9BUbbRkpR5rjc8Hk9ckE8W6EeMGDFgfNp3Gd95Qd8qSQMw3EycNmcmG6oHppEkY+mnH7H4o/dRWxLpLe39UHfysjNpbjXdcBdML2XU6NGMHDmyT7tkHPWDn/DOXx/CUCOMO/vnnHfembT244LLLkrwzd546x2eXTh47vas4jICn36AkZaN1rIRMX9gF2/OtGOo++AvqCGfGbQ1CJdTEAQK8nLp7OwCtynM9i6RngxnThEhv491f/zhoOPtQabDxuLPEkKzYwDKDMDw0eP4mFcwDIPi0mGcueBSikuH9WknCALRaJTzFlzEH48/Jc7tC+X3b3n0Bc2UjY3tnQSiMjN78db7w8FzjmBLKziKBw6eTPOm0+Hrm4t8MMw7cAp/es3k2aq6FhdI9VBqxVDDIsXT3fXAlkQvCOf3Tf34yksv0f6TM3EbBhFFTVEMehtiRsYqtWSUjGAwCJLZh7r9DQR7OqIrZ9D2PSn89rz1JwAu+s29A7btqRo9+wc/Y1ed+ba54QYzVqQ/EePKyy/jtTffxsBg+MjKmILTv6APpsVajSmB9x3a136WEQ3T7nQjSBKOfmgQe7qiHNSPzJqdbV77Tz/82Aww76X8q22JZ2LOmCnUdLfH8/RHhcFJtGWlJSDAzu1bCPRKa9r73ABeXPQZh407AV2REaSBc8wD5OTkIifljHdPMtcyLRgmuqsR6/hyJH+ISFWvis8DSdYxTBk+mi1VOwgETBqbr2vgDCFpsSw+1VU7sFos/PzicwftuzdMymL/AqggCIg2O8G6bbE4JomBgknSspIEfTm8TxpMeWGivdebMWC7ykJzfry36APkYccP2idA6XDzHtRWbzUF/UFiwADs6Yn5N1gwLoBgj3lbVn1I2rjjBm1bUlYWry0QCIbw9JOKMxllM77H8sduG7TNtx4bb4HmTxLf0ypMgT5zSkK4Tyvv38z9b4bFYmb1GYB12wfRqCn0D6QINDfrVFX5UJQMmpsFwmGIRMxiX7W1jcBvU/orKSmJC/HJAn1hYeF3KmvOP4shQd8i9cP4TODHpx3Fbx/fd6EjgMt/fgMP3nM7Tz39dHybrR/rZEl+Lk0tbfGqtTu2b2fC+PH77N9QzZd63sSD8GTl0NrSl4+WmV9EaflwavfsQpJETj/rbDZuG7gISeHwMXTu3oLg6j9HfjJEiw1sbrRIAE2VBxXcATweN/5AEFssq8dg7S1OD06Pl2Bj/5zd3nD0ogc4BnmRnfT9C3ns3tvo6uygq7OD/H4CcXujbfMWyDEFL9Xbf+CnIAjk5+XS1NaJPyLjyd23JeGhZ17m+/cvQVU0IsH+LZouj5d3n/5Lv/sGwvhhBXS1d9DS0sLevXs58EDTomlE+wokvQsJJQvuUlTG6rCSp4VpCgsMKylib10DO2sb0GvqMYC0riCS04XHUMj1pAprRUWmtVHYD5KmYHGY6Vy16D7Lnvcs6l3bl+NIc2Ox7Pta9wj5M6ZNw6qDLRplmD0CpD6HubmmIvfl4s+xD+J16oHVkhD0jykv6qdFLJuNosYpKABnzumbm78HGkL8HGt37iISjuCMJc621TQh+QIEo5rJg8G8HpkWJ7Xt+563Pe2tTjdywEdeP4W1kjG/ooi0WPYoTZERHQN7qQCyc3L6tdJKaU4sWR4EUURK75vjXx2k+B9AkcVU2BoaTC+mexCLfk/hqkNnHYjHnTZgcH4PfnrVlfzfA38atE3KWEN+dr1mKpcDxSwAWJ0JT2ugbvugxhAAtythaU8fJBjXIkkce+iBvLtkGc5d+7FWiyLFI0bj7+pAjkZSLfr9wJWb8BLY9jEHBG8ifWp/he+SUVJaiq+jnWA4QncgiNvd9zn4zsERi/WpvBwm3wW2ge/7tw12u1m4a6DiXYqi8e67izn22GOxWq0Eg9DQYBb8Wry4GLgRMM39v/zlL7n77rv/bWP/X8Z3XtC3H3om7Kwm1NiM3ddCeOMygvWtNG80F1NnbUtKe6cho9lteCNt5Li8eOwidknEYRH56c+u4cF7bk9pb2xehiEqaO1NiJ5MBJuDgtJyAA7JSwirO3ftQrd7MAQRzTDIcVkpcNs5dGQOE/LcbG0Fz/jj8W9+m9ZWnRU726ltDbJr9RZCo0YQUjR2tQfZXO9j1vFnUvvg3djsdqSgjyPnzSPLIZGh+UyBShfJS7PjtUuMG29WnxUNGQ2w2NMwAJsnC0d6LpLNSeX4PI6fXMQXVa2skQPseesBdDnIxzs6WRatxtAN0rx2dm1qZk9+J063nfKcNOyeDDo0C5OsKlabnTWN3UQ1g/aQHM9PHlV1fO0hNFUn7E/NvnHI8GxcVpGKDAd1+V5mFLqQ/M3IGxZTnpH6wrBbJYy2eoS0bBw2B2KwA0GTGZ4znjRbFh6Pl0hHM1F/F2UF08hySmgxV47JxZZwWUUWvvQSZ51xBrft3s4jh1ciiQL5RNk9wPOTn+7ihedeYW1VPSPrZTY36xRMyWfEyHGIrgwMyYJhceDI9uKvaWHcrkW88Itj+HxPB/UdYRp9EZYu3Utaup1xwzKxSSJ6a/9Wr7aQjIobq81Fkz/Eku2tHF6ehc8iUnH0eQSuvZPHHjGD9HpTTCyigCgKCAaccsopKQtoj6vzsPUrKUgXqbztLmivp+65Z1k+cSJ76xpYYZRwzU1mNeSfHTcWpxbBUlSBMHoWhmjBcHio7jYwikx/8K/OnU92bj7rGru57ek1NPk70FUZNRLA4nBj6BqOkXOJNGzE0FV0TeP5+x9mTOF1rN3byfjidLpCCgtmlLKtrZvuiILN6UYOB4gEA9y3cAPjxuWi6gZtnWGKc9M4fHQezd0R3A4LpSPHUFtt5nYfH+jguHXLKZ83kZxTL8Cw2glkjaQlqmGTBIpHmW+lvbt34nA6SLMKtIVkqpoClGQ5CSjptIc03DYRl8uO1WYjHCuWVXbUDFrXVuEoLkIaO4t2dxlWZ0K4y3Yn7qUlRoFRIxECgVb89Z1YHRZCbSHyLDrbDBhRXsHOPebT1iPod0dV7DHqS1BL+B9dNjuhmHcmFJBpf2shcneIfG8WkicLQxAxrHYMyYbFV48cMD0ClROmoLvSsaR5kdKzEfLKCDuzSRs7C2HPRsrzs9n82RKuPPI1JuXaKB1fgTJlOIeMyGasF6TuWtx5w7BbRAIRlfzmfn30MfS1ul14+LE88fm7KAPwbONHCgK5ubm0trbyl9t+yQ/PPIGdGeXs6gyjGwbj89LoDOeTl2ajJZigwEWjMuzeTO7c09kliaRZRTQDXKKAJAiAwa9vuzNF0HenO2lv8mO1W8h0WilLd3LIiGwiqo7U6xRs6TlEQwG8JaM5bmoRRV4HUws8ZDslDhqRzVNJbR986EXGHjKP7U1+ZlVkMSYnjWjsXnZEVPLGJFKnlmV7cFpEXFYRqb0TpbUeLRrF3xBA9vm59YoFvLvkK8JNCZrUtGmF2CwSw7JdzCr20BR0EohVPvZ40/FqITRNI9/rotSpI1UtJ7xtFbbhE5AKKshxDUPTDUrKK+JrnMVmpzuixOuO6IZBc2eYgC+Mv3EngiDiPfRndC/5A+GOJvasWY8WDWNLS6cmPRerw8FnXgetwShjckzFZ5OSjj8YRrU6aQxEWb2jDUkUsIgCdotISZaL7DQb0dB3oIZneizZvRr8nxLy/xHIMvzkJ7A45py/447b0TQnv/nNr7nnnnuQJInbb799yHr/T+I7MKsGh9UiISZVoRRsDjRFJehx0+zwgChiFVMfMkkADD0uKEqiWQREFSSOufqO1P6TrrBgc2LIEaxWC9lZmWzekViw169bF/+sG6DESJKKrsfzdbvHHongSEc1LIRkjWB3whcRUhICwHEX/IjzL7sCfyCIPxCI0x4MiwMEESPGw9cMA6dFovKQo9HCphCgKVEsDjdiL/6pklQ1V+2qRQ91pFirLBYRi1XC6bbHr5Hb7eX755zDtANmIEoiNouIbhgp/E9NN7BY+9IObr73gfhnOXb+eo/QoGvkWG2cMClBd7KL5vZky7Ah2YjEfqygsJCmpka6OjvxZiQslGFVx26R4hz/E45PuMX3tvtwWC2DelDzszJ5cvkmGhUZsjPRjF6NRUs87kGKPWdaUv51ORbvISVVFxYGoBDoScdFNB23I2G1LCnINesbxKyk0gApDg0MHA4Hv/nNbzj8cDMwuUfQ7xm5EOvDnuHm6Yf/SEn5cNSkTBhOuxUtGsVQZAQ54VXSDINctwO5sZrcvHw0wyCi6Ri98s2rkVjqS7vHrMjZ675lxZ4hS9K8E0WBaWf9OOU7QCCSsAp3R0zvhaYb/PA3v4tvl5Sk3zd0dKsrZU7rCJxw5BzefetN1q78Kv679qS4D4tkPtOGIGBNUqLUYIIaZVgc5gup53wFU1g9borJyO+J1+nQpZQ7bGgGaiwL0uTxE+LbHUlW2J45kGw4dyZ7sdxOGlUJXdcRkqgXgqEjGDqGlNiWnpWNkMzT1nW0WAA7QECWeWrNNr7cXkMkid/dex0EkESBvNyBg2r7o8PkeNJx2eyUZe+bD9Daahpc2jq7QJTQk/rrmUc9MVIPx5RcWVHi1axFASRBIN1uSTrOnB+7k+JUhNga3gNRENAMI+6pOOuOvyUGFXtWRVHAZhHjgjuY62TZhc8iZMSqrOtKH2+HyyphFYV44PCo0WYcxshxE1LaIUoYSYrdlEkTuCOplovF5U1ZAwBzfdXN94fL7WHZYpMi4nKmWukNXUtJjVIwamL8szV2v+0WIWXt01QjHpcg2E1Di6GG0aIJmpsgSmiqHr83giCQkZPH+k2bYxx9D+FYMTqt17ogJx33Pw1vTND37Udk6/8wduyAWbPgww/B5YJXX4UbbxT49a9/xf333w/AnXfeyc9+9rOhKrf/JL7zgn5/AlG3IbJqzmw+LxjFFsnbpzDOYLCn9bY09+80ae/o5OqzT/haYxVtaWQcfk2fFJh92kkSxWUVdHV1EQiGcKUNnDoOIG0/XrjJY4h/3gd9wh1LbakoCtHwwJznHliTXMbDR47aZ/u0JF6+dYDr3IPComLeeustVixfNmDhqd5YvG0vNouEMMjtdybRYDZX5LN7Qu9Qz68PQ0+NGskYexgPvT94xcjeFnxnrxe75rQTSXdjuM3xiqJIZizPe1zQ72cxdbmcDBsxis6OREDpN2VdEW1poIbB0AYNJO3BuKMGDlbsjeHjp8Q/S/sx3nc+XrzPNj3Y/2Av83czYmuCTUrco3r6fwbd2QklNE6pGuAl57Il0SZEkddCHvYyMJXCFkuHua/7d8pEU4E+4qd3EAmH90nlyE0S9OeOKEvZJ3mT1guPy5S8gcuOOInTDuybA34gtKj2FEW3P8yclUiZa9vHegBmvYX9RXpejNoiivtcfwHEjHIABPu+M318uXI1csv+xYHlZpuxCNmT5nDAL54YtO3eHVv48A2z/otjH9QdT26Cgma1D94WYnELueMRMwePxQHoamvhJ1dcSVtnF2nugetffGfQY9Hv3jbg3P5fRCgEy5cLvP12BRddJDFzpinsl5bC0qVwyimJttdccw1//vOfAfjjH//InDlzuOWWW1i0aBHt7e0D/MIQBsJ3nrrT30svaCSEjoBg4aHDD6AqGuFnv/n5Pvuzu1IXMmk/E8r+/fmF+9Vuf+FNz+D9Dz9i4uiR+xT03V9D0BcsNohZcfdX0N9flE85mKrlZiVY6yDBtXEkLZKCMJAd3ERBYRF/++tfARg3YcIgLRP4oqqG8pyMAS3sABlJvNry8nI6MzKh/WuUFe8Hx51xLg/emQhKEm0OsvIL9ynoJKOoyHxxS14Xgs1KtLygTyxKj3LQoxQMJP6tW7GUpR8v2u/f3l8IVhcopiV7MN7zP9S3IFAyYjR1O7dzckl/PPpU5GRl0NK2f/dt0cIn+dWd97F728DZugAsGW60Tn98DZDkBFUlgIUU8Tl28ZOFz561SRiAb56WJJD1WLwCgyzpdocDOakK7kCYXJQQ3MPh8D4DOXNyEu2HZ6VSESRPQhF2ji5F9QWJVtUNWuArGUfMPISPVywlPT0dTR8sbQJxxRXA/g1X+HH0VK3dxxji6FEG7N8sNSMzIwOAgpknYvNk7fdxdru9/5SNMdhcCQOVbT8EfQCpePDMRj1webyEYrTMgqJittYMHAz+nYB7pFllVvWbwn6P4P8/hHAY1q+H1ath1Srz/+bNoOsWIJHwY9YseO016K9EyeWXX47T6eTiiy9m8eLFLF6cMMaMHDmSAw88kJkzZ3LggQcyZcqUfSqz32V85y36/aG3ODW7MJefHDiegpzBg9Kgr0V/IGRnJfra1uzj2OP2nUnhH8HG7dW492FFSbbm7AvDzvsL1qIpQE/xmoFRULjvNHDJOOmX9zHz0lsA9svqHonRXnY07ztDTXKmkfLh+7ZC9SDL7aS4sw2xPhEA5/b5sHSZ/eVmZcS35w5KYdh/eDMyyS9JZAUaqDJpb+y506S2HDzjwBQhUbD3LyhGo6bon5edQ2FTI84BhMBJMxLJINfuaui3zT+CZO/QYGldkzHx528w47fv7Ffb2174gGjzHrL2ERAJ8NaTpvVo+MjKfbYdP7qS1558mOV3/bjf/WpMajdiz6cYOze7xYLaGSt41+sYRywDTVpaGpdddhnz5s2L7xP6obZBar763pmU+kNxWd9MU/3BabXwq4MmcvCEUSZ1Zx+CX1oswHJyfjbXTK3Esj1hnVZaUitKiwM8iwNhVHoeJSUlA1LRkpERE4IBbIOkQf1HYHMObizpDcFdiFgwdb/n7n73G1MI90fIP/LMC5KO238v3Dc95j+8l/BG7iso+DsByQY5sdolTR//Z8fyDSASga++gj//GS6+GCZPBo8HDjoIrrgCnnwSNm40deSCAoMDDmjiV7/SePttk5s/WB3CBQsWsGnTJh544AHOO+88Ro0yPf3V1dU899xzXH311Rx00EF4vV5mzJjBT37yE55++mm2bduGvr9K+XcA33mL/r7wdR1rNuf+Cfq7N6/FW1j+tcezvzjo8CPin/dl0ffm7b+gL0gWJGcmCqZFf7CplJG1/xYnMNO6OTNNYXl/BH13TGjYn5fYjm0mH7K8vGKfbVd+uYS6T17mlF/9kaauAOnhII63PiDt6ANpnViZ8lAU5ibS0tlsNlAGzySyv7AmvRC1yMDV/pLhtFr4U0YlG1Y24RhVS6SydGAzPTBp0iSys7NxPPgyE6flITj6Xw7ueuxZ5ow070vafiqy+4OUjB3G/i3KgmSJKZgDWyfjbQVhvzPUTZ80jobOAOHBcv/vJ4qNCG1J1JwcTzoXHHoUVmng5dZhJJ6bwsJCCgv3nao1z5uB1+vltNNOi1ftHWy9uuexZ9CDXfvsF6A83c2XyzYCcEpkcCWiZ/4dVVmCVRRwvvUFFZ+swKfoLO8Ic/b0QmoUK7tPPWLQfvqD2+HkkkvMGg7GPlbjZGXAtp8W/e07d/H69g7e2tQ9aLuvS1cTJCtSwZSvdcz+4Ogj5nDTfX/mU2XfmcNOueQqXvjTPfvd90G3vMay356y74ZfE/uTyeo7h4IjoPljM83m6Cv+06PZb0SjptC+alXCUr9pU//VdvPy4IADzL/p083/ubkq7767IpZ1Z//m6NixYxk7NuH16OjoYNWqVaxYsYKvvvqKFStW0NrayqpVq1i1alWc8pOens6MGTNSLP/7W938fw3feUG/QbbitVroqqolrWwDjYtXUVcdhAMPAKBrTwcfvl3NjoDMFW1+xlznIK1oDOzdQFbFXNLtEnZJigsUVneqq7Z1XRVFZaMwVAXDaodIACMSwOFJ5E/e3hbCWeDGo2uIoU5K073kOC141G68w7PIdllwWUWySwuxON1YrBINTQHa6rvx1e3AW1CCPRbs2tIdpd4XprAkA7vDQTQSwev1YJMELK17EDQZzZ2L05pLQZqFAo+d9CTXe8GY8bgnHoHTbSPN68BqlzhnRimzStOZmOdheK6bJ3aPpXbnp9gcLjq6o0TDZhCkqmhoseCxZn+UnOGpfPWOgFkFscTrQDMg3+ugJNNFY4OfcEAmJGvxwGFvmp3sDCcuq0CJ0UlFtgth0weo9TvZ9uR7rFlcwwG6xqUvP0FBmgVl9Vai9TW4SsbhsHvQm/dgyBHyDhiN0yKyfOUq9mzdwORheWgWGdniJKjoZtW/kIwoCFglgYCsM3H8OEqko+FXf6Shy0/lGbNpWN1EfawCpq4bqDGhY0JBBoVpThqDYURRJCxr1H/VyLCjd+PIL0V3ZaI7vFjTnFjSHGjtjYx3LGbc2FkY1hw6VZGrdYOukEJlvhtNN8h2WUlzJigPgcZd1HaFCURU6oq8ZDnsbGtsZE9LgNagjMdmIayKjDv9Qs5x2Jj17hrWF7mpA0DA1k8QJZhc8/Lyco4+tpXxV16IlJ4NrgxWUkp+8XBKzy9mfcTLs6v3xI85849f8MLV51OQZqVD0dnaFsLXpRJW/Hy8vZXCdAeZB5aiyBpjLD4cZZn8yW1DV/sK5npSoSbsXgxd46VPdmK1W9ib46K9JUiu105Vc4C6jhCNtT5q1qxAVxXCnU3UrClFDnUjihJbs4vYPmEcjjQbDpeV/AwHLd1R3LbhnPynW83ns2QS79ZGCAU1NqzdzdbGbqYNy6Qy181hw4bTEdLQDIMsh0FVU4Btjd04bRJzKrLZ3RWm0G1H1g3S3cUEFZ2iOWdg2NJw123BKBnHl90ulm2p54CRI2B3W1zJEgSB/PSY0huTVZVgmGh3FEeGKQSJg1qgBTwWkU5Fxy4KqLEAc7fDxTXXXJM6x3Y0o9TtNLPpOFyInixQowiKlemjRpJmFWgOqWh2N6I7C2v5WNSsYezsjDIiqxKPK5McXztZexvjfQ5rXMV1l16AqEbR3vkzbdv2UHDGOYwvn0maLY/srmrU3Wtpf/kJ0qdM4ZyyfNJHDiPc3ErZo58z/vuzELc0Dpi5alAkyfaLz/0Fs286jZFjD0DPKUfq2s1JYyaSbpeo63bh7NgVb1v/wZdUjpvO6OJZ2Ju2UJY+iqCi47aJBBUdUTAzfg3LSafMbyO7XkEOq8wdm8fBJV5yrSoVGTmIAnRENMozXfRUbhh72ExWPLeD044bw4LJBai6gae9Cn3vXo6tnEvTGVN53NdKx671ADzz2S6C3RFGF3hQNIMCj42wouOQRKLOXGo7o4zKyqPGJ7O9Lci4vDSGe/KQYkYPNaKiBMPo/k5sWaXc+OML4bPdjCvwcHh5Ju1hFbtFIKv6MzJGzsTvdaEbkJGkuNs6dkPTLmqff4G6pbsYfnQteUdLeP+fvfcOj+QqE/Xfip271cpZmhlpcnYap8FxGAYbG4wBEw27ZtldFnZhYe27917Ye3eX9f35mugFdgEbfA3GrI2xjXHENh7HsT3jsScHjcKMcmh17kq/P0qhJbWklkZxpt/n0aPu6qo6p06dU/Wd73xhWS1dMYFQLIXsHFj5FQT8ToWgQyKimThkEUM3SURTthMvEO0cTvQUaT+RdsPsa3676EYaWvtpqSscSvoI0BJKEIpp9HVG6anwURZwocoiPmRcqoRpnSUiSckV9v/25waCEczsKspMkErZQn26+c0774CWIYVEYeFYob6iYmwqgEzHTpX8/Hy2bdvGtm12uGLLsmhsbBwS+l9//XXefPNNQqEQzzzzDM8888zQsdXV1Zx//vlDwv/mzZvPipCvZ8momhodZcOzvra6Wvj7WsqA1/u7qTfNCe2dHANxs3923/3k7f3DaTvbZMpQmIprkDfxEmhMM0gOJNMpLCrOuM9goB5PXiFX3P4of/yHa7FGR43JwKB8JjlcEM58fZIosGnLJdz7Xw/zqQ9fP7RtMhID/hHOCbRA7W4/LV++ya6LZLeDlZrY9liSJNauXgXRiR15FBEwoSg/k5nW2GvtSZn89KoL+Ou9A+YKBQH2XH0pao/BJaP2FaSxPUcfJwWlI82ZVu9rmbDOMInD6Wk6z6Z0kw/c/gAHDg/bsGeKwDIaS5JhkgUOed0nseI9I2z0nZ7Zy2yYTb3lLPbJRHjABn/io+373am4SU8RNlmJqSz9MzpKJ/a3SWXqb5Y5pgYV/uGX38eu2JLVymam/j30WxbHT0ZikpVJAL/XQ39keAUsm1vpmKDeE5HN82y6WFmass0kwuCKyCyHMgwnZmbVc1GTf46d/Vbrg97dUHDufNeIhgZ49tlhbf0779jC/mgKCoaF+cH/VVXzl99LEARqa2upra3lIx/5CGAHANm3b98I4X/fvn00NTXR1NTEf/3XfwF2UIq1a9cOCf/btm2jpiY7E8fFxLzb6H/pS1+itrYWQRCG0rkDdHR0sH37durr61m7di07d+4c+i0Wi3HTTTdRV1fH8uXLeeihh2a0Tv3jJC5p9hfQ1jexGYUgCDz4+iG277iG926aOMd0IDg105ap8s93/gCAgsLJbccd/oG6ZOM8PDCiZefEGTMBtl4+teX6wYQzDuf4pjtHy4aXrf/09qFZscUTBIGWV/5A297hfjco7eiqCgNmQw5RoMbv5TOf+czQbtFggFe6Jo4RPhmDy92+i75I+cd+POXjBx2IHTUlUDyxb8nEbsw2wcplOPLHyYJyGgiSgujN3hl8MTC0ulccRHCqKGX5CE7bT0B02f3anILoq5QEId+PWlUMS8pxLC2z431mwMjSyXUyyvweKrKM0jMVRGcWTvbppClKesfJUJ3O3f9661SrdEbz6tv7eePgtNZSZpT8wokzX88UC1GeyIgoQ/Fl9ufjE0dPmgs6OmD1arjlFvjxj23tfSoFwSBcdRXceiv85jf2ZKCzE558Ev7lX+BDH4Lq6gWRxHcEiqKwceNGPv/5z/PTn/6Ud955h1AoxHPPPcftt9/Ohz70IcrKyjBNk7179/KTn/yEz3/+86xZs4bQFLPSLwbmXaP/4Q9/mK9//etccslI/eett97Kli1beOKJJ9i1axcf/vCHOXbsGLIsc8cdd+BwODh69CgNDQ1ceOGFXH755SOiLpwWE2jhM2WAHE16nPaJuPOeX/Pyu4ezrtZUed91HyJ+8vCkUTPSUX3ZP5Ani7ozHVzBYv714Zfw+QPEtcxtrc+QMDMZZcWFmKqLwbUCYyD6iSlLEI6DxzWkMbQMc4RG83SnHs6BsJ2iKzAt5zjFzH6ikSmsZo7pkx7xxb3W9gmR8nwkDjRi9EcRXQ60UfdUZfz7JcgS1JQyONpkwNJNjFBkzL5WllG+suFkFhF6skXM0gcjE3ooghzwZrUs8IErLmbnP38BGlon3/ksoKKyyk5OmJx8VXAQf8HMBBVI5/fPv0pp4hSzHTl+QcoT41H3F3DyETjy71B0CdTeNLvlTYDXCxdfbGv0B3E44MYb4dOfhosuWnjC/FTx+XwsXbqUw4cPY1kWkcjY5+fll19+RkbvmXdBf+vWrRm3P/DAAzQ02JqI8847j5KSEnbu3Mlll13Gr3/9a+655x4AlixZwtatW/nd737HzTffnPFcyWRyKMIIQDg8SXivCTr0TMpEqzdsJlaUfQSYqeL2ePjG1/+ObB/xX73vjzx3MEk0NDoQ40icxbNXZ4D80qlF65mrZBruPnumLxjm2I4wqs+cbo1u+osvE3IW0TjNSHSr+1o5+EYzSVHEL4vUVAcwAx56DJlIMG/EvvO+rHeGsb48wLP7T2GlCfySZ8DEbCASz+jJldcycL/wFrH3bB7a5ukPE/VnjpglB72YibHj1JxBQf+/Nm5Gu3By5/VscOvTN861UrapR1bmQ4LAhtoyWnKC/rTY+NX72HTFBTN+3sLiYip1kwOzrCydT3lC0zS0qRihF1+NuPLrSAf/D9Zrf4buqYe8DZMeNljGlMqaBEWBP/zBDoF5330i998v0tIi8B//Af/xH7B0qcVNN5l84hMmdXWTn288ZqPuE5FIJNi5cydPPfUUTz75JAcOjJxqFhUVcfXVV7Nt2zauuuoqiouLx63fXNcdppKzZWLmXdDPRHd3N6ZpjghXWFtbS1NTEwBNTU0j7KjSf8vEt771Lf7pn/5p9ip8hhAsqUA4NPkyr6ukDvfFf5v1eSVJwpgk3f1iQEkOGCxmo9k4TUm/fs16zv1oPo0/eXBax7sNDf3ld4loJkGXwvIt5fjKvHS808nJc1ZzfCD6kKtv4mgjOaaOQ5YI7D5I33lrxt3HbY59WbjePDhC0Pf39ZE0Qc/LPh+FNSPW8DZFqoN1607jrT6CmZiMz69K8YnnX+JYR4hfnZjXaswqjrziGTXVWgjMlTzx1FNP4XZPbs46AusCtkibKDF2k3rmGl5w3YEmZDfen3766amVlSWXXGKHxty3r5Dnn6/i5ZfLOX5c5l/+ReJf/kVixYoeLrusmYsvPonfPz2hd7bqDtDa2spbb73F7t27eeedd0ZMykRRZMWKFWzatInNmzezdOlSxAHlyBtvvJHV+Wez7qO57rrrZuQ8C1LQh7F2oaO1tum/T6bRve2220ZEpzh58iSrV6/mv373GKIgkArHiLSGSHZ00n2og2Td+CGYtI4WBH0DRrgPRRSIayahpIbTEHFIEqG4RmIgRF+48RRmSkMKFiOoTgxfCZJpYnW1IHYeZ23tBfTGNWKagWFaiIkwWCFqC70onftJHX2byhXnIvTGqSpdRVGlH8UhoSUNEtEUsiIhKSpuv4Myn8qSoJtivwOvU8atSPTENWqLi0iGDfpTJr5kFEtPgb8UCQgY/ZQPJLRRZZF8j0pNTR5trigur4rXKVPsd7K2xEe5WyTgcFMVqEASBX6R0Ljp/GpeK/LyblMvPo+KZVrUVQeIpQwqAi6KPCoBh8Qbzz/JC60acVEgpZusKvLSn9SpDjgp8zlo7I4Si6QoG3AwDjhlZFEgpul4VQWOvYUZ6qbrpVcJN7UTcdRCml+eo+c4Ha/spuPtJjZdeBUIAvH9bxFt66a4ehV5Di+W04egJRCj3ViSgulxoRsWCcOkI5JEGqhbW6mPMq8LIVAOoojuyse1aSulG18kNmCqJGCLLQJgJJNEOqIIS8f2V6O3E8FfSsphISoyRiKFpWnoJ4+h+oKYoW7KC8u5YFkBzx3oQBIFJFFAEQUckojXIaN4AjgDQQo8tm1zOGngkkUkUaAkz0mRR8UpibRFUhj+QjxLl1KyuQdXcR7v399FtD1K6cYSyi9agbMggL/6JIlgOccHIiaqHoW6T7yf8Nr30RXXSRkWP3uxgXNqgryvvob7XjzBzp0nsEyL5tfs+PU/3VLNBbVBGvviPP52K/pAVI3W470ES7zke1VcisSKVV60lDXu+Iz3to3Z1tMeIa/IgyQK9HVGeelIF51dMfp74vQ0nxwR7SP9czLcQ7SzmfwlGwiUFNJ2oo/+zm4e8Kps+8i5pAyL/R1xfvDCMQCOH+yir7WV40urqKzJA2rYezKEKovcsLaMt0/00Hq8F0EUeHlVMY1dMYr9DqrzXIRTBqZl8f7lVfTEdarqtnKiL8Xtj+2m61SYv/vn91FU8SR9Ga96wL/F5cBd4KJ403JESSR/ZQ1L/LtJdxV3F7hRESfzZx6BaVlYqQRmuBfBNBA9fixdg1QXhYVLEbQ4CdlNXDORHT7wQ6/l4O22LkJJN/X5+VSuu4RCXaP5xSO0vrIPafdhlgYKEH1BDj/8Ikefa2RrgZ/AB0tYnldJ4pFHMTWdrr3H8NbX4asuQa1bjxRspWjNPjyVZTibOyev/CS82xGl7LZfElz6OCs/egn9J1op/dCNaM1HWLZ8I50P30/v4WYanmngQHec630/peZLQSJ/fIiyD/8tYdWNz4zhcHpQU2FMhw9B1ynzOagp8NAXTrJ9eTHlvftJvvMSbrefxIljVJ9zMVXV6zBPNnDFey4mUWoQ6buRWy9bgvTUj3CvvZD+Pz5C2+v7qfvmMm59z1Lyvddw65fsCDSVpV46nDKby/xU+RW8qkRPXCfgtFd8XIpIJGXQHErw1MEOumN5+JcXUly/GeHUUVSPiiCJWIkYoqEh6QlUWaTC76Q42UahrwAx1kPT/7uPqo8bBCpWgGUS8BYh9TRhOTxEn7iPUzv38rsHDnAipvFx0yJQV4F35dWA7SCbiGoIooBTlgg4ZFyKSFtURzMsTMMiGR1r6jAezXvfxtRSxCJb8PgdtIZT1HgVDAtqCt0YhonXqRBwK6R0k1jKQBIF+qOTh82dDnMhT2zbtg2/f/JMyGNIXYz1zIV4og1s992LcenvQBjfXFPTNJ5++mmuvvrqGdP4ZuLaa23b/FjM4ne/0/nlL0Weflrg0KF8Dh3K52c/W8/73mfxiU+Y7NhhkY2F8GzUPRqN8sILL/DUU0/x1FNPcfTo0RG/l5eXD0XpufLKK6dtkjVX7T4bLEhBv6CgAIDOzs6hWXhjYyPV1XZ69erqak6cODHitx07dox7PofDMcJOvb/f1mKu27h5zL5JRUErGr8jGFmaiciiMKmddjg1ud2qJckIoybNiWgKt3/iURVO6riVSRzfMmQjjacm17x39E9s2jOa1StX0Fqo8Hbr5NrjSHJyscYY5VyqGyZ6BjOGMWRhtz5h9JqBe29l2mfUNj2D9lHIYFZhSZM7J8pZxBvOFDgkOc59Sne+zVSn0VgZIr5kk3nUmma220K/g1gW/XAyhAy+HKoskpokVn42IdjFDH0gFZ/paCJT14JrbheaaTHe08FUPZAYed4J+3wGoiUFNKQk1urGiF4uZ+toOzhTniKu9UvpVgw88swKg8o0zZ2keVZ8K9lUIM0XxASMJeU4BZH2siBh3WI+gjqGYnNn+gBzJ08oijI9AVApga2/hacuRGx/CvHA/4YN/zL5YdMtb4oEArad/qc/Da2t8Ktfwb33wp49Ao88IvDIIyLBIHz0o/CpT9mrAZM9Uk6n7pZlceDAAZ544gmeeOIJ/vSnP43Q2iuKwiWXXML27dvZvn0769atm9FVqrlq95lkwZrn3njjjdx1110A7Nq1i7a2tiEHm/TfGhoaeOGFF/jABz4wI+XuXD9xmKujfbOjcciRHXFJGSPVvv7ukXmqjc14MksstfDDyGUTcSfHDCKM+DfxrtO8NX86mV2CtekQUl0c+9CV/D7s4pW9B7M+7rRes4NRvgrzOHLpeeypXzXJATkyccJbgH7jFQQ/fBn7N23goZlLcr3gmS95ImuCG+CCn9if9/0rNP92bsvPkrIy+MpXYPduO/zm179ux8vv7YUf/ch26K2vh8cfn53yv/Wtb1FbW8uaNWv46le/ytNPP00ymaSmpoYvfOELPPzww3R3d/PHP/6Rr3/966xfv/6MM0WbDvMu6P/1X/81lZWVtLS0cNVVV1E34Olx++238/LLL1NfX8/NN9/MvffeizyQVOZrX/sa8Xicuro63vve93LXXXeRP8UsrOORUifWSmUThzvH7JHIkF00npzbyZfmciKkrSqM5wC5UAX9XA+eH+TCAHL+FJf2xxH2BUVGzsuc6OWdrqmtuE2FhDz8fAzHJs6YO4IR15FlDxQEnCuqUApHhjtOZpE1O8dY4qNWDyML8/F0Wiw0eWJK1H4cVvyt/fmNvwF9CuNrHli7Fm6/HRob4Zln4DOfsSP1HDsG3/vezJeXSqX4x3/8R5qamnA4HGzbto1vf/vbHDhwgIaGBn74wx9y3XXX4fNl79N0tjDvpjt33XXX0Gw6nZKSEp566qmMx3g8Hn7961/PdtWGiO87gVTgRy2dh8GfIyNmSkPvCqGWFzIzjn6T44lEwDBHrCikTBBnIY7/XNErnXmhxBYCqQyhZ+UCP9aAU3om0y6A/CON9NTbjoF5WpxGz/gTg/FsiWdVgTXdc484LrvxKrpUJN8UnRtzjMtgLkSjP4rknzz52GJkMcgTE7LxW9D8IMSa4fAPYPXX5rtGkyJJcOWVtrb/vvvsbX/1VzNfjqIoqKpKMplk7969LF++fOYLOUOZd41+jhxTIVNUkbkKA+8NR3D98CHKjgxHJqp0zGSck7khvb6V2jTjd+aYEH9s2HHRDMfG/L6EzNq6JS+8QecPHsL/Hw9TF+th2bFjQ79ZR1uoe+41+7NuDKXN3hjrmMmqT0j6UJvKuJvWEE2bsXgPjx8FJcf0yBntLUAkJ6wbiOiz/1uQ6pvX6mSLZdnCva7DBz5g/800giBQOJB4bdIQ6TlGkBP0cyxO5uktJcSTuEPDD5lBWcTSFuc6+HTtwHNkj3Ey+4gzAqB3hRAHJgcj4u13h3B39w3vOJiB9zSSUZ0e0+w8UzxM7w2jhLOP+JJjYnL58RY4Sz4NgdWQ6oX9t893bbLi3nvhhRfA7Z4ds51BBgX9rq6u2SvkDGTeTXfmE1kUUCWBWFs3ocYQyb4wZIpXkaYCFT0++r0V+FecR1N/Es2weL25D5cqkedU2He0m6VFHmrynBQD/iVlWP4iRF8BIcmL11eE0NaA3nKMwvwqavKKeLcjQihpYDp9CEYKwUhhdJ8ivO9dfACmgaK4qC/10eFWaHMpGLqJrEr0BUsIFLoJOCQK3Sr5HgdOSaTEq2KYoCHikEwiKRNBcYAoYqluSIHU30qefymyKBBJ6HSGk8TiGj3tERz9MiGHjCQKJHUTU5CQRYsit8xFS/N5cZeTdSVevKqEKovIokCB18HW5YV0R1OsLPRQ5VPw9hxFP7aXutUfIJwyiKR0agMqvQkJjyKwssBJx8Zy/iCLXFyTT22+m3PL/ZTIKVIuhYBDpO/lF4ic7KLlpeO0GyqUj3TGM/s6aHz+GG8c6WX5a3/EtfZcmp55k9a32riotgwpUIBSuwpEieTh3ajLN+F0B4lLMpbFUFjLUEyjP2ngVUUc7iCmINEe1agsrKVkcy19R0+xvjdBonzYNlpUZCSPgkgG+UUUsWQH4aRBQV4+gtSOGLAjQAiiiN7ehKSn8DsuIDwQVq7M50QVBWIDISsd3nyCJV5WFnpI5LnwOyXcikh9iZeKfBfL/SJiuINAsBSpeQ/db79Ly8t2SL6GtiiGBd72KP0NraT6Y+iJ5KhIOxZSoIBQ0uBEbwLTsoindBK6QUwzOdIepq9ppNPlKwc7cKkSrx7rpvlQ18D1CIRONSKItfzpUCeSKHDV0gKeONJBV2P2yYtEUWBNRYBIQufIvg7a2iKEumP0t7UR6z454bFaNESkvQHJ4SJ86ijh1mPs8fk4fOVyumIpnjzYwdtvnMSb56Tj2EHCp44hyiqmYfFMnotdb7eiOmTWlPoI98Rp2/c6gijy2rFy2vsSCKJATaGHPfvacfsdBF0KbzT2srEywGsnejn66usk+rs4Eb2MwtWVMKDIryr20AYDs0L7YRLYtJnK6jy8F78XR/6fcKy7kLr3vYurIID7if0kehP4l5ThbhleDShUJUrWFw98G34oBeqqoTXNT8WyMELdiKaJFSzGSiYwejuQfcexJBl/3hK0gbmBpbjpjOkcbo/QG9fQDJPi2nrUdRpl5+1CGUj0Re1GdKcfUZXSi0HQk2jhGMm+MLLHhVKxDEF1Irg8WLqGHteJtbbT+kYLXFmfVR8IKiK92vDkRRGgqDpA78B3I2mgFJUgnuzEjIVJNDdjxaMceOANXtrfRXPcjuryzD1vcV3Z3Rx9ZA9bLrwKb+V6xGg3qgekcDvoKaR4L8sL6rhwqW2WuTYPun58H117j+MIeth9/zusfu87VF6+iXfveZ41nz7Aliv/jsZzK3Hse5qWnW9RUVJN7+Fmjj15nJrrn0fief76sk/yf1duIdx6jE9dUEN/QmODN47cvh9LcVEcrETs7cZSXNT4SpAinSzLD7Kmwk+pz4lPFRG0OHrLMVqP9FB8oBFHng9PSRVYJpVBl90LTB0x0Y91+DUOP3KAsvccQ/X4sZIJpFSc5BvPgCjy7t0vsM9djHBxOYNPKsuy0Ew7QlskppGIaRi6SXt/gkK3QlwzOdgVxbQs9JQx6fhLp7/Fzvje8IZK6Yq1HOmJcqFLw6d6WVPmR0/ZIaW7Iykau6N0hxLk+Rz09vRlXcYZiyjBhn+FP10Ph74Ly/8G3OXzXatx6emBv/97+/P//J+QlpJgxskJ+tPjrNboZxsqczpk47RruieP5ypksPVNZBFrOJSYXMNsCWNvv5acPKxhT2J64dHMLNo7OUnowxFYw/9T0SzqpE/ebpnCVJKhnaaDkOHkgjq5jbysTF5+psgCkXHaMn1PMavwmmP7hCpPfpw5TY1viX/2/AayCVWaTehQMcP41hOZo91kimw00dMh2Z/Kar+hfaZgO2apY22zs4kvMPysGH/nicJrnu6TNlOI12wwjcmfJ/J0Ayxk4ZsjZTG+M5HN1WYTFlRwpJc/uPw4rSrNGJEFGqRgQVHxASi8CIw4vPu/5rs2E3LbbdDZCatXw9/93eyWNSjod3aefl6Os4mzWqOfY3GhKQr7tl9mf0mTbk6E4gSXVpHYWsmjnSLvT85ynOa0CYuQYdtCoMfrI/bhK0goEntl8Ak95Nxu54eMYmTWsqWV8eNEJGfRkieaFnWnszeU9XEZc09kfXB2YWBDwTyMj26gYKCsLlnkBd1H5TSLTQgSTe+9CILCtM8xE7RdtAHdV8CO03jEJB0qwsXrRmxLWadxT3LMLoIAG/8NntkKx34CK78C/oXnfPrqq/Af/2F//uEPYZKghafNYK6DnEZ/apzVGv2smWZClRwzy8mq4detqMpDGnJFFDm5dgVmVTFH4wLHOidPzDVjLNB3ZWNRGUZtGVpFMV0lxTQ7h6O3LNAqn1GMDDJjS2iCJCIMaI+ncw9GJDqTxKHJ7lzeTy0tAZPP48r6uIQr+30tsJfWhiYH2Um4p2qrsWrLUGtKUWtK0SqKOWS6CE8z3F6T6iO8rJJ9+RXo8zSPj2gW3RtXcMhTSOQ0csh1DghIAGZ8OPxqMpE4nerlmE2KL4XyHWAZdmz9BYZlwRe/aH/+zGdg69bZL3NQo9/WNjareo7xyUmwWeBaWY1SMr20yTlmjmRaNkLLNDEGHBYlAay05fdsTIROByHT5wWm0TdHp3wfRxzMCf2zQ6Y+IrociK6pxYAffX/Shf3x4ujPJmJaP5emoQCxJjN3EQS0VbV4NtXjWlk9vDltFzOjfd3IVQO9b9h515qmaU563t/5Gt7p5qXTtF6yjx0wvbJ0A62tZ2i7NW+O3DmyonwgQ2984WU3O3YM3nwTFAX+z/+ZmzLXr18PwIMPPkgolP2K4tlOTtAfRW3jiYzbB22gdWNhCXRnK5Y+rN4a0JcOf5/lW5QfCyPGEvgcCiUDcpvr2FhHtTzXLK9jToHxmiTXm2eHUtnAisZRk0lqO8Y6I5f6s9NwFyQiEI0j6Tqelnac2lg/k4C6eB7jk0WnEhwKqCP9kuQTbRRGhl/qSX/mCU5+x/ByvqXpCCnbhG/xBcDNzEyMVaM/iqAMW+w6nNmvtOSYB7rscLoUbpnfemRgMC3BRRdBcfHE+84UH/jAB1i1ahV9fX1897vfnZtCzwAWzxtijqg/dgyxs2/c3yuCZ2aikUVBupZ69FtvDt/lvlSCyp88zBcvW4VXtgvOf/pV+v73PSP2k8fRPM4Nwrhfc8L97JMnmaS++xu2vrSTYHRkzOdCvwe3mp17lE9L4vr3h7j0qWfxtnQgAgVPvTpinwLHIhBkp2aFMwLHC29RGB02x3P2ZTbNK205ifinPcMbZrCjz9eYmbFyM7S/S7QyOvHnWEB07rT/F10yv/XIwNNP2/+3bZu7MiVJ4hvf+AYAd955J319fXNX+CImJ+hnJCcKLQqs4X/W2M2zikDmSDcLhVwPXhhk6iFT7TZpIfOzLuOsxZrrJ8HccTpXc6asapxVxE5BtMGO+rbANPqaBn/8o/15LgV9gBtvvJE1a9YQCoX4zne+M7eFL1LO6qg7hgmGaaFFE0iKhOx24q/0oQoC47koCUU1vNwS5pKqGo4c6qalL86uhh4iCR2vU+b4m3v5gyLhdcp84dzzkIsrSBUuQ7AsTvalyHcGKA0UYIZ7kSKdIJbR2BujI5qkem0ZFrYtZn5hJbLTAaYBpoElq0QSUYr9TkIlXhJRDcu0EEQJSRKxLIukYeIYCHvoVWUkERK6hVMWaY0kMJ22U1pE8hLXUgiWiWVBdzRFuCfOkfYwqaRO59H9mFoKd0EFbq9KKKnTNhC+UhUFDNPC0E2cskjAKeNWJVK6yaaaPC6oyKOhL06JV8ET6yC1+zna/rSL6vM+AGV+uuMazpN7KMqrRAp1IaSibKvbQIXfyQUFFptKC3GfepvU4d3UbroKoaWNl+5/jVhXnI71a6A6/W4MxINOJjHSDFiNrjYa/9TM4yf7KXvsFdzFAcrek0D0F9C37xAFwWKE0hWokoJXFfE7ZPxOBUkU8DskXLKAFO0CbxFJw8J0eclbXoUgihiaScGqSvJfbEZQnUi+PHyVQVZvTFB+vI/X02onevwYipN40kIKFuMu7kBdtg4sE9MVsOONyypGCpJxHZ9DZlnQjSAIHOyKcKQ9TDLSg2ksQRFFFFUkkjRxySZJ3STgUJD6WjAOvEpw1RZ6nn6Mhife4anXT5EoWoorv3CoLu+81Ub0ncMEPQptmw3YsBqAnsY+Tj32B6rrzsFXVgFAYmMFKwo9LPFYbFlWwOH69eiaQbjVztIqKxL1RV4OtvbT4XcgigKCKGCZNfjyXThkEVUWsSzoiaRQPIEpjcvaPBeaaeL0KMQjKRLRFPHeNozU5I6DlmmgOFS0mK317W05zqGucznaFeWPrzXR/ObzFK3cQqz7FKaeIhnpIdrv5/DJEG2H7et799JadM0kGe5BcXkJJ3QifXaOgeO6ycn9h8irrKU7luLdkyFUWeRgaz9aPIJlGkiCgOJxsSHgoHRzJf4lZQwFgQdM2YVQdx5utw+9uB5laTdm0VIq3rMRtXo5zgI/oWMnKdj6HgJ1J7ikpZ+6azdTfuwkFVddSMNDr9Odds3q+q1w6MkR7RBvbceRiCEFCrBSCVItxwc6pYR749XEFR9CMoyluNFMC1UWiSR0wimDlGFhla6mcP0yLMNEVGWS7gK6YjqKd9jUw5KddFsuis65GGd7E2KggK6llxJclkSTHSimQflFK5AUhb7W6Se8umBzKeUXroSB6KWyQ0LZeBl5yTjC0s343D4wTQrqn8ffLdIHIAx7M+iageBw048TX14lliiBKwiKE6GnH6W3mY2lJZimhdy8h2OP70GLakTFPFhin6Nz71GO7euk6I2DBHYo9nNWFPFWFCJWrSR/VQ0O/0GsaD/hxlPkl7xA5aolHH21k9VFblKGhdjwIvHDu3FuuARR7UYItdvP70gXqcNvUbN5G1csKaDEI+M68iLx/a/T+OSbsGwjAPv/30488SiukiLed/Vf41VFzLffRQoU0P/uHva0RbgkGsaM9mPpGrKRItbUTKK7n66OKKwYaJABmV+QJCKaQXcshZY0SCV1EtEUR9rDVAZdRDWTg+1hAm4FXTNIhdM6cZb0txzGW7KEtxr7+FRNHgGnTLHHQaI/RGtfnJRu0t4SIhpK0hdwEO3J2V0P0fWS/T9vPSj+ifedY15/Hfr7IT8fNm2a27JFUeQb3/gGH/nIR/j2t7/Nl7/8ZYLBnA/lRJzVGv1McfRFKWPqo2EEASmDckQa5fDlyRCvOzUqdEOmOPpjnO8cLgTnSHOhZHxs+EhtlE9VNrGKLUEcE0NaS449ThsVi7qzPzlmH69z5JzRshhjLJ8xb4E4sp1SGXwgjNSAPf7IUCYjPqVrrAZ/GXOqDPHgtWl6uDl8I+3vzdTkTm2iIoMx8t6NjHOdGcUxeVx3wdTt8w9+H0dt3B/TRqiUR/fbTNtM08LpHnm9mcaAro1s3+k6D5Z4Z8+3QVbH2iSPjtE+ui8DiKPyBkgZzLL0xFhhVnZOnIAPGBOPPRWOMRotmjbJGdWuE60QjM6BIA0kbBuxLcMJ5ETfiO9Gpps56jjROdasMdU/eC3T1ygLWBgZbPtF39jnZ6ZnzGht9uhnjKCPnUCmIqOescLYdrL0DGF8R+U9kRwZ+lsGP4vRzyZBGjvmxVHvlEz3TRxVvuxyZHCAHhutaXSqEDPD/TayyEOSCSMZH/E9F0c/SzoHBP3Ci+e3HhkYNNu56irI0FVnnRtuuIF169bR39/Pt7/97bmvwCLjrBb0x2UiOX/uapEjR44zktN7ipzRz6DTvbgz13JnhsgZ8SwaBgX9BWifP+iIO9dmO4OIosg3v/lNAL7zne/Q09Mz8QFnOTlBf6osYLvsM5lIQR7ahvrhDaNe4laaSUFYs+iqr6Hglmt4s6T2rHrfJ1UVPrUd56qReciN92yi6SNXc/CvP0rT+lVD2/uWVKDnXv1zyuk/QkZppBfB/QtXl2a550xK+qdHR/7w6keX7KLnnFU8G1xCf2/3BEfNLMeDJcN1KCwcd7+YCdoNl/Nse2ZteXjN0jHbFkO/OWvRItC72/5ctLA0+n198NpAMKCrr56/elx//fVs2LCBcDjMnXfeOX8VWQTkBP0MTJSFMfdonB+6llaN+K519A7dpdGZQB0StK1fjlpRxIlAMRFx5HL2mUxXQQFCxXByHCMyvGyeLM7PeEyHmMuZO7fM8FMkw+m0BTa7jRXZfU+Qp7HOP5VrybTvNJvbSDMrbFJ8dF+4nnaHl2P73p7eCadBs394stFdONbsapCmlIS5rIK3ek1iGUxjTMegOVxaY+ReZguX7lftRFnuavBUTb7/HPLcc7a1ocsFr7wC4fDkx8wGmqZx+eWXA/Dd736X/v45TJS5yDirnXFzLB4Gk+FYhkHyRDtGbxjR5wYgkwVqevKcBSbzzCrWKHVx4mAToteFW5EQi4MYA2024pi5qlyOGUHI4oYttHsqDCRmMpMZ7NrTkAOThy/OxvhEKUx3AJ+eRCuOk5BDz2SbP0uk32thggQh6Sb1mRIGDh6rdfTaWYdzLGwO32X/L71yfuuRAeeAXigeh499DFTVttX/4AfhAx+Y3Zj6lmXx1ltvcc899/DLX/5yhMlOPB7H719YTssLhdyIz4DaHx33t4Bv7rNR5mD4Xd3Rh9E7UoWQ8fV31mqrxl64GYkjhGPIkbFOnrDwhMIzEbmlY+hzV2fHBHtOjist+pCKiUMZq69ZaBoca8BjT5hEyJT8Yyeio1dYJ1pxlfrHOkQ74vEMe07OQhsXWVvXT/RANK2hexBJjQ1OkGMB0PMmtDxse0iv+vp812YM73sf7NoF//APUF8PqRQ8/jjccguUlcHWrfDtb8OJEzNXZkdHB3feeScbNmzg3HPP5Qc/+AE9PT1UVlby3/7bf2PPnj2UlJRMfqKzlIX2PlgQVD37Oj2vHeCiNYWY77bwhK6CKPCXf34+ZcWF7Js7E80cQ4z/khutwBqTKXdW6pOZNT/9LdElFez45BzHHBtgwmtdaJLLWYT/v56l529vAiCYP74JRjYEI2Hc9zxGm6zyF59cjzwq7IUqWGQIpjTjTKWIorcOEKmc/EWcSWk9lXKcR1sIPf4qgR123PH3hRuJxaYn6I9b8Gyn3h6PiaIrjfN5omPzXbnX/4Jkr50QipqPQ2Dl/NZlHM491/771rdg/3747W/tv7feghdftP++8hXYuNHW9H/wg7B27dTK0DSN3//+99x99908/vjj6LptkuZwOPjgBz/IZz/7Wa688kqk+Qj7s8jIjfQMiIaB1dhGsFql1zBJNdgp7PPFnAZk/lnYYTWklEbBkSZUcX4E/YmYSBOaY3YR0mwrZPn0H7tSVwgtpuFh7NvTLc7RfZ6CV7FoTB5+diYQAK11WBPjN1JkXseaGpnC9y52HDkTnoVH12tw6vcgSLD2f853bSZFEGDNGvvvv/93aGyEhx+2hf4XX4Q9e+y/b3wDli2D664TKS4Osn37+Ofcu3cvd999N/fddx+dnZ1D2y+44AJuvvlmPvaxj5GXlzfLV3ZmkRP0c5wFnEV2PGfRpebIMbss1sFkMbru1ri/5FhQvDOgzV/yKfDXT7zvAqSmBr78ZfuvsxMefdQW+p9+Go4dgzvvlICtfOc7FtddZ2v6L78c+vu7+NWvfsXdd9/N7t27h85XWlrKpz/9aT7zmc+wevXq+buwRc5ZLeinDItQ0iR/WQWqz4139TpUvwdBEqhojbDuizfQ9epbGD/fxdFQkvzLr6ZZCPKTl/dTsX0lHZEkbzX20tzYR097BC0aou/Eu5wsquZXLplP3XwNPTg5eCpK0jB5eG8rNYVu/vK8c3H6i+kVvew62c0Dzx/H1E2qAy40w8SrylxavRr3itXIZbVYukYsWMuJ1lepKvEiKxK9HRGScZ1I2wlikQ10xjQOdkXoi2v0xjWCLoVCt0rKsNBNi/ZICqO2nISgcrAzxpHuGKtWVNId1TnW2k97Uw+iLGKZdjZDgEj7CcqWV9Eb13i7LYJzIGnQuydDRPqi9CV0umIa3dEUeS6FjRUBij0y4ZSCQxYQI/1ETzTS9lYT1T0nWOovI+XzEPvtU6i1K0k0HSbW1k3F1VFKS1cQvvcOVL+Hdx57jd7jfay44V1Cx07y6z3t+CuX4WFsYjAAwzBtDcgAie4+kmka1K5D7URrWnCXafQeaCKwvAU11ovXZeL2+ugu9pLvUoim3FS4QEj2ITS9g1S1BrdSiJCKIXl8qH43Dr8DQRQxUwZGbwdWPIridlG8roRAjZ9wa4RoewxBFLHiUYREGIfixDIMjEQKSx12NhScHgSHG3dCwuN3UOhWCTglUobJ7sY+TjX1Ees+RagrRlcshWFBRzRJbZ6LfSf7WVrswZJUzEQMq6OJ/hNtYxP9DBDWTWTNJEP6Jt59+gj1we8RvPQyBFnh6nXbULqOof/pT3z43E/QHUmR0k1C7RcTbj3Gpy6p5doqmfqCep6pCZLSTVK6ydvNfWyuCVKZZ4c6XeYTOL8mSMdVdTwrvp9kuA8AZyBI82t/wBkoIt7bNqIubr8TjyKxLOimpDJALJrC0E0SvnxcwVISoc7R1R+BK1hKYYWfcFs5iVAnitOLYUFKN4mHU5h6CqfHiStYgpGM4wwU4XSrQwmwDD1FPGXgzXPiLa3FlVdKnluhCzuxligKJEKd6FoNbkVClUUCboViv4NA9Sos06DUI9Pf2o1HlhAkEcXjotajDmezFUBMhDD6e5D6TpFsOYqzoJREdwhHnZPgyhoceV6k6lWINWtYE4ng3nwJensz8uotFL6yh02tEdYldEo+8EEiRStGtIGoqCgeC0EUhxIxJfvCWMZRzKMH8QcKcQUrsU4eQSxdgsdbxIoSH0ndoNCt4EQn5Qgg+wOkuu1au9CISjJiWtQcHZHGUJKCZechly7F9Bbx5NEeKvxONCPC5UsuoOyDURAl8v+wj2MT3jkbVRTGONdXXLAUT2kBNA1en4SRV4lSXkvIXYKnrhAhGab2feej+pwor3YO7krFB95H6ap9hEvXsbOhj3yXndW2wBXAZQiU+oqxJAWXJFLsdaAdO0zPkV4sw0JP6mAnE8c0hldzNcPkWGcEaeNy/JsSdHprKbn0faxoaMWx6lxElwcpvxRRDpPobUcWBdtZVpSQCsowazYSV3y43EHEWC9oSfTeTuRUFEUtwK2IaC3HMDWd9PWDaFSj/fUGHMFmas87Aokw7c8+Q2BZBf1N7RC0o7Po3W2YqoTp9BBt7SZyshMzk7mYKOKURByyRF7Aia6ZhAfGgUOW0E043hllaZHHfjcY01vRNvUU7zb1kvDUo+gaoiAQ72ujL1SDljToOdVNKtyDZVUR6zmL7WI7X4LWJ0GQYe3/mO/anDZFRfC5z9l/4TA88QQ8+KDJo48atLUp/PjHOj/+8RPI8j2Y5iOYpv3uUlWVD3zgA3z2s59l27ZtM7ICerZzVregmWERdrSzmJVhyXl0NllzQABIx6FmyIw76lyxDFKrODr7oqSCNDJTaCqRKXvtyGvJ1tFq9Op7KlNmXNMiPb9jX3h6mXGt0ekXGdvekmusM964THUNPUNmXFPIYN83OpOkOLbezuDIkJRmFqYJgiQimDqWONxWljR5FljVMXaYjs5ea+kaUganzOkwOrqHYVoUjM5Wa4293pQ+clv6dQ4iKpNfr88xeyYFojy2/NFRSrwZ2nv0+JYzZL7W45ExmVAl59Sz/OqxsZlardTYbc68qYdFVYN5Y7ZlynKspsKkj5ZM93K0bthUXMBIe3gzFkb05p22vYuRSAEj21ZwB8bsZ2r6iEg1mZ7fyVH9VNCTMOp2RvXRz4oMjTQm4ywI6sh7ImfIFpxp7Iypp5ghM+7oKmSRqVZS5VHnHm6c9NONyYadwQ/BnGZm3NHHZcqMa2Z4Np91DNrmL/0seMfmPVjM+Hxw441w/fUGP/jBj3nxxQaeeOI+4vF29KHucA6yfDOXX34TO3YUcP75kJPxZ4ZcM+ZYFAxPSCaXGCw4e9enz9brzjH3TKmvzZ1lu5UeKv50xsMCS444I1F30n9bYNd3VtP+ArQ/C6ICa/9xvmsz4/T29nL//ffzs5/9jDfeeGNoe1FREVdc8UkcjpvZuXM9x4/Dk0/af6JoR/D54Afh+uuhunr+6r/YyQn6ORY8oseJXJo52ROM817zpGv/zqYX2tSvNVUUXHAJlnKcpSyAoWpKIomCPFLOYUM3Y4RQPD+DJVFehHmiJeNvk9YofbUvJ+AvLCwL3hlwvF325+CpmXj/RYJhGDz99NPcc889PPzwwySTtiWAJEm8//3v53Of+xw7duxAUeyElpYF77wzHMHn7bfh+eftvy9/Gc45ZziCz6pVuW48FXKCfo4FTURSKf7KR4dNfDK80VKjzG8aTMeIF1vPWeSh31ldMfTZ0sYukWeid8s6/iup85dW1jrDHDkQptNbptnBonNo2XHwmsuIFQVHbGtyD3+fr+iaSCIPLjuHT/YcGPNTkztv6HNv0sDvGH4mmgDq2Fd9bqwvENqfg44/gajCmv8237U5bQ4fPszdd9/NL37xC06dOjW0ff369Xz605+msLCQj3/840MC/iCCAOvX23/f+AYcPz4cweell+DNN+2///7fYfnyYaH//PNzQv9k5OJr5VjQ9CvOISHfjCcxQuMnMxvEGPUKMzLYu56pqIlhW+5k88jETEZaIjgjEifV0jlkvxuy5BHZNXPMImdKO0/h5Xq67+F+c/hV5TWyz0w7nXLjwbHZNUUrs537QsFpDE/qU6P8tYw03ygrg318jnlm/+32/6U3g7tyXqtyujz//POsWrWKf/u3f+PUqVPk5+fzN3/zN7z11lvs2bOHL33pS1mHxly61I7F/+KL0NoK//EfdrIuSYLDh+H222HLFvi3f5vdazoTmFdBP5FIcP3117N8+XI2btzI9u3bOTGQTq2jo4Pt27dTX1/P2rVr2blz59BxsViMm266ibq6OpYvX85DDz00T1eQY64wogni+05gxsc6AucYS7KxDaNnVAbhpEb0jUNE3zhE4mATWlsPsb3ZxELJMaOcjdqnAdlTdIzvnCwX5WF6J3fGn6z5hNOUwy35DFYMWBZygT2RORO74aKUKZzF9v9TT0Cia+7KnQV8Ph9O57BDuizLFBQUUF5ejnAaaveeHmhvh1OnID34kyBAYeHp1PjsYN41+p///Oc5dOgQe/bs4ZprruHzn/88ALfeeitbtmzhyJEj3H333XziE58Yyox2xx134HA4OHr0KE8++SR/9Vd/RW9v73xeRo6FzJn4RhuH05NxFp6mMkd2+Lt6hj6vLHBNsOfpMcK4awrdxZkcXmkSMpiRACglw+YxykA22+o8W/D3isMada8xcfQXJRQB00Q1tDHRZE4HZ28/APklFZPsOXOkJGXynUYx2W0RByJBjY4Cd6aw6GSKc78P3jqINcFLHwNz8a66nHPOOTQ1NfGtb32LiooKOjo6+OY3v0l1dTU333zziBj5E2FZdqKt//E/YPVq++9//A/bbl+S4Mor4Yc/tAX/W26Z3Ws6E5hXG32n08mOHTuGvm/ZsoXvfOc7ADzwwAM0NDQAcN5551FSUsLOnTu57LLL+PWvf80999wDwJIlS9i6dSu/+93vuPnmmzOWk0wmhxxBAMLhcMb9cixkMry+xjGWnTcb2oVErg3OKtbufJ0O1YNoWVzyv29CO9U331UagSOVLpyPI3wPbN7cegzp2X2wpoL3fOXjdP9hPz4JSn/2CDXnVLK0PFM2iGHkRBL/Tx5h6xXViFesmpkLAFY+8hxlH1iLseKLcPLojJ13Ija0NrC7YhkAgd0HuTwQg7zTnMgNPBveU1d8mrVbeMyFTDGePKFpGpqWvVnZEIIHLnoA+dlLENqfxdh9G+b6fx1398EyplXWHOD3+/nqV7/Kl770JR566CF+8IMf8Nprr/Hzn/+cn//856xZs4Z4PM7111+PJA2vnlkW7Nol8NBDAg8/LHL8+PBzQlEsrrrK4oMfNLn2WouCtLQQc9UM89Huo/0YpsuCcsb93ve+x7XXXkt3dzemaVJUVDT0W21tLU1NdhqUpqYmampqMv6WiW9961v80z/90+xVPEeOBcP0NZi5ucHiRTIMAs3tCJJwWkvkU8Gaao9J6RmdQkfjTyaImyaB/hBKWp4NORwlGO5HpGiCo23EcAzHDGtGZU0nX0/QNYeef3JafHnvgQaUCzJf+3Tc6EfngzkTmQ2ZYjx54qmnnsLtnkIemFGUy3/FecYdSIfu4M0TIq3yRRPu//TTT0+7rLnC5/Nx2223cejQIR577DFefvll9u3bx0033URxcTE7dlxDVdWN7N5dzyuvlNPdPTyJVVWDzZvbufDCVs49tw2Pxx7Pr702X1djM5ftft11183IeRaMoP+v//qvHDlyhB/96EfE4/ExLytrlJo2/ffRv43mtttu4ytf+crQ95MnT+bSKS8SpiN8ZkiDdvoVWSyczqXmJP0cUyHXXxYko9+HZ+ttmi2ZYjx5Ytu2bfj9Yx25s2cHxtsG0uFvc57x7+iXfQL8Y1ekNE3j6aef5uqrr54xje9ss2PHDv7u7/6OEydO8A//8N945pk/0tHRwT33/Ax4APgs8Dd4vXXs2GFr7rdvt/B4ioAiYP281h8WZ7sPsiAE/TvuuIOHHnqIZ555BrfbPTQr7uzsHJqBNzY2Uj2QMaG6upoTJ06M+C19uW40DocDh2N4ube/v3+2LiXHbHG2vq1mm1y75pgzsu1suU45RFpTTHsOvwByAMw1sylTjCdPKIpy+gLg5v8DfbsROp5HeeUj8N7XQck8eZiR8uaIZBKeeQZ+85tlPPPMfYTDOnAf8B1gP/B9BOEHbN36fj7/+b/liiuumLOVyamymNp9kHkX9O+8805+9atf8cwzz4wIu3TjjTdy11138c1vfpNdu3bR1tbGJZdcMuK3e+65h4aGBl544QV+9KMfTbnsd9qjdGoJvnLth9C72pCXrEUuX0KNbN9E6dKPUlZShaHpLO0OYa64hBeP9PHGq828sqqE3Y29HD3cTWdDI12Hdw2dt/f4Hpr8To7FZBr7whzrjdHWl+Dl11t42+9gfamfZfnlvHSil1+8dIJ3HnsIU0/xmxW2+7gkipT5lrFm2QaMQBmm6uGt1ihtJ/qQFQnTtOhqbCUZ6UFPROhpDfOHQx28dKSLWDRFdyRJTYGHAreKIgkkdJOT4QTNcS8n+iI8+m4bbaE4F1Xl8XZbmLYTfZx680mM5FZUj29EG/W0hnm1oYeUblIZdBFPGYR74mjRECf64jT3xQnFUiwt8rAs6MYn2y+SlGFhqS7cJYW4C91YkorU34ooO2k/3EyBx0f33mM0v3iUqtYeCs9dw9v/8QKiKvHsux10Jg3e2/I87xYXww3LpnRf9VEmAidPhmlNdZG/soqTu07hX3KIkurliLKKI7+MmkAdQadtK6ic2ouVjBHbtwtPXhHF5SVIbW3ohoGoyMhOFUESkVQJs7+bVCiMaZo4gj4kVaa/JUy4O0a0rRu1pAnF5aGkOp/YgXdoe30/S8oqENx+RJcHvbUBQZLYsOx9XL6qmAqfE6ckkDIt4ikdLWHg8AZRXTJuRSKmGYSTOqGETlwziKcMQMIIdWOGe4l3h0BwjtMqkxPe/TpOtwNP5SqMg6/T8eLr1Fz2aa5dW4pbEdl5wXL6Oiu4pr6A6C//N6uv+yyOFWWICKQMiyUFHi6sChAYjOH93D1cfcVnWVfsoTLooqM/iSQKOGSRl2uCeHwqPZ1RTN3k3ccfpHTD5bzv0lqCQpL1JV7eu66Ug61hjjlkBHEJgQI37vwiGl9+NGP9Hb58CmpquXBNCbpmEO1spnhpFcvyXThkkZ1Lg4jyFiqW5ePxbyTUvZy8Ig95RR4uri+kr7MOgBWFHi7fUEa0fz3egIv1VXmEEzrtHVHK813s9QSQVYmgSyHPrVITdGOYFrvXn4euGaixbkxNJ78+iKTKWIaJ7Bruj5JloB/bS+zAOzhD3bS/8jZFiRjNf3wHR56PVH+UyMku8toakILFSE4VKxEDPYWYjJLsDSOpEv4qP6LHR8qwqLq4mmR/HC2qoZTXYvZ2oEWiSKFuECW0aAIjkSJ17CTFRRUoQGT/W7idbgqLl7OuxEtMMyj1qoiRLgRTR4tH6W9oxTJMKi88QGHJChK9YSgIACAK4FNlrAHzGsHU0QyTjkiSnoTG+hIvJUvWYToDlG6uRBIEDAABVBFSo3xBZUHABMouXIOrwk/hls0kN11LuTfPHidbdlF+0XICyypoS0qUFi6lL2kQl0SCrnxca86jXNMRFRnF46TyIzdgbHo/npVb2NOd4MVj3QC4VYl8r0q538mFlWVIAhzpjtMUiiMXVQCtGftX+TmluEsL6Iim6Iuk0AtWIjq8vNrSz/a6cyj7YB+9JevxFdURVTz0dT5NpP0Ep8IpTMuipmIlUvkKGnUPJ3uilPrcBL0+3IqIa815dHprefjtVtaX+rli/WXIa3UqXc+za38bAOu311N70WrEQAFGoBTBFSC4cS1SsAj2vjpUT0vXsFJgJqIkeyPEOqKQllVUEm1xX5BkfKpImc/B5pogkRIfjd1RNtUEWRp045AFVFkk36sSKHDjLa2lv+XwpM8RAFewlHhvG76yZeRVVmPoJl0xHc00aQ0liHWdQlYkRFFAj0ewTAPFIeP052V1/omYT5nitBFluOTX8MQ50H8IXvkMXPogCPMeN2XKxGLwxBPw4IPw2GNgz4dEQKWoSOH662/hQx/6c0zzGf7937/L73//ex5//DEef/wx1q5dy5e//GU+8YlP4HLNXnCBs4V5FfRbWlr46le/ytKlS7n88ssBe7b82muvcfvtt/OpT32K+vp6VFXl3nvvRZbt6n7ta1/jc5/7HHV1dYiiyF133UV+/viZU8dDN0xg4lBqlj6544Vljs3mIquTD8zu2MTRIwAsaWw4Oi05ue1pXJtehhk9NXn4ykR08jYxMy19ZvGwUpyz1yXNbBJIZapjFvW2sohgISoZktaokwvmqmPyNrHM6UbQmFzDZ2QIsG8aWfQvefxQikPn0cfWW4yHQD19R0ExQ/mSNPm9dMqT7yMrY/dJxjWkLI6dDD0x9rlgJeNZHDd5/3YWjNUOClnYslvi5H3QlCd2ks1am5xBkWelRe2ZCkIWnvmO6d6z2fT6FyU7+kpaW4xulmzum6jKGY4c74zDZHx+zxCRLPrpdJlvmWJGcBbDJf8Fz2yFloftOPtrbpufukyR/n74/e9t4f4Pf7CF/UHKy+H66w3Kyl7hq1+9AJdLwe6DV7Njx9UcPnyY733ve9xzzz28++673HLLLdx666184Qtf4K/+6q8oLy+fr8ta9MyroF9ZWTmuLVxJSQlPPfVUxt88Hg+//vWvZ7NqORYxo3uUtTBXAGeJnDNujtlk9s1AzqrhOgeMd5fOxHY+Y2SKwgvg3B/A65+Hvf8d8s+Bsm3zXauM9PbCI4/Ywv1TT9lmOoPU1MCHPww33AAXXACGYfL4493IGSTP5cuX84Mf/IB//ud/5qc//Snf//73aWxs5F/+5V+4/fbb+chHPsKXv/xlzj///Lm7uDOExbcelOPsYkbeRmfiK20czqJLzTH3WON8nhEWqE3ufDKdFpnwvuRm84uHultg2Z+DZcJLN0HkxHzXaIiODjtT7XvfC8XFcPPN8OijtpC/fDncdhu88QY0NMAdd8CFF4KYpbSZl5fHV7/6VY4ePcqDDz7IpZdeiq7r/PKXv+SCCy7goosu4oEHHhjKgZBjcubdRj9HjnTiTifilecScKjs3VA38c7jvLRio8xh4pdsYG9PK+cw+wliUopC65b1NJkqwcl3n3HiXo/9YRpL7zkZYPYw04TYnt4QkDdvdTkdepyeoc+9PT0T7JmBXAc7LSYS+nvkCeyYp265k2OhcO73ofdt6NkFL34Irn6J+RLbTp6Ehx6yNfcvvgjp1qLr1tla+xtugDVrZmbOLssyH/rQh/jQhz7EW2+9xXe/+11+9atf8corr/DKK69QVVXFF7/4Rf78z/98/sysFgk5jX6OBUVTdTXi+atxjxLyLT2TTXj2ksPR/DIOiN7TrN3kNFVV0blpJU/oebNeViakQT8EeWLfkyHSJgSdeu5xMFuES4fztHs8i9e5LKwMT6LTk93kmF+ECZ6FujRaMMxJ+IsGyWk74zoKoXc37PrCnGaE7O+H//t/bY18ZSV86Uvwwgu2kH/uufCtb8GhQ7B3L3zjG7B27ewszG3evJmf//znNDU18Y1vfIOioiKam5v5h3/4ByorK/nLv/xLGhsbZ77gM4Tcmz3HgsLM4CxpxpOkmjvGbLdGORybqZFOwlpnH3rL8HH6HHT3hGP6UW9mAmlwOTPjxCgDae8M8+xyZphTjLSJl8/jmWDPhY1sDfcrVZ3M+XYk2fauXC8cRsjSJ0KxhtWro+XAs8lG/4zEUwUX/9oOCtHwC4TuVyc/Zoa48Ub4+7+HVweKvOgiW/BvaIBdu+DWW21TnbmitLSUb37zmzQ1NXH33XezYcMG4vE4P/rRj7jyyisxpx2U4swmJ+jnWPBobT1YySzSTo+KDmNGE5gdvUjtUzQxOA0WiqxsZYiUMykLpO45cuSYPhNpVNWKQizn5NGwciwwSq+A0qvtz+HsQpyeLgcP2s61ogjf/75tuvPSS/CVr0Bt7ZxUYVycTic333wzu3fv5vnnn8fn83Hs2DHeeOON+a3YAiUn6OdYUEwplfuoFO6ZzXvmlqh7EWprF0C7nfmcKbOo6UfdWSwm+sG+3jHbzHm6f4G0cMPODGGcB4lJwwl81FHPRVXXYMCkTykrsDdaFn7n4kr6c9bjssNLCom2OSnupz+1/7///fDFL9rhMRcagiDwnve8h+3btwPw2GOPzXONFiY5QT/HmcO4totzJ2J4Y9E5K2vGGGg3t7BYRLEcOWaPTe/sZeMfd7L04LDm9LJIy7zUpdjroPqXf+C67sM4rPEF/ZXRrqHPJa6Rr3XFMPDc/Rj5v32O7nufxPfgc1zbe5Q899RMr3LMM85S+3+ifdaLSqXg5z+3P//5n896cafNNddcA+QE/fHICfo5FhazqDibEzF23mXlaTTgwFr/RA59OWaO8eJ8Lwascb9kwSJZ1JBNA19vCCU1nLjMkUVyqtnC0dOP15zYdFG2JrZNFvujOBrbSB07hdrYit+YPFljjgWGyxb050Kj/+ij0NkJZWWwY8esF3favO9970MQBHbv3s3JkyfnuzoLjpygnyNHjhyzzSIRcnMMI4zzeaGTS0dwhjKHGv2f/MT+f/PNZExutdAoKipiy5YtQE6rn4mcoJ8jx5lE7iWfY46wcitAOXLMHUMa/dZZLaapCZ580v78Z382q0XNKDnznfHJCfo5Fi851dUE5ISwhUWury6+NsiNoRwLiDnS6P/sZ7bb1hVXwLJls1rUjDIo6D/zzDPEYrF5rs3CYhEsyswex7tjvN4S50ufPR8p/xS6rwQx2o1atx7B4aTVcFJSdx6llzQB0GU4ONLRTl/TQfafWk5Hf5JQV5hUNDTivEYqQSKq0RxKcLg7imFaxFIGWlInFhE40RfHtCyOd0Tp64xi6ra95PGW/qFzHOuJUV1bT1fcIJLS+N27bYRONeDPd2GaFpH2BhIh2wErHg6zq6GHjpP9iKJABxBPGXREk8QGYs239SU40ZfgjZY+Xj/QgambHOiK8tKxbkKnmgHoPvoW/vKRIzsR6uZIWwnJuEY8pRNO2LaqoqzSFUvRE0lhmBYuVcKtCAh6Es2wiGkWhq8EpXYV/ur9mK4AUqQTQU8hOVUEpwfTNOlv6adtdyOSU+XkqTCRUBIqxt4rSQCXJBLRx7dFFUcL/paFZoJkWkiAaRikIhrJvjBmuA9L11D9+SgiyMl+xHgIs7cdRIlUfxSPoSEYKQQjhRQsxuOyI+q4K8spPtGKVFCGmkzgKvCj+jzoiSTqyWFbXjFYDKaBkAgT7w4RbgmhdbUjucJYvjwS3SFE30nKVimsK/PjdYhIooBDECjyOfHlu2D1Ji6sL2RZ0ElUN0noJpV+J+urAhS6VaRIMz3vNqAnkvQ19GItz9B4aSgiaOM1oWVhGSaWIIIoocXiSNFuavLykEWBS1YU0VjoIU/rZf9zewlceJRgXSUuRUQzLFYWeqhyGkjhU1iSSstTz1NdvZyqQCnvW1FMaySJKAg4ZZHSPCeVARfdsRSGZfFz+UYu31zB9etKkSLHKCwOUlfgITLQ3wzD5Iq1pRyvCgDX0nnoTSTVhaiopMJ2lJTiVedRUh3g6hVF5LkVHkpewnkbyqjPd1ETcNJ7US37T/VTX+qlsz9JY3cMr0NmXWWA+gI3hmmhyiKbi50UuCsIuBX8ToULKgP4nQpvNvaysszH69X1uP0OlgRd1BS4WRZ0U+hW2HdhFQByfxuiIuMKOtGiCYyUjp5Ms/FORAnvPUzn7iP42ro59eoJ+pu6ePX5JrxlfgB6jnbjq34BZ0GAtlfexVXUjKjKBGWVjnfa6W4MITtlUicOEiiup1vTESSRaHuE1PF99B48QaInhLOlE1GVaXvtCABaQqcymsC/5BhNz7zJUrcLh8PFqsr1GJIHORVBaNwPokT/iVZa32hAi2gUrH8Mx+rz0WIaDPhwilqCmoCC3HEI7fCbOJaGuLR2NZIgENdNivVurNZjSIWVpMIxSMtXp4oiqdExrweGr+TxElxVg7phKy0RndrSegQjRfUVawls3IhSvZyOqIY7z0lc0zFME5csoJbU4qzpoFyRcSxbDSsvpiWiU+ovJ9EWwzAtOsMJkgPPkAKvg6BTIeCU2dvWz8HWMB+/9go2fukwZjzKnvYEBwce7YWbVlFx1QXIFct4/kgXTYe6eP5UCkn08/9eP06+S2Hd8st5/kQfQZdCTOunv822pX65qRdJFKheVYxDFmnqiHKyP4lmWkScCi5FpL5yNbtOhXnk9Wb2VQRYdnU9hmxRdcEN7PiXfXh3fAJBSxIvWUW/ZnKyXwOcLLvsswiCQN7hZmiK2GP8nG2oMhieAgram5CcKtsL3eQtr2TriVb8tWXkn38uQtUqehIGPXENVRZZUuRBEgX8Dpl8t4IIGKaFW5Eoy3NyrKyO/hbbQdlTVEW0035vuIKlxHvta/WW1OItXULJkhIOv/A8les3sXJlIbppEdFMwkmD7mgK1eOnvtyPKol0tFSQimvkl3gJS1mEUT5bGdTo62EkNTErRRiGLejD4nDCTWfdunVUVVXR3NzMc889x/vf//75rtKC4azW6GtGFskVJnFysncZGw1BypD4aTQ90eSk+xgZHPf0cSW1YVITCMQToafik+6TTEz+MDYzaMMsYfI2kcXZ0/pl5QQpZwg5l0W9TWPyEJWSOjaTqKBOnmDLleG40VjTTBQiZdHc0wnJDyBkMQYy9W8z0jfpcaY+eR/MNAYd8uR1ErJwvJSVsfekLzZ+naaSX0HL8FwwEpM7T+rxyevtCmbob/rk5xbELPqgMnHGX2vMh+wRpuk8ms3jxJ3hXsLk6w/SLD6rMo2L0SjjDt607fL0YuZP1188m34ST82fY/OiRvaB5AbAYfXNShFPPw3NzRAMwgc/OCtFzBqCIOTMd8bhrBb0c+Q485hO1J2Zr0WO0Qw38mK2bbdGrJot3uvIkWPRIQhDWv3ZEvQHnXA/9Slwzm+S92lx7bXXAragv5ijm800OUE/x5nDeALr2Tjec4lxc+SYMRaTO9AiqmqOqTJgp++0xiZ1O106OuB3v7M/LzaznUEuv/xy3G43LS0t7N27d76rs2DICfo5Fhaz+kY981+BUzERyTGHnIGK8CkrzBaTtMwiflossnbOMQVcsyfo/+IXoOtwwQWwbt2Mn35OcDqdXHXVVUDOfCednKCfY97QETixZSNvrlhDA05C6+roWVE7a+V1Sw76Kkt51V065KR8phEN5s13FXJkoG9p5dDnlt7ImN/bvHn0XXsJe7wlk84Dwj4fjVdvYe+aNXTHh/0Cerw+9q9eRTg1PX+NybAsi3ief+j7yY7uKR1vSoP222fITCdHjrnGOWi6M7OCvmUNm+0sVm3+IDk7/bHkBP0c80ab6KRj1VI68gt5DT/dl5079JuZGhZgzORpRmKQbQFDwuLo9os56gzyektokoMWJ0rCjsaQjSNsjrkjXFky9NnjGOvwfaC4klRdFfu9xfQrExvHNtdWE6qrpr2klD3t0aHtby5dxamKCv50anKH+unQ2T8yZJ3H5ZiVchYii0lHvpjqmmOKOGfHRn/nTjh0CDwe+OhHZ/TUc86OgVS+r732Gh0dHfNcm4VBThrIMW8YaUvM+qjXU+JgM1JrF6njpzAjpye4WHE7iomUZmuQrgk9kxB1e6XCnFJki8G2z2laZwtBH15BkjNMwsy0yE7mJFGeTHH4dyMtJFJStSOsnIrNTlQTfVT4JVmaPMJKJqzphnHKkeNsZ5ZMd371K/v/5s3g9U6870KnqKiIsrIyLMvi2Wefne/qLAhygn6OBcGYV79ljjACFlQFq7wQye8e3meU6krwjAzvJyh2mgjR4xyz+5mv9ZqCMJXT/s8pZ37fOzNYtPdp0VY8x6QkOwHQ8MzoaTdtsv+/+KIdcSc5eeTvBYmmadx00020trbicDhYuXLlfFdpQZB7w+dYkMhFQYzyItSl5YheF+raJVAcxLm8CmHA9EF0TBwjWi7OA1lCLMwDIJWmKc13ZYiXPwO4s4hJvnDJSQhzQVb5O7IkpxufPdLD5EsL3ME1Pf+ImEXejxyLlNB+AMJi1Yye9pZb4Kc/BVmG++6D7duhd+b9fWcVXdf55Cc/yUMPPYSqqjz88MNsGpzBnOXkngg55o2gmS4Uj3yRKiXBoc+iQ0FIe9EKAzb36Rr/xJEWzCPNVIV7qI732T/rxvC+gIFA3ZMvsSzRx/kVgZm7kDTq+zooPt7EDv8iUokMtKMs5MTGuSB6uj4n8zQhGx3/f6Z7y0IzIKtxmBQebGBlfzsFjoUt6K8IOihpbOaKiy9AVc7qhPdnNqF9wMwL+gCf+xz8/vfg88Hzz8NFF0FDw4wXMysYhsFnPvMZHnjgARRF4cEHH2T79u3zXa0FQ07QzzFvyDOU0CIv0k/vfU9j/tdzbOk4ztJ4ZlVEoZEgr7mNC2OtuLPINjsdHKZO3et7qHPOTuSTHIuUtIlqacA9wY5nJgtFeJ8KDhFqd77FhtCpEYqGhYhLFlmx+x0u2Lx+vquSY7YwDeg/CEBYrJ6VIrZtsx1zKyrg4EHYsgV27ZqVomYMwzD47Gc/yy9/+UtkWeY3v/nNUOSdHDY5QT/HvDFjocVHHbywX8kLl1y7zRUTt/SCzYUwepAuRuk9R47FSuQ4GAks0UlUKJ61Ytavh9degw0b7CRal10Gjzwya8WdFqZpcsstt3DvvfciSRL3338/11133XxXa8GRE/RzLD4GtWsLXMuWI0e2WNPsy7ks7zlynCX02/b5+FeCMDsr0oNUVNiOudu3QywGH/wg/OAHs1rklDFNky984QvcfffdiKLIfffdxw033DDf1VqQ5AT9HAuTKck9OWknx+IhNz/NkSPHlBmwz7f8q+akOJ/P1uTfcguYJvzN38BXvmJ/nm8sy+KLX/wi//mf/4koitx77718dLEnAJhF5l3Q37ZtG+vXr2fjxo1ceuml7NmzB4COjg62b99OfX09a9euZefOnUPHxGIxbrrpJurq6li+fDkPPfTQPNU+x0yRE9VznNHMoHC/UEx7RjvnTrxvjhxzwxkrU/QNCvqr56xIRYEf/xj+9V/t79/+Ntx4I8RnJydfVliWxd/+7d/ywx/+EEEQuPvuu/n4xz8+fxVaBMy7e/4DDzxAXl4eAA8//DCf+9zneOutt7j11lvZsmULTzzxBLt27eLDH/4wx44dQ5Zl7rjjDhwOB0ePHqWhoYELL7yQyy+/nGAwOHFho7hmVQlLK0yk0Cms5gMoBb0YvR2kmg4jevwU1Z6L2N+H3h9CcrkpVE02VQYoX7uRDVUBNlQFeMQp095RyMnDS4i0NRBpP0HdpVdSVhWgNmjHb893KfQUa7SF4rhUmfoCNwGHwntWFGOYFl2briLWfZLSYjs2bp5bpcSrIggCIgKGCT3RFL6SGlxeB24/hGvXoUVD9Bx/m4KKQmoKPPT2JhBEKAi6yHOrKKKIbpj4nQr5XhW3IlLoUXG6FSzLQjNMUoaJKNthKlWPH09RNf0th4fayJ1fRLHfQcwpo8oSqmwSLPESHzh/wK2wtMhLwKGgSiKCnsCtuEloJhEcBKpWEVxehSU7QVJBS+KrLkH0+AnUlkIWiesCikQi/bssku5u6ynJ5y9vXIW3LED1xz+G0huH1+xrKHSIDObz9NRUse6T51B08bmIqy9GjIfQius52pmgLughzwVC2XJMd5A8RSFZfQ4NfSmqS9egFNcjWBb+c3oxPfksq1iGvm4bSn8bReEOTFcAQUsQ2HKU4nNfxr/9I+jF9RipKHE1QN6qZZiajnPVZixdQwoU4JUV5Mo64rpJQjfpjduJjhRRwK1KOD0KikOiLODE55BwKSKFbhWPKlGb58atiFi6hqHppPpjGCkDUZpYCqz0OeiJaYQ0kzxFJKBIdA3e65oanC4HpjuIXL4Exe3CkmTEgZQG51TlEXDbYUm9ZQEElwfDskP7aYaFKAhgmQipOJZTRlJkrGQcLPv6ErqJW5Eo9qgUeRyUeR2YlkVSNykt87Gs2IsoCJg1G0mIDkKJCI3dMVr74oR74vTFNOIpHVEUUNx+HL58VF8+giihugM4PSqyLBJ0KVQGXfjyXSwt8qCI4FNEVhZ6CLoUyrwOunwpagrcOCWRFYVeXIrI6lIfLkVC6m+jJq+Si2uCaIZFvktmZaEHRRKoDrgoX5ZPfbmfcq9CTYGbQrdM0CVxzYZyfKoEZguq343skrEMEyXPCdG0+6KlSCViJPuTqH1hkv1JzLSQm1pcR+uK0f1uA7JLpXN/O06/A1ehm7x1q7H0YbHZiIaReltI9g9HebI0jf4TrST7kyR7o6SiKZpfO4Uk23qdSHsUX1kTzS+14K08SEEyiUvTUAKFWKk4icO7kcuW0He4mc59XfTENYK/fxl9dQeQN3wdqQTuU2+TPPgmbc+/iu/gfuo+8CkEPYGluEjufJJ4eyeeunp6j/TAYKAQyyKSIcToYCKtSNNJfA5wnDpG1fo6hP37weVBVGUs08QIdVNTopIXa0X1l6OIAkq4DTqbMbrbECQRKViMLqnIloBi6eS7FDZUBWjpVYkkdGIpg5XlPir9TlRJoNzvpCeSImFYeCqWIahOlFiYojWvElxehVy+BClYjJlfBSciJPpDPH+0C8O0ONUW4ZWmXgzLYu+pfsIJHYcsYpl2krS9zSEkUWB5gYfqgIvmUILGnhgxzaDYoxJwytRWlNHb0omWNGjti9McSqKIApYFy6/6EO3eWiQBXjzWi2ZaaIZFTDPoyHdT7FFZvekqtvyTRoPuRVV8eNwi7TGdlRdcS8nqCyhSXZjuICXhTrAsjEAp/bKfE21RGntjHGwNU1PgpqU3RixlUF/gIambNHZF2VSThySKOFwKDl8+qWiIgroNRDubAQgu3UDy7R5EWaVs9QZKa/PYsqwAU9/KulXFXL6iiJa+OJYFTlmkMuimdM15nF8bJOhS6IkmOdUdY0NtPs0BeGfCJ9jkzKdMMasMavQDcyfog70CedttUFMDn/0sPPQQXHGFre0vKprTqmBZFn//93/P9773PQB+8pOf8OlPf3puK7EImXeN/uCABAiFQogDWR8feOAB/vqv/xqA8847j5KSkqEZ+K9//euh35YsWcLWrVv53e9+N24ZyWSS/v7+EX8ApjUsnIwgfW3KMrEMEzM1LGqKooBbkTDTMjwKooSRto8qi4gImGlGtMaojJD9CQ1VFtHjkaFtg/GQlYF20Ez7gS6lxUnWNRMjGUdLDB8X1wzSwyenBjJxOuT0LJqQMEysUXWSHMOJpkxtbBz4pG4SSQxn29SS9ud0mdIhi6iSgDAQR96wLCQBhGR0aB9LEEGUMBKnF2s+kybRGhQc0rKGCggo6XYSloVpmgiqc2iTISqIgjDU7pYo21KtPByj3xo4Nt3mQlCdI+/nYB8yhzOg2juKQ/G4RUUG00SQh2P4C7Iy6SB0SvY5tLTyJMF+aTLQ3pZhIanSpHYhpm6SXm0hw8RAsEzQU8ie4XZyyAKR5HAfGGxvNe1407IQ9OExIEgigqLabZpW76Q+PL5M0x6D6W0pJKMYpjVi7MDI8WOZBoIoYY7KW6Cm9XdpIBGYmpYQTBGFMeNJM80RMdMFY2z/FAUBSRCGYuC7FMkeO2ntHR3MRpzWBwRJRM/Q363Rgm7aVyNpYBkjr11L6Aji8P2eiPQjTcPEGpyEAapXQXHKGFraPdAG6p32HDT7u5Gdw2NAkAQMbWTftiwLhOE6KYMJ69Lut5FIYSWi6ImpZes1Nd0epwN1srTUmDazHB4syxrR5a1R40/Efu6k91PdtHCrEvGUva8s2v0wve9YiRjoGcKgZuiT6Zl+U7qJzymP6OPAiP42+H300Iulta9mmBijrg3ArQzbZiuSgEMSGfWIG7rXwxtNhPRrEQQQxBF1UmWRlG4OjTHDsnDII/cZvM7RbZw+BgVRwEg7z+C50sdKLGUgjGoPy7T3SQ5MYq3TcD6ZbZliPHnidOo8KWkRd+ZSo5/Oxz8OTz8NwSC8+qodkefw4cmPmyksy+K2227jzjvvBODHP/4xn/vc5+auAouYedfoA3z605/mueeeA+CJJ56gu7sb0zQpSpsu1tbW0tTUBEBTUxM1NTUZf8vEt771Lf7pn/5pzPZoJAz4ZugqckyV9PeRNoG4mygrGPHdKMxDiGkI42R0HTyv6HaQDPpPu56LkwwCvwBJnwfLKyBGE5gulbhTHmqwBWIRcsZhWKA7HcMbBOhD5g+rzyMlK3DDSJvbl9ZsRKlbzTmxNpYRY9eGTfTm2ZrF93an6KosG9r33ajI9cCesiVD20KmxAO154ysRFreGH80Ql1vG7s/cz5vCAI74gYbMtQ7IUrs+fj70d1Omk0D3yjj3L6kQTI1eU6AhG7x8pWXTbqfNSD8/TaZx184uybZO8eZiBa3FUORSGSSPSdmNmWK8eSJxx9/HLd7ZkPnSlaCcv0VVmj347GSxIRCXn7+ORDLefzxx2e0rNHE4zKtrW7a2jy0tXlobbX/RNELuDh+HFasyHysw6FTWhpl2bIQ557bxqZNnbhcw5P98eoej8f5yU9+wt69e+ns7By3bl6vl+985zs8+OCDVFVVUVVVRWVlJQUFBbMeCne22z2dmYogtCAE/V/84hcA/PznP+drX/sa995775ibNXq2nP77ZDPp2267ja985StD31taWlizZg1ujxeiExyYY1aZOG5AelrKkXuaeT4ciow1sGqhj7r/ctoEIFGQN/TZKc/7AtasYw5or0RVZrRxhJTnJVxZAoALMID01+lZ0DzzQnzUJFYWBXqQCcSjdPryxh4gCFQfOEzLyiqWxmNDQj7AOz0jBWu3aPf9Vn/2Jgb9Hi8nzQIsUcQCWpJCRkG/V3ahu+1VHU2U6BkYsemJ6DpDESZbve9MGKQc9kTHiMTtpcUMWPLw62hq+v8cZwqy0xaUvV7vaZ1nNmWK8eSJbdu24ffPgGLJshB6XkdsuAeh+QEEPWxv9ixBec+TXKRW8PTTT3P11VejKLOT4X0y4nGN48fh+HGBY8cEjh1j4L9AYyMkkzKNjQEaGwP88Y/VqKrFZZdZbN+u4/U+zyc+cUnGuv/FX/wFzz777ND3kpISVq1axcqVK1m1atXQX3Fx8ZznttA0bd7bfbosCEF/kM985jN84QtfGPre2dk5NANvbGykutpOElFdXc2JEydG/LZjx45xz+twOHA4hjVqg4NREkUmdRObZjrxlJ75ZZaO3zl5Z1HEsZ1ZViavkypPL/yWqKiT7qM4ZPTUxCYEmVLGC6NMpNSJLmOSMSzIMlbCFnryVHGEdr88zzNmf1Ww2FwRIHpkkvOa+pgekdXjJIt+MmQikYaVyTxgFIlxBKMRxQ/YAaRU+/5ZGUIjCHLm4V54qo0VtT4cUuGk5QyXN/n1jjFPyYAoChijzFQsx9j7N6Z8cfL+bWQoXzMnX163pMnHQHyUGQuAR83cvl7BpGrPAUJ+H26/yiWr16Dsb+R4SiBqasTEkc+BwnAf4WAe5/S3MeontpSoPNQw7AkXM+37npQnr3M6VlqvFsTM93K8lko1d+CqKMRUR1ZOi2b20Bs8j5DSSBwcf+VVSqQwnJmvQ8jiuZSJbAKEZPGonnOULMaXZkzTVCQLE5NMz++sTp3F+JooWeGg8DZTQtxsyBTjyROKopyeABhvhxP3wrGfQf+B4e3epbD0cwh1f4HiLARNm5nyTgNFgY0b7b/RpFLQ2AiHDsGzz8Kjj9qTgKeeEnjqKRXYxve/b3HttQLXXgvnn29b3D744IPcfffdCILAL3/5S66++moKCgrGFjDPzGe7T5d5FfT7+/uJRCKUl5cD8Nvf/paCggLy8/O58cYbueuuu/jmN7/Jrl27aGtr45JLLgEY+u2ee+6hoaGBF154gR/96EdTLn+92cyW1WvY+58/5I22JG3uAJYgUNzfi6S2U9LwH6zWe3j2cD/thcXU/OddfOzP/4rkR9dz/fJ8NAvOrQjQ0p/kQEcNe5uX09wZ5ctXL6fQrVJrdlBZW4EU6YKAk7JtK1AlgTKvgiRAwJnP5jI/S4u8GKbFB9eWocr2A64+ICP3NVERrCHgENmxxtbE1pd4CcU0CoIuwjGNWGQD111YzYoiL0fLfPREUlQXuAk4ZFYUegm6JHyqxJI8F9UBhWKvgiKKRFM6Kwu9dNVoHN5Qjeq+hrwiD8VlPly+64j29OL0B1i5oZTzluTTE0mR71WJpwyMAXvK+gIPFX4nMc1gVZGXgBVDCndQml9EX8IWhCzVhaO0FEGLgakjJCMIoogZj6IGfNCaecKQ6TF/RYlCfqiL/0oEkCUBh1shDlSvP5eVa8uRCsrQVl2Gblqsfmkv+/vsB+KlBbD1+hsx/GUU1K9GK1lJuyaT5y/nQGecN06FBpxEPRiKh85+jdrKc2juTfJyUx/L8t0ookA4ZZDv8tPVHWd1+YU8vbedpUE3lf6VdMVSOGSRkhVLKV+/jf0RgaMNESr9TkLJCFuv+CRl53fSl7cMSYC4buGtvYC2uMFLjX280dRHY56TCr8Tv1PhcHuYcE8cxSET0wx64gYpw6IrlkKRBAxrQDHqK6RoUz2x1m4Cy1IUGwatyPhkib6BdqtxKyRNE8Gv0j+qTc8NCly2vALnJddh+MuwBJHjcZklS86n6L1RWvFzoDPMsnw32sB9j7sKKL/8fIziOqIDtt6RlElrJMnKwiAO00T3FFJ00bmYhbUkvCUcauqgK5qi2OdAkUQ000QzTSJJnf6kbjulR5Ic6hLJcwY4FY6y60Qvhxr7iEeSdJ3s4U2vg0goTk/TEaKdzRipOJLqwkjFUZxedM2gP5zkZH+CjnASQzfpiaRoi2o4JJGumN3XRtvo98Y1YppBWySJJAokllbTkzDoiev0JzTcioRmmnhVCVEQWFkZoL5kWOOYMEySukVCt50rjWAVgQvfgyCKuMpKEH1BLut4FssMU7RxOd7N56IVeLm+4TDH8fBIy8gxsMZnURHtI6++CsswKQzF6ZJt+/eyupXQsHto3zKPguX0kY9GD9m/fDrSVhIERbHftJaJoLoQZBUpWIxQWgSZhqc1PD67Tp0kL9RLtLUHI5HEs/dPmNF+LNPkqbfb6cRBW9R2h5984jcsJD7c66D4udd5r6iS2vsaalklqf4YZm8HVipBsKYTGvfirVhhO9U3HiTRcJjQ0ZM4C/woFSeR8soozqtECndQ4C5hc5mf2jwXmmHhViQCTpk670CdKgLUBl14ou3orScQZIUoCnuWruDtficbjzazcbmE6PRxxfIyXltTzYoSH8rABLu+0INbkVhZ6kMUBCIpnVUXr+Ww6mJ9VQCPKuNVZVyKQNCloIgCXodMsUfFrUiIWFT4nWxaWUSxz4FXlfCpMk5JxPAWEkmZCAKEkjqRpE6pz4ki2T5gIgKGrxhl85VEUyYOScCwBMJJHSNgC0qGt4j+lEkg340UbgdTx2mlqAo4SOg+JFEgz6VgmBYBt4JXlVElgcp8NxU+J6mqAM1dBbh8V6CnTNasLSbeuwXZ5aV2TTn+wmuQVZHzN5Zzfm2Q8yvzqMh3sbrIS5XfyamgmwK3hFcX2VAZILZ1CRtK/eQ5ZYyNFRzpjLC6xEd7oczpGEbMt0wxLdqfg0Pfg5OPgTWgDJJcUH0jLP0cFF86bYXjfKCqUF9v/11zDdx5p51l97HH4JFHTF5+WeCddwTeeceO5lNcDJdd1sIf/nALAP/wD//Axz72sXm+ijOLeRX0Q6EQN9xwA/F4HFEUKSoq4rHHHkMQBG6//XY+9alPUV9fj6qq3HvvvcgDGsmvfe1rfO5zn6Ourg5RFLnrrrvIz8+fdj1eial0eYYdUjsGlsFbO2K0yCpdhXYWusZQkt6+PhaAD/MZg2yZ6BkeYkosgZZ2T0ZjyjLxIQ11htWDs9TgfPCytZpSnEEfek+Yrupi+5cMq0NnaTMtGDK1/+htUpoAPFrTOZv9PDHOc84yDIwBbX57OEFdhn0iusU7nlHZOyfRUquROPEBX4Zul4/usEVVUztrplzzmeFAV5TWklIAepvCbFw+TxXJkTULRabImkQnPHvF8PeCLbDsc1DzUVDODP8yQYBVq+y/v/1bg7vvfp7nnruS+++3nwcdHfDAA9+HgVh6Tz75JC6Xi2uvvZaNGzfOuYnOmci8CvpVVVW8/vrrGX8rKSnhqaeeyvibx+Ph17/+9YzVQ5sgMHVqlBLK0A1ygv7MkUnIL2hpJeZwjhH0S1wC7vBIkwlJFCktKoD2kyO2l7sl9vVqiFiUOs6eB0UxKU5hC0uS32MLV+OYZoBFqTPXl+eTIqeAZJkYA+NAwqKAkeZcaxPddHhcrHMk8ThGau3LPPb3EkGjx7I/exQRj5Giw5QptpKETZG4NL62v8yV2ZSiRMxsKW+EY/ZE3O0koekZnW0yWZUI7b1jN6bh7uxFcYjIDpke1bbVzmR+NVekFz06YlqOhclCkSmyxlEARRdD50vgqYHLHwd1AYX0nAE6O+0su3/6E/zpTzJvv30VpjnynVxY+BFk+QXa2l5j9+7d7N69m2984xtUVlZyzTXXcO2113LFFVfgdDrHKSXHRCwoG/25pvEHd1K2tJxErwMCadF34klEy8J0O0lGk+AaFjiN137LDe+7GV66H6cvyNqqVawpdPGemgraV5eQMizq5H6QDbSnH0QqqkBrbQBgzZYdCFoco6kbQVZZGijE8BRQf7FtJ+gNNSLouh1z/kgDRncbjiVRHKLEpdV1lPkcBBwKJhbtkSJCCY2YZnJ+pZ8il8zqYg/dMY1ij4pXFQk4JORQK1JHO4G8SsQj+1lStRZnXQEJw6Tcq3BpTZCAU+bw2lJK/E6W5bvZu6aElp44blVidamPqoCLrljKDilqWdQVedFMkxWFLgzTdlwqcMvITe+gNR2msHg5klvBIYsIegpBVpCi3QhaEiPUjRaNI/faAfQ3+OHtNHsS0TIJ+GR0SSYO1Coa20plPHWr8ZZWoHeehGeG7Rdv+asvEjZlhKoqdIeP470pErrJuTf+GSv/9Bscq85HKaigyfDQ1pOiIriWps4kHdEYFX4nb7eFeflIF5IgUBVwEUnpHGgLs7EiQG9C44VDHZwo8BBLGbT0xijwOuiOJNlcE+ThnScIFLipKfTQ2hdHEgWK/U4uXJrPzqPdtPTEWFnmJxRPwQU1BJ1V/PGtU/idCv0JDb9ToSuS5LkDHUNmOoUFLor9ThqO9tBzsgN3Xh7PHeigwudEMy2Od0fRTIu4ZmBaFnp1Le4t23FG+kDXuMbl4dwXnuInHbaw73LKpIALvTqbN65EWn8VbjNOeP+rxNdcjcflQpBFdnXEaG1O4pRF3jrZxZV1haxZczUvHOzm5ePdrKnwc7InTjih09CXZO1F19GjBInEDSwLehM6Db0x6vLdFLnz6QmnqFt3CSFXMW39Gm829ZHSTVK6iVMSCSd1euMazb1xWkMJEnGN451RuiMpWvrixFMGR9rDREJxElENPR6hrzNKpC+KFg0NhNbUEEQJ2eXFGSjAm+dElEQiKds0x+FSCLgVopodUtQOO2ihSCKSAF5VxrTs8LWhpE4ophFO6OztiBHTTCIpnZ6ERlMojluRCLoUNMOivsRLZcCFYdlhZQ0TWsNJfA4ZtyKR9OThqF6HN9yH4HAiBYspOb8V0RdErVuPnl+N5ArgLa3GJyt8UXwBfPl07t1HybnnoOolmNEa5NJqrGSc84ANloDD6USoWMGOit08ftK2qdl+xSUY3iKuu2IzV0QTIMt4Vl+I0tdC36lmvKJFqrWBrpZunIV5dixzj4toVy+WYRK86D14XE6svFJMScWSHciVyxCWbGQV8PAfD415btb6HcRUAQ0oLylClRQCS0pJdIcwwn3EO3rp7YyAo3LEccYEEXoKVAlXngOfHkcSZVKWQMThwoiG0KJxHKoTR9CL4PIgOt2IsT7ih/fg8gXR2ppINh4ldPQkWiyOqzgPK5VA0BKIqSiCqaNKAvkumXyXjCIKOCQBlyIin9iF5c2nKr+WUq8b9r1ErKkZSVUwjWFfEcuyMHo7ED0+NlXU895zKlhX4sXvkCjzOijxqrhkkTyn/UoNJw2KL1d5qSbIe+uKUCUBtyISdEpQ7MG07AmZT7VDWCrth7iwsp7qgNOONe9TUPQ4gpFC6uuguLQESYDVRV40w6LKb/drSRRwySKWaGH4y/DERfJdMpIAPods+xzJKtGBsJVCMoJ18hCSy4Pg9FBbvJxguZdKvwOPIlHoVhEFgRKPbbpzcV0BKwo9BJwyqizS2Z/EMC3OrwkOheS8bGUxneEkAbfCmmIf9fkuSh0GgeVFFLllJD2Bz+EiKOkYqoPzK/xU+JyUeBVUSWBNkRe3IlGX76LaNdb35YxGEOGSB+HJ8yDaCDs/Bpf9fkSI2sVGc/OgUG8L+AcOpP9qC/jLlllceqnA1q2wdSssXXoOgvAqbW1t/P73v+fRRx/l6aefpqWlhR/96Ef86Ec/wu12s23bNq699lre//73U1JSMi/XtxhZvL1pBngqUEM8HoDA+PskXSO1yvceCnPjmmZqJzv56Nj8MMbOzppAyzaEKGGNcrTLpF3SR23L5G8ljIpeI2TYT8vowGhO+B1ANMa+xIXRMeWzwBxoo8Fq+UQLj2DiVDJrHR0OB+G4kbG93YqE4lAZrMWY+NJAQh9Zx0wObpnaezAG9yCj42RnQjPNMftloymcyHltCNOEgfj8HglELEyEIadLn2ThdypYTgdiIjnw2ZVR85rpWtyj2z9T/x6FNU27Uq9THtO+0yHTdWRychztoJupn4zelikv2ejY6faBk987BRNJFvEKJg5ZxEyMHUuKNdwe6dc1WC1BEPApAoJDQZBlBEGw73EygSQIeEULl2znchAkAVECEwu3qmAZY9ta0BNYgGRZGBnaY8jBduAnE9iZX4Ov3WIr8Kp8mk50Aw+mN5t7WTtOABbJMzI0cpPoYrevhLyYxAdNy/ZYyNBPRw85wRi7cmGkNI7G0pKYWRDVR6QLy9hP7All5vpOhUxPhdHbMpU/XUaPlUyje/SzKpYyRuRpseuU4UBh9DNv7C6jc2acVbhK4D2PwFMXQ9tT8ObfwuY77QSTi4DeXvjd7+C552zh/sSJsfusXWsL9BdeqJNKPcunPnVFRofW0tJS/uzP/ow/+7M/Ix6P89xzz/Hoo4/y6KOPcvLkSR5++GEefvhhBEHg/PPP57rrruPLX/7yjIc1PdM4qwX9XtFBpoUgMRRBdKqY7rG/Ghbs3bef2oXnDH7GcDxQhJBhMjGIJGQ2DcgxzJCtvnRWD/Ezntm3X7UY7TXQWVeT9s3+rVtQaZU8NIdhpVvipJTJv2biQRt1uej3+ylKRYd2TU3BdOeg5KNHctGjQ1s0xZLJD5mQ0Yn5GkKJ9HQEOXLMHMGNcOEvYOeH4chd0PIwrPgbqPv8gjTlSSbh97+H//f/7P/pQfgkCTZvtgX7Sy+FSy6BweA5mmbx+OOJzCcdhcvlYseOHezYsYN///d/Z8+ePTz66KM88sgjvPnmm7z22mu89tpr7N27l1/96lezcJVnDjkD3UGa25FOnILjpxDae3C0dFDc001+ewccakI92oJzIAOgOYEQmmNqLPWAkCnT7YBdecwcK8hcWWJrSS8rnl4I0bOB4jT7akmAQiU3MzpTqHSLKFiUemY/xFuRZT/zMo1RUYCSPFvd7huIFuKSwCkO7xtIy/pNauLo+L15QQxRokv14EvYkXqmMpFJCMPPgzzH6U9wE2eZFUmOeab6Brjgp+AshfhJ2HMr/LYS3vgbCB+d79phmvDCC3DLLVBaCjfcAL/9rS3kr1sH//iP8OSTtob/9dfhjjvguuuGhfzTQRAENm3axP/8n/+TN954g5MnT/L9738fQRC4//772bVr1+kXcgZzVqv7HGnL4UTiiCkN0xrIEG5ZOLWUnXo+nkQUBTx6ioSsZhOGOKtwWEIGc5cxZDB/ycZMJJv3Y6bLyCZ+syKKGc13psNSj8BnnN0oJQX8Z+PY38vksc7PG/IkahK95OUXDkf/yyaOfRY3Tslgk5FNexumNel+Sgan2GzOHcvGjGXUuT/gDLPnkb0U1Oez9LL1SInM157JBCUrsunfWZj3ZCKSmJl0SZnMojTDxDFJjols+kmmFaXRZgzTRZBtk5vR2wbxKiKfcfcSXLdu5IFZmAmZmo40yhRQkKRxde3vTbXR2d5PyYoKrHCUQy+dINGXoOL8cpZdeyW+wgBafzNOTD7YeYCyC9fS1zFwNstCnIZJhi6ICNbwObIlPTeAZzDXSBb91Bpn1eucfJln2oaf0QWukROr2TQ3yWZYmpY17Xj3k5FNT3ar0pgxlo3PchavmLOXZZ+D2k9A4/1w8E7o2wuHfwCH74LK62Dl30Heljmt0rvv2pr7X/7Str8fpKICPvEJ+2/9+jmtEuXl5Xzxi1/kjTfeGEqK9txzz+Ui9IzDWS3oW7ox9ECNmRaibmJhP+Q0UcATTmJoJrploVhgagY4IdHfgy6EkFIJJFFEECXchZVUFdTawvv+15CLqzjx7jH6nG1Y3X1EYikqY5YtuJomstuFUrsKOlvweXxYhoHWeNB2XC2qwAx1g6xiqS6EVJyApFMTcOJVRRwiVPtV4rpJXDMpc4uIWhyvz0u+U8YvpBBjXUid7WhNh9F6O5ACBSQ6T+L0FlBa5CMlKKh6nHyX7Ry1rtiHW7Ed1pYFnUQG4qMPJuwqdNsOvinDYknQhSQI5FtRsHQEQ0c62Uxs17MkukME6zeTHyhDiMSw+tpJtDQjBg6AKGG0N5Hotr1vXUX5SIECAtEESVkBxk58HAVB3BvXY1atRVeciO48HMFiipb2IxWUs6crTk9cx1XqJRSyHSdDSR2vw8fSc7bTrRbQFtV541Qvjd0xSgNOGjqj6KZFTaGbg61hmtsj7HWrNHXHaA0laO2zE/9IokBrT5xYyqAvnKSvM0qTQ0ZL6jQ1hzj8wvMEqldxMhjAMi0s0+KIKHCiI0J7UwgtqROPpEhEUzwVcKGbFq/sa8fpVjANE1mRSMZ1uk71Ew9HEUSJ3nY37YVuQl1hYt12JKGe/nyaQnE7hn3KQBJsoVIUBFKiihAoR3T6sCQVU3bguwT8DjcXlwRRistRVpyLYJloxfW82aXjVvyUr97Of+5qIeBWqPA5eepgBz2RJPleB4dP9eN1yjhlkd3NfRxo7iPPpdDSG0MSRVrDSeqqK+mNaFjW8GShJ5KisS+OKrk52Z+kpqKO7rDOqXCSxq4oqixS4FFJGCaqJKKZFt2RFI1dUVJJg76BOPc90RSGaeJSJTx+J4IgoCULkFV7rKm+fBRPAMXpRZRVFE+A4uo8llT6UWUJryqh+J2sqQiwrNCDSxZxSgIlXnXEJNUhi8Q0k/4Bm3ivUyac0DnWE0eRBLyqTFI38aqy7WypiMQ1E6ccoMijkueUWF/io8QjkzJUfA6JPKeCLAwkXtM1rHAfAEYihRQQYSAZmCXKtkNxNGwL36KE4nFipRKY0TBioAApWIQR7kMKFmNF+zFTCbBMRJcHX2EAJa8QTANBTyBVrsDwl4Ao0ye48Zd7kXyFCFoS0ZeHXBZGqVxml52IInW1IQWLMCtWIyZCWA7b3t10B5GDxRjeIqTqVZRc2EFhuA916RqM9iZceV4UjwtnWQlK1VLMvHLkijh5y9sRjp1EVVW0DMnEANK3ppvfuSSBPJ9KW/q+A5PbxIDfgxQowFkQQCqqQAoUgGVixqNgGliJKInuED3icDhEURrwbbJMLEHEsMAli3gUERHLdtLtj2CGuhH8dhhQRyqMGe7DSKSwTBOhSB3xTBIdLgR3AI8isKTAQ8AhUeaRcckigmCf36fa2YbdikiBW6bY46DMK+OWBUwEJC1G/kDkELceQepsxZJVrK4W8lwBfPklCHoSqfcEQqgdTIPUqRO4CpdiiTJeVcK0ICBqeD1OUobt99OnWRimg5Sho4h2fP2UbpEQHKguB71hDVUSEEwdo/MkhighOD3IspO8QCmqz49DFolqTgwT21FZFKgOuAYCOyiU+ZyUeB0ookBdvptzl+TjlCVWF3mh2EdJWbxpAAEAAElEQVS+SyHfJZEvJpG7mykLlCF1tGKpbvx5VQiJMKIo41MlynwqIgyUJeCQRCRBoMB5VoskNpIDln4GlnzajrF/8E449XvbnKflYaTgZir094B5NUwhd8ZUaGmBX/0K7rsP3n57eLvfDzfeaAv3W7eOSVo/5/yv//W/uP/++3nhhRd4/PHHef/73z+/FVqgnNVz61R6tsUMmghNVUj6PKDKWJJIfCAbXmN7z6TntiyL3wol/CEV4AlfDTtL6rm/xWRveKZqf2Yx3kQ8Nz/PkWNxsVufe8e4TmPmJQ5h1NMnpyzMMacIApReAZc9Bu8/AMtuAUFE7H2Lc5PfRn58JYQOzmiRlgWf+QxUV8PXv24L+Ypim+D85jfQ3g4/+Qlcfvn8C/lgZzT+8pe/DMDXv/514vHM2bnPds5qQT8dKzEqBaSq0FNdQbiyBGnNUvRllSRUWxPjcmQ3i063GR2kf2asEs4acuGrc+RYXAzqwCXTnMT9dnwGTXeyla0j1sy/ykabtc1klJscOSbFSEDHTtj3b7D776HpNyOiSAnxZgjtm/FiH3tspMVcZSWsXGnb5csLcMHltttuo6CggP379/OJT3wCI0MUsbOdeRf0k8kkX/ziF6mvr2fNmjV88pOfBKCjo4Pt27dTX1/P2rVr2blz59AxsViMm266ibq6OpYvX85DDz008xVTR/Zoy2lr/yUstq6vn/TwnK3Y1BivtfzqvHfRHDlyTAl7NPsT0dNekct2ojAb+oClAZXyeB8FqRjrilwUeRZHuMOznQUrU0xGqhdO/h723AZPXwq/CcAzl8Lbt9mmO1ofyB7M4is5qHwM/bI/2g68M4ggwJ498P/9f8OmOQ0NcPvtdgSdkhL45Cfh/vttp9uFQF5eHr/97W9xOBz89re/5Utf+hLW2RyuNQPzPj+79dZbEUWRw4cPIwgCra2tQ9u3bNnCE088wa5du/jwhz/MsWPHkGWZO+64A4fDwdGjR2loaODCCy/k8ssvJxicfhiqSpeMO8+JZZhYFiQdDkYY6AwI7p9c5qLskiuRu5dBMorR24GZDKMEChAMDTHWiwkY3qKM5ViANRDzXAwUIIgiyf2vg6wSOdaAb81aLF1D9AURqlbR7qqkIF9EtyCu24lfPH2NKKk4Ll8xSXcBUqQdMR4CXxF+1YMY6UZoP0Z8/+sYiRSy10vsyCFMw8Dh8CCkoqiSimCZuGQBlyyRUizyiCN1Hcft9GO5PJiqBw0RAYhpJgEhSbuuUuiSEQSQ2o/bNsKWiTmQKCfe0Ud+MoLc0wSAkYjRc+AEsseJFCgg0tCEIImIkmQnEwoUoIR7SemZZ+H+wiKEYCl9ShBVEvACeIJIDjemK8Cjb7XjUiVWFrppDiVoCiVI6AZHumVKqgppD2v8qbGH3Y19HGvtx+1SiMU1SoIuCrwqroH48K19cVRJJJ7SiYZTpHST0jwnqipRludCEgWScR0tqSMIAqZuEu9tIxnuIX/pBlzBYkRJJN7TTbLcTzKuYRomikOir0OjO5qybWk7o7i9KrIiARp9nVG6TxxEECWSoS4SBeXkFa9DcahIDheWaWAaJk5ZwimLLC/0srrIjWZaOCURV18TmDpCpAdRcWCJMv8/e28eZ1dRJu4/VWe5e+9rOunseyCBEPYgS1hEEXQQRNFhcMdx/OqIDP4YRceRERlnxhHcUUdgCK44ArLIIjsBCVtC9j3pdHq/3Xc751T9/ji3b2+3091Jb0nu8/l0cu5Zqt5Tp07Ve6reel+vvRlZX40RCvtrPaSB1hLPCLClJU7UNrANyW+f3Eq4KMBpC6p46bV9SFPSWBykYUcbW6eXcs6McjrTLumki6c0syqjlEVt5leEsbw0pdmZrRKvnUCshLKoTTzjURk2aeySpDyNlw1I1dqSJFIUwJCC0qCV+788arO71cCN2kwvj1AetXl2UxMh22DptBKM6aU8u6kJJ+0RCFpo5WGHiwnESrBDFoYhCcVszl5aywnTSmhNOtQXhwhakvKwzeLKMJVmxl+jEA0ghcBRmtakiydBaY+WlEPYMigKWrTbDp0Zl6htUl8cJGYbzCwNErUkEeHgyACWEshEC3rNC8yftgBv2xYWz1kBlkLbYcy9b5PZ8AoNT72A25VEWiZ7XthBzbJapkkDe96J6FQn6fUvk9izj+Y3t1F9UoaGF98mvG0fWimqT16EUVyOt38nMhxDZVK4OzcSrJ6O0xWnc88BrPKdqGQXph1B2yEadBRDCdrTLmnbpqJsBloIzFAxZqaTrvI52F4ao2MfZrQct3wGBxyTirJShJsGIenwDMrtEG0iQlHVPAJLHLQVoK1kNkWzGymb/jaitAYvWgHpOE5xHbaXQVomXfuaKZpRi5txwQjgdDkYvWyund6RZrP9sCkgZkrMQN/Zz2R7GmqzbaZSyFgJ0g5iVk/HLatHpLI2kJFSZKyETFcKTH+dgS3x10eYQVQghuGk2NfpEDAEJekm324/EPXbLjtIS2Qq7Z2K+pCNjJUQKI1hhoMETl7Fh0NPk9m3m8i5F6INk46SmTQlPRriKTTFGO17KQ8V0ynDBHUG4XThhcsQ2XusjFhYhkCm2kmYRUQA25B0ZDyiyXbcTX/FKK/FPbAH07Qw3TQy2U5m01qcxr1Iy6Rt4y6qjzuLjmgdjV0pwpZBR8Cms8shozQSwfqmLlqTDgnHI2CWYUnBhqZOSkMGYUvS2JUhYBhUFxeBNLLrNmbhFtegs/7apeeQclU2MKJfvFUR35a+NeXQmnRwlKIqEsA2BCVBC8dTuUCK5WGDItvAaNmPt3cz0gr6ASKLqsl4ChksJu5oOjMe29tSVIQt9sXTpFzF2j3ttKZinFh6+AM7k0WnGJKuHf6I/YHsX/ubA88JVkPlmT1/pUvxPNjw4IPMrjxzTMSaNg2++EX/r6XF96Tzxz/CQw/5v+++2/8zDF/5f/e7/b958ybOvG3lypXcddddXHHFFdxxxx1MnTqVG2+8cWKEmYRMqKLf1dXFz372M3bv3p0bAa+t9Vv3++67j23b/IiyK1asoLq6mmeeeYazzz6b1atX8/Of/xyAmTNnctZZZ3H//fdzzTXX5M0nnU6TTqdzv+PxgxjK+8EzB3fWkJVTeJkBo0i9AwQJNYiNjhDorG9oYQXQ6QTC9hfh5U7p5T3D037gIyl6TadJc4CHjVxQrawM3cGxfEXfP2SGfEUwd3PajxhqG8LveJWfjlAuupf8rtJ+ABXDAreXt4deX80q1YXTlcJxXBzXw7Sk/wGQ7CLZ1knK00QAYUgcT2P3KjzluAgrBAz0r9u73cjNkmjtd9ZmAE/5JldS+HL19oQhhCDVS7vovt5zewJXJbMLB7t/9w561L3PUxpTCnQvOyIv+wx11iuSzLqSENLoM5rguQqZ9caS6ZW20hopBEpppJl/pLB/2ilXke71QeQHes2mqTz/uQqZ89Ci3QwyUtTnOVmGwJAit0ur7PNVOje9ZxiSgNnXs1I0aNKZcnNl4tdvC1OK3CpLT2mCpszdv9L+n6c0ptXzbvQPUAWglM558AhlA4T192TU59lm97uO18ekIp8XIeFlcsqMEP799r7GU359drJvtCVFLh0vm6fhV7C+CUsJWuXeVy3Nvu8Xfj3RhkLZFilp4CqN1X1cZQcVpEHaUWjTIINEZxxEfw9NbtYgpvfUvWmBm+nTu2qt+wQtElr773N3pE0hfPm06mnLsmkK5YLwyylgSrQQuTbNEOQ8gGmzr+lid1tnZGdBdW95+pRZz3bvxbi6W67et9vrPnOPXXm+PNn8ZKQIpEQ7fRfxC+jTPmppYmrhP3Pt/0a5uXNMKXLvUnc7rBzXL6PeXs+E7PPuiOw+nd3vhxzwy8tVesCsrpF9V4TITqV7vcxFlYewbHQ/T1VCGqSlgcqaQQVN2ec9MIQvT2/vNxKRq6rd/w8wO8reu3D9d8OUAi1MVNadqtfdPmmN2e+lcrNtn+MppBSkPY9o9tkLAUgTGYz0qaueP8IF+H2NFJBwPCxDkspGzO4t76EyHjrFYPqE4zg4ziCe9LQH7W8hm55DND2LaHrON73pf1p0LrryTFTFGeiK0yEyu++74ZHLY9C8RpFYDC6/3P9zXXjhBcEDDwgefFCyfr3gySfhySf9j4I5czQXX6y4+GLNmWdq7Dzd2ljKfumll/Kd73yHz3/+83z5y1+mqqqKj3zkI6OW/niWezf5goodChOq6G/ZsoXy8nK+8Y1v8NhjjxEKhbj55ptZtmwZSikqK3tGxWfMmMHOnf4o8c6dO5k+fXreY/m45ZZb+NrXvjYqMh/uB+vadjgjXyyZowBPw/2RepK/fYpr3nkmtaUxtNY8VruQtm3wjkyCWk9yL7VwAD5XrRlq2V7BAqrAkYoCHqiYR9wMwLkLAQi+up9Pz0gTyZ7zZCLIutol0ATMWp679tJOzeJxl/jwURp2yEHe6hEocb1f++E4aX3VKM577ZHOswdcnlPVVP32T1z+kY9OtDiTnvHQKQbTJx555JEBEVpr3eeZ7j5Kmfc2Fok+xxQG7XIWzXIhLcYimo0FZHQJNOL/sTH7l59HH330oGUxVqxc6f81NIR5+eVqXn65hjffLGfzZoPvftfgu9+FUMjhhBMaueqqt5k2rXNAGmMl+8yZM7nsssv4/e9/zyc/+Un27NnD0qVLRzWP8Sz3Sy+9dFTSmVBF33Ectm7dyqJFi/i3f/s3XnvtNVatWsWbb745YDSkv82V6DeKdTBuvPFGvvCFL+R+79mzh0WLFvU5p3XhTNp655fH5zkcfidSNOHGUmNHEklc2uApGprbqS2NkfE0bQG/8dsZd2hJ93zmNyQ8Zk2UsAUKjDFJYfhKfi9SruZAe5xIsf8e7HXzu654tkkdkYp+qpdWbiVTOKGiYV2nerf3Qvh+F7Mk9dCt7tG6kmdnwu/bGlvayGQyHL13OjqMh04xmD5xwQUXUFTUt76bv/0Qwuvqm68ZRc36OGrePxAN1REFpjN8HMfh0Ucf5fzzzx+1Ed9D5dpr/f+3bVN86UuC++/362cyafHcc3VMmVLLPff0zIqNh+wXXnghS5YsYcuWLbzyyiujZsIzmcp9pEyo2jl9+nSklHzoQx8CYOnSpcycOZP169cDcODAgdwX+I4dO6ivrwd8l0rbt2/vc+ziiy8eNJ9AIEAg0NPhdnT4ftznB1xyMZqkHHLAKSQ1RdbwVf0pMsNe1Xf+qiY47MuPOIK9xt7iyfxhrhfaGd7IKvvVoR4lJ2hAxE3T1U8xsgvRVQocxQzW5jhHwVoyM+Og3eG5GXP6mQP1jqoUFEMXRoXO0JI1O6oJHU1j+r0oLDAckvHQKQbTJyzLGqgAnnkfbL0TDjwNqUYAhNuJsfE/MDb+J5QsgcqVPTb4kWnDvte8+Y0TWsPrr8MDD/j2+y+80Ld6lpfDxRfDV74isayBffhYyv71r389t/bi85///KjnM5HlfqhMqKJfUVHBeeedx8MPP8zFF1/Mjh072LZtG/Pnz+f9738/t99+OzfffDNr1qyhoaGBM8/0F590H/v5z3/Otm3beOqpp/jBD34w4vzfEU7T1dDAlse20pXIUD27FM/xUI5GWoJpp8/GTTs0vrWPSEWQeecuwx5BKNF32x10ZDSqtY3W/Z1MP28ZRbbASwx97ZFI79e5NBbJe06lqbiafcQqSwiaPaMfhhBcvH8DoRm1PN9hsCnkB78ZKoppgQJHGkezvtb71kakbvc6Wbpun3SG0wKc4bUw7c31lM6vZcb8mSPJ+YjhKK42o8ZE6xQDqLvY/9Ma4pt7Ft4eeBrim6DtDf9v0x3++eF6qOql+BcvGlZ05/EgkYDHH/cV+wce8INq9WbpUnjXu/yFuSefPDF+9n/xi1/wjW98A4Af/ehHnH322eMvxCRkwg1JfvCDH3Dttddyww03YBgGP/rRj6itreVb3/oWH/7wh5k7dy62bfPLX/4SM+vE9frrr+faa69lzpw5SCm5/fbbKSsrGyKngdgf+f+Y5rUw64wHQCnsM9+LTLajDQttBWmNTsOSsCDRiLaC7PYilAQMfrv+AEtr5jOl3Ka6aDdamsRjU9jd4VAbrSNyXBUb4oL5F11CeSKO19zAlP37iJ15PipagUh3oULFNIdrkQJKA2Hcxl1E0inM487yhVMu260p3PPKHqqLgpw0pZgNTZ3MKA1xio77Xg2mL0aFykF5yHQXKhBDC4m2Q+h0ita3d2BFgkSOP5Hk/gMEq6fRHKzyPSM4CbRhIwVYKkOnMhGZBHr3BrTykHYQo6oeIxBDS5NguBSRaEeLEuxM3F/cKATaDKCsMGZlmuKZNbDFF193taMzJQPKXEhJZX0VwTmLkNESZFEZXvM+jPJaimo3UTa7jvCGllyvZtTOwiudyvqmJNVRm7la+S2ICypYxLNvbeak+ZUo7S84644UmXA8PKXZ35Xh1R1tbG2I09GcIBWyUK6iLBJgdkWEmWVhPKUJWQbnza+kPVXK/760k7qyELNLwyyuK2bl7HIMKVg3PU57wsGQgmjQ5CsP+QtmzVCU6QsrmVoWZtPONi47rZ7Xp7bR3Jlh6bQSXtjUxOK6IsrDNpt3tWMFDMqKAnhKk+jM0OpmCBZV0nVgF+l4CyfMreBVwHVmotwMoaDJ7LIwYUuyuDJMbP9bqGAM0bSP1sf+j+iCRaj2ZmQkRtfWrSQaWqg69x28fc9TSEMw78oOnHiCyAmncvy0s4lYksqwSSbtoVQKUwoySRfTNiiO2hwAyqI2M4ptFtcVsaUhzolTS1Bac2JNlNrGV9FdHZTVzkE4Kbyd6ymdtZSZpSVIIQhn2igORMkojas0HWmXTNLFMCXxlB+5c2pRkPKwyfyqKLYp6Uy5nDGrnOklQTpTLrYp+ZvjaqkMmyyuifFTKSiP2hiGxHVKKK+OMr0iwr62JCdOL+XDJ9YxLaRo90xKVByjYz8LIybqrTdof/lFQlWlTDv7/ahADFVUjqN9M5p4xqYibFEX80foWlPFFAV8TyVlKo4qiWG88Sgq3orX3IDX2UW8sRUvleG1O18kNiVK4/Z2piwoxwyZTD93MYnGNt64+1WedgTRzw6clN/3q/9FkmbHk1uIn70SSmIDzsm0J2h9+gkSB9qo6IqTbGxlzzPrmKs8Wt7axv6/bqd9yx6kZTL9shT2vBNIGLU5qxdHaVyd9ZYVKUe4KRo6XUqCFiWGjZApurRFp+MStkwiOIhMAgLh3CLKtpRHWeVsdiUl//3oFi5ZUsOSWStJOIrGLofjqyrYFc8wM1SKm0ix+4VdTJtSDVSA1rQkHIKp/CP6Aii1JJYUFBUFkNGemU8hBOleJkBFi5fg1CzEmnGAtooFvNmYoCYWZebKK9iUCTNzxQwqDuwh0xan7vRl2HOOR1gB2sLVNHS41ETKWLerg+KASW2piTaDOGYIAsUEpmj+b2Mzmxo7uWpZHQvqFxK2g4gpc/lTRxkLVlxNXcxi7YEUIUPyu+d3kXEVj7++j5OnllBX5i+4ak97uJZFkduO1tCeVjhKs6GpC09FqI0Wsbs9Q3HAJqA9GrtcSu1IzqOQaI0g7CDKCkEqjtvcQKajC60idH8FbW5Jsr7Nf39e1LChIU5tSZBkxuPRtXuJtyZxM4o9582mOGzx7KYmTENSHbHZ2Z7CUYoZJRUUV9fjzTmVXRmTLkcRzAgySYeMp3lhVxvH1xT5i9YDBp7yB3AaO9PsbUvSGE8ztzqKJQVSCva1pygOmFSENZVhE6E80AqveR9mSRUqGKPdKCKRUWBLmpMu+zszvLKnHUMKtjZ2sbs1wa4dbWydXUbtyTV568tImEidYlCEgKK5/t/sv/P3JfdD07PQ+LSv/Le+ComdsP1u/w/ALoWKM6Aqq/iXncR4mm/t2OEr9Q884Cv5qV4T9aEQrFrlK/cXX+x765lInnzyST7+8Y8DvnnV3/3d302sQJOIYSn6VVVVQ55TU1PD66+/PmIBZs2axZNPPjlgf3V1NY888kjeayKRCKtXrx5xXv0ZtWBMeb64h2NxknYVoTzTWr3p7aklhxzGp/JwzsmDsIPoVNdBz8l58DhoQnnG84YzlNnfo0e+dNTAMhnORIuQQ5+UzuPmU2mNMcT4ZLenmIORyvMsXWfo4B62ObKGPY3vLaNTGchwgE5XExjk3EP1N6xdZ8gR2+Ek7eU5J2QbfbyI5GNYZZLnvRzUG1YvjGGuAM9EQiQiYdIliq5wGDti06IMEtImVRxF6vzvSYcRIKoViWgElUfJB0iGw6R1mg5hEnI1uIouK0A6W2BJO4AyAxQxdP3pTb7nLbOexg6GMYx3R4VsOg4hcJX2Dj2w1pBpDyPhwAjfr26GE0BLHeb0TV+nRSNP61DzTzkKAgdv0xJ52i6hh146nc/r1mgykTrFiAhVw7T3+X8ATic0v9ij+Dc97/vW3/tH/w9ABjDKVrAwU43YJ6FmJdgloyaS71mnxyTnzX4eP6dP7xm1P/tsX9mfDGzYsIH3ve99OI7D+9///tyofgGfYSn6lZWVPPjgg4Me11rznve8Z9SEKnBk4ivlh9+Ii0G2CwxNkyu5z5yKemY7nHwaAI9vVVxSKjluYkU7qlhPhNev6rHh3dy9kQYipXBV/aAepV6OZR3Erzr4UvQ7E6UQKoXtUCNjNCxczpNbFYtkMa+f4NsWz+xqZsZh3Mdo0e7CM+eejXb7Kc2H0Bxoet77Y93r1r5MLzewnkuhRTyKsaJQc57/B6AcaF3bY+7T+DSkDyCbnmEewDO/AQSUHAdVZ8OSf4ZgxYizdV3fR/6998Kf/uT7yu9GSjj9dF+xf9e7YPHiyfdOtra28q53vYvW1laWL1/OL37xC+QgzlSOVYal6H/1q1/t43oqHzfddNOoCFSgQF8mWasyydmYNvt6MMnS5BTKcTRpFj0zT8LznaP399SlXQ+RXWOiMg46lcEMBxHZ6SetsiPspoHwPPRBjFoblJ+fq2FbL/eVbdbkGFJrcfrdf3fMisDQi9aSkTDtgZ71OsowUIu7P4KO7XobNTSdXnf8Dz92RYFjBGlB+Qr/b8Hns3b+m3AbnmLP2tXUB3cgOjdD2+v+X3SGf94w2bwZ7rwTfv5zyMYUA6C0FN75Tl+xv+giGE0LprHgj3/8I1u2+DbDr7zyCqeeeirnn38+q1atYuXKlUQi+dcLHksMS9G/4oorRuWcAkc/RcohbtjUlfkmCZYhCGTSpO0AFSGD4VgalOCbV4Rsk4A94ctIjigKC/bGh+5yjrW1Ye5pJlwSRAQMdlf02Bg7r2/uEw0WYHrEomRGCUJK4ns7aItn6HA9psYCbGvvCcJTvHQW7jA8O+jJqgh3BxrLDB1cJhmLHiSZY7tGl5rQ6YFpGATCEUhlhr6owNGJEFA0Dx2aydr1VdQt6cR86aOg0lC6DGZcPWQSyST85jfwk5/AU0/17K+shKuvhve9D049FcwjqNu97LLLuPHGG3nooYdYu3Ytr7/+Oq+//jr//u//jm3bnH766axatYpVq1Zx0kknYUzEKuEJZkSPM5FIcM8997B161bcXm7Tbr311lEXrMCRyXsyeyn/8CeIOr7LMSkEK9euYcrlZ1FdFiJPMMABzJUpYs1bmPv+yzCkHKEVcoF8HNvq0lgwcQr2pFXu8zGCineckWTmzs08UjmPlO2vKplZUz5Ggh0ZXFalWP/iRhZ/7dusSwWAgqJ/zKM18zK/wnwhu2C37hI4/R7f9GcQ/vpXX7m/5x5ob/f3SQkXXggf/Shccgl5I9keCcRiMb75zW/yzW9+kwMHDvDnP/+Zxx57jEcffZSdO3fy5JNP8uSTT3LTTTdRXFzMueeem1P8586dm38d4FHGiBT99773vZimyfLly/v4kT1Sufet/Vy4aDoLVl0DXobf7obZpb4f3c6ky59e3U7aVZRHbWzT5cFXN7LquBr+7/md1NREWTqthE+cPA2tNc9taeXZLc0snVbM3LIIj206wBdXriSQbsfMJAl0HsCpWUiHZyBjsLfTYf3uDgwB754xDyMYw7aDtEbqAIhYkiff2M/DL+2isjqK0pr2pIOjNKeWOrh7txOom4cUINwU7v4dUFaPTLQi3DQq1UW6LU6wvAijbh72lnXIaAnxtCJqSaxkO0iDUKgY4SRJehG0FUS1NwPgJbswQxGEkAjDBicI0g9XrkMBXCSipA4vECXjaUKGhT1jAWUdCaIlpchOD6SBNWUG1TNLqa2bgjAtQpUJrFmLof44VCCCUi5GpX/PwfIiZKSIcFUpVY5LuHYG6eoF7IpneHTjHmZVRphdH0M4SdAa4WVIxNPUlgQxpGBKUSDncac4YGJIQXHAJJlxCQVNKA0xqyZGccjijFllnDSlCFMKTEPSnMiwsCLCwooIu1qTnFlfSmnQJOUqTp1aRMAQLKqMkHY1Ck1NxOKOpeeQbG1g+uKpXLViGjWxAG9ML+Fd8ypZXldMQzxNVTRAcdjiHTPKmRLzR2i7Mi6VEf/9+aMpeTGeJFIURlonYgXDnDe/kvKozTNhCyEFH1gxjZU1FtoMYO14ma6X/oxZUkZi5y62PvgqC2IRvFQG2dFBqqUDwgPtNBMH2uh8+TmqF6wiphKYe7cybVYpGVdxyoxS/jqrlNqSIAtqizjQlKAoaBF2OqgvDjGlLERF2GJ6cYAKp5nG391LrL6aUKwElIfX2ojRupf64lp2tieRqTixYBFJV9GecolnXDxPIbJekZTWlARNqsImCyoi1Bf7wSVmlwapCBksrvFng2qjFsWZFpZUF3HG3AqqYwFCtsmOpi5OnV3O7IoIW5q6qC8NMy2kMHe/TmnZNMSut8js2oj2PDq37WL/K5tQnmZB7Qys+nnIZDsyUk4AiEXKqQt4mM2b0YEINSU1yEQLpBVi11uYJZUceOrPBEpiJBpb2f/yFsyQiTd9HoQidCVdEikX3dCJaUis3iP6edYl7uhySG9pIWBI9iQc3Kwi3Hs0H8BxFWKQAX0340LAb7qdpEN8w0aKi8uJli3x90lNTdTCSHXgmlFkshN5YCvTZp6CTMcRDZvAMIiW1JEO+KY/wstgxBsp72ig69kHiZ5lE7ECCCdNUelcWroybGruImBIphb5GoFEE7UMjM5W3FSG/t2J23/RZa8O1dUQNSXBIpvW7KLPGdOrmTszzJvb02zNjiPpcAmcfDE7UxZTl17Enze28OCbDSyuK+LUaaWsfnU7y6YV8+ELP8aMOcfjzTuDfWmBp+G1XR2s3dPOBfMqWbc/jqc0NbEacGFXeyfVUZvKcBV/eG0dW3e2U1MSpH7pHMKug1s8hQee386jhmTRlCKe2tDI9PII996/DsOUNG9+jXtmllF2xkxsQ/DcrlYSjseqWeWIToc3GztpTTk0xtNIIRAiQlMiQ9o1KQmabGruoqyugtr5J+GUTsMIFeMU1dKhbYqtIFb1NKxqsGYdx6L0r+mwS3n4td28tquN8miAHU1d7N/ZTnG5b8Z1YHc7+9e/TKJ5L792LqW4PMz+nS10plxWzCwj7SoCpqR9RiklZbW0eBZvN3XRnnYpC/kVTQroTLnE0y6e0liGoD3tUO2ZmIaksihAW8Ih4ypMKaiNBuhMuViGxFEaUwpkZxMy0Up80wZilXVQ4fePJUGDoEpjRGy6Moq6oiDzK6LMq4jSmnRomFvBrLIwC8uPvdHWEeGlMdZ8jIVOVsmf/3k44dt5nW+0tsLdd8NPfwpr1/bsnzHDD3R1zTUT7ylntKmsrOQDH/gAH/jAB9Bas2XLFh599FEee+wxHn/8cdra2vjd737H7373O8CPn9Ct9J933nnDcjxzJDIiRX/37t289dZbYyXLuKOURgjQQiKkCbgo7TdwjtIYUviuF20D25TYWc8qQgpiQRPblGitUQz0+mKb0vfeISTa8BtSLU1cRxEyBUFD0plxqYoEQBoI5fuO1lr3+cJUriKd8QiYMueJREsTkZ3W7+5LjeJyf+TbMMFNI7IvvvZUzl2eDEXwtPYH2aTh7xcS4WawDH80QASCqHgbKC/XeCgrhBYSrDBeBrQ0QGm/3LJT69JJ4iW7cFPpnLcTbdjo9n107ssOIfRKM/e/Uuh0CqO0Cu0phGkhDIkRtNGWrwzL7AimJSXg349QLsrusb2T+NYCntI42aiahoDOjJvzGGJkyzDjKqysW6SMp3A9hRQCQ/ouF/3n3qOX+K47wdOahOMRtCQZT+Olk2jl4aT952NJScTqaXClFEjh1wXL8OtStxcMpTVSCNKuwrStPh6BLEOScRWepzDwXRB2CyOyZYLy0FnvQ152Ol9IOejohJc1oeiupzpb33UeDximJSkOmmjDxlG+P7WigP/Rg/LnV3S2jHU6hU775zhKEQuYIPxy9pR/n57SWFnF1FcgpP/e4c/4SCFwlMrJHjANEo7ne4OREpTvfarbW0fINjCkQClNMuNhZW9K9LYRlwZ4fhm5SRcz5OevXQcdKUd4Tp+62P3+oRV4Tk8a2brsptIox0V5mkynQy5Ya65uDM/zUzdDeYA62FHdJ4IniF4uvhR9vcEIIUB5CNMCrdDSRMbKUO1Nfh3wsudohc4koTuSbSoOgQgYLo7yve4ETEnQlGS664xWvmmN5+GkM5Bn+bHuNaTfe6m+Ifz3sfseAF/Gfh9HUgiEm6LbNt31VM7jkqMUGU8RMI0+3l6EEHhK5bzCOJ7fhiczXi6/gCHJuNofpLBNhBRYUmJr/wuj27NYb29DaVflZO4pb7/9t/o9z86Ml22vsl67ZN9rAGxDoA0zV5b50EIie5kvloRtPKXRSiOlwAoYuI6H1yuSsGkZKK1zfYCXVcINKQiZErLvpCEFwez9BAxJe9rNyZtwPAwpcDydix3jKU3GUyQzHlpr2tO+G9yUq6gIW35d0AqkiRkJgutk79e/VigXT9o4SiGzAzLd70x7woGyvnW7QD/SzfD0+5CNf0Eh0Sf+F8aCv+9zilK+Sc5PfuKb6KSz4we27ZvlfPSjcO65frN6tCOEYM6cOcyZM4dPf/rTeJ7HK6+8wmOPPcZjjz3Gs88+y86dO7nzzju58847AT/AWrfif9ZZZxEOD+ZS4chiRIr+cccdx759+6itrR0reQoUKDBMEkqwvaaOroTBvKBHDEgN4lb1reJayhIZ5sXjhMPHzqhZSgterZ9DQCgy++McX3Pohi8esLO8GiUlHcbEzWim7Z68EyVF/CHu8r7M8CLQjhUDSjWnsI28tPtcUVD8ChSAjk3w1LsgvgltxnjR+Dwnzf5kLpjcnj3+oto774StW3suO+44+NjH4EMf8qPVHssYhsHJJ5/MySefzJe//GUSiQRPP/10TvFfu3Ytr732Gq+99toA+/7zzz+f448/fqJv4ZAZkaL/z//8z5xyyiksW7aMYDCY23/fffeNumAFChQ4OC8mA6yfOYf1ndDquawKQ4M5uIeBpztt9j/1JH/zzvPGUcqJ5Vknwq5yv63avLGJWE0Ls0oPbaBiOyFenzm1787eI7mjuRBiBL7Gd7kmd72yg8uWjmL+IySpB1HIh9DTDzmSboECxwqNz8BfLoVMC4Trcc/8PY3P7gRg0ya44Qa4//6e8DJFRXDVVf7o/UknFb6VByMcDnPhhRdy4YUXAgxp319SUsKSJUtQSvGud70L+wha1DAiRf9v//Zvec973sOJJ554TK5cLlBgMpHqpVylso18uZckYQzurSWROHgwtKONzV7fkffkMLzADEY6T0RKXRSBvU3ZH5pYSxvx0mKSG3cPOHdENLbCzOF/kDR3TewiTXs4Xzn9FI6u8hKSZcU9bjnzKCSOc+jPq0CBI55dv4fnrgIvBeUnw1n3g1lOKrWHm26S/Od/Qib76q9c6Sv3l18OBY+SI2c49v3PPPMMzzzzDOXl5Vx55ZVcffXVnHrqqZN+Qe+IFP1MJsP3vve9sZKlQIECh0i3mlXjJNhlxQYdxpkx8+BBmo42zrE6edzpiT5bW1Z0kLMPTiUZDM9D9faZn+6riEbjcULNbWyLp/OkMALyRH/ug+f5hrbZ53z2nMrDy2886PctkKgo7fO7JmJDB2R6fcDu2rF9HAQrUGASsvlHsObT/rqHukvgjHvRRpjfrHb57GfPpanJH2y98EL493/3g1kVGB3y2fe/8MIL3Hrrrbz00ks0NDRwxx13cMcddzBr1iyuvvpqPvShDzFv3ryJFj0vI1qSccYZZ/DGG2+MlSwFChQYAX31Jl85mp9u5eLXXuC9ZX1HeFce2MKnK5MsX3HyuMk3GZhnpjFUj4PW8tihL66qxOGCtS9w0asvsLxz39AXjCKVyY5+e3qU4auL4pw2Y+QRMUeTQcfzh2mBZKApzXp/mWX1fDzV1tUdnmAFChxpaA1vfA1e+qSv5M/+KKz8Les3hbngArjqKpOmpjDTp2t+9zs/qm1ByR9buu37r732WrZt28YjjzzCRz7yESKRCFu3buXrX/868+fP5+STT+a73/0u+/fvn2iR+zAiRf+FF17gpJNO4vjjj88tajj55GNLcShQYDLSW58ytaK/YZ1AY03u2cUxQ4zA3n0oDK0xBvGQMqr0e1bGQQJHmZP6uQ6v7AdzQiQKlvsFjiWU54/iv3Gz/3vxTcQX/pgv/ZPJ8cfDY49BIKC58sq3ee01l8suK9jgjzeGYXD++efzi1/8gv3793PPPfdw8cUXYxgGa9as4XOf+xx1dXVcfPHF3HPPPXR1Tby57IhMd/7zP/9zjMSYGC6YU8H8UBqzcSvadTixdhkhUxKxBDVRC8cry7r5EyQdj1lVUWaWhTl5YRWzqiKUhWyitiQkPBZXRfE0LKyMUBk26cwUY8UbMDoaUOFSVEcLRmQv5aFiRKKTYKyaU+pKMCQYHQ2IZAduvI2w5X97GU6CqmiAObPLqCsNUxwwiVZGmVcexnntjzS/uo5yIHZcBmfbW6hEnIDt+8H34m14B/aQaOwgWlcJpoX2FFp5BAzhu/0E38Wg56ANE0+DNgOYsRKMWAna89DRMlSsGi8QRWiNcJJ+ACvlO83TVgg3614QL4NKJTCDAX872YUEvEwKN+miU10oJ4PKpBCmjRcqpkNZFFsJUB6qsw0zGEAWlxOcDoE6h0z5bHbFM2xoSvDmnnaiQRM1vwZhh1FuhtYMdDQnMKQgozSNXRksQ1AasgiYvgtMKQTRoEUi4xELmiyuKyJkG0RtA9vw3WgWBS3iGY+urOPzkG1QHDQoCxrMLA1RHJCYKIpsA0P4LjMrTIe5J8+nvSnBKYurWVARJRaQxAIGdTELQ0BlxCZqScKWQW3UImZqTqgtoj3lYhm+O7+l00poaOjEChiEYjaGIakvDuJML6U4bFFbFGRFXRFW49u4RTVow8aqqAZpIK126B78FKCVovbME6k9E/bXL4c/PZOr61Pecwmx407gz3s6WVwZpqqsntaW11CuYkdbklSXQ5tt0NiRJtGZoSmRISlL6cx0knEVB7oy1BUF0MEYsfpq7Pp5qPLpCOViSwNdNpUN+7pIuYqV1eV0dinaki7b25JsaujESbuEoza2KelMuzQlHCwpaE05OXeoGU+RVr7b2faUS0faIxwtI9mc6uPmMGBKOlMu7WmXtoRDe8ql1TMprV1MSgaI1KYJlFajM0mM4nLkczty+qY79XiSWHQ5GldpWlvSVIRMqmNVxIMVNHa5hO1qLCkom1dFhzKovPxvfRe5Xa2Ur3gLISXpuAlv7yUUMqmtDONlFFppItW+m9p6pwWBYG/K6eNPf1ZJgNjUYoQQWPvjNLamiLuKqoBBQ6pn5qE0FqC1V1sVqiyBrl6uKkWPCh2ZNRtj6nza0wqRdQMbMgUhO0Zb0iMYKsboPIB0kuBlfLe1UqLNAF0pl5SrqImWYUT8GBrKcfGa92EEIpDuorwczl9YxYKKCBHLf2+mxmxkOk5JsBjaFXZJDJr7tq/lAQMv1LNepLfKXxs0+9yfkAZW/TxEIESIJticlUWDNoMYyvfLXxqyOH5aMbNLw8wsCXL23ArmV0RBpRAlVSjDIuM5uXe/MhYgFjCYWRom5SosKTCloDxsETQFpUGDxXVFGFKwqDKKjDfi7d2MZVq8Y24F21sSOEoRDVokHY9g2MbzFLEpcyiP2JQFTUKmoChosa0lQUfaoyJsUhqyqAhb1BcHqYzY1BfZVIdNlMZ3UepFMKRAaIVMdSDTXehUB0XBIoz2BjKpBDIYRtsh7MoqyoIGi2v9tqs0bHPSzFKeWN/IwtoiPKX5a8QmEDyFjgPNVNTFMC2DTNL127KwRTRo5vorUnGqijoQFcXEMx4ZT+eUxSnFQSxDUhWxCRqSKUUBSrx2zphWTDwTZUGFX78rgoLTp5UQT3uUh02KAwZFif2w4w0yzftoXb8Dq6Ia07QojVUjlELG9xOLVjK9OEJ5yKIkaCCF/4yX1sSoi1nI9U9wzOKl4NkPwu7fAQJ90ve495Xr+OLFsHevf8oll8Ctt7ps2LCBcHj2hIpbACKRCFdddRVXXXUVjY2NrF69mrvuuouXXnqJhx56iIceeohIJMJ73/terr76as477zzMCQg7PKIR/Xe84x15/4biH/7hH5gxYwZCCN58883c/sbGRi666CLmzp3LkiVLeOaZHsUkkUhw1VVXMWfOHObNm8dvf/vb3DGlFJ/97GeZPXs2c+bM4Y477hjJbfQwjMEmbxjnaDGwGOUwPrNT7tAjgwOCzkDe4Bj96fazP2LMoVeSD6dMxCEu1hbDyD+fz+nhDGqE7KFfsIx7aKO/xjDeJJ3nuWWGUQcGS1oP+mMgg1VHdZCR4oOhnaEXfzpD2ZmTfyS3v0/yfNjm0AUu8jmL7mXGMxjGsIbIBpbbUL7xD488z6n7g30k2cqB78Bw2qohzxlWNRr8pN7J91nY1iuWxVgRsg6trTLG8Hnnrbv9MIeRv3eIBdcdg+DgaQ/cp92h24XDfZaTVp84HDJt8PgFvpIvbXbW38c5n7iOD37QV/JnzYI//hH+8AeYXdDvJyVVVVV89rOf5cUXX2Tjxo189atfZfbs2XR1dXHXXXdx0UUXMXXqVD7/+c/zyiuv+HEnxolhKfrXXXfdYZ1z+eWX88wzzzB9+vQ++//pn/6JU089lU2bNvGzn/2MD33oQ7iu7w/6tttuIxAIsHnzZh5++GGuu+46Wlv9MaC77rqLdevWsXHjRl566SVuvfVW3n777eHcylHBc3vi3Cnq+I83Oti4O78t2IY2h/vnncSdyTJ27W/mwSbB95/eQCYb3GiseLDd5vb7Hsp5N3E9xVPHLee2ta38tbngQWM02Zro6eh3Zvq+yoXp3LGlV7yscc1vsrJnOGuPD1JYg93fZPdmUWAgOzoy3BWo5z9eOcDWxrZRT/+o0ycSe+DRlXDgabRZxPfWPcyssy/nqacgGISvfx3eegve9a7xE6nA4TF37lxuvvlmNm3axPPPP89nPvMZysvL2b9/P//5n//JSSedxKJFi/jGN77Bvn1jv95rWHMI//d//8eSJUsOes7jjz8+6LGzzjor7/777ruPbdu2AbBixQqqq6t55plnOPvss1m9ejU///nPAZg5cyZnnXUW999/P9dccw2rV6/mU5/6FIZhUFZWxhVXXMG9997LzTffnDefdDpNOt3TE8Xj8YPey2Rnc2saLQSOgq37mpmZZx3etriLJw08YPu+A2xISMBh945tTCsbu8APm9MGpLvYur+NJdEYLYkMneEIaNgS91hWcPs1akQNTafnK0JlZn8tShzkV4HRIhkMYUejqOzMjMoG0kqVFgEC6XgYjofOOMhwkETIzJ2TiUZRMoDhKjK2xEg6eK2dCNuiKxo9aL6614jvZHi2Vp4hI880SYZCud9CiJyu74b6BxybDHdRYDTY0ZHBERKUZltjO9OHvmRETFZ9wnGcQ3IHazx/LbLdn5n43zf+Pz77Dd9K4oILFN/7nseMGWTT7/7f6fP/kcSxKPvy5ctZvnw5t956K/feey833HADTU1NvP322/zzP/8z//M//8Nbb72V91rrUC0z+jEsRX/VqlWsWbPmoOdcdNFFI8q4ubkZpRSVlT1u4WbMmMHOnX4giJ07d/b5Yh/q2MsvvzxoXrfccgtf+9rXRiTfZKa3Sje86Z9e54zTdFEgOx2ux23M89jD6KUb9V+QafazJer/+1iiyNA0uaOrSPYuz/bSHjeRuSGEWt+7j0nfRjbe+5yyMJSBDaSBIJDatBtrSgWZUJDeHGzB7fBMjcaWfOZ8HTOmoOyejsqsLCazsxGkJD6jrzed3mYwvU1SjGGYKRaYzIxP+z8Z9IlHHnmEcHjkXr1mO1NYhIHE44MLb2Dhv/4v3/q/G3js5Xdz553rOPXU/CO+jz766IjzmiwcK7K7rr+eYu3ataxdu5bNmzf30dlM02T+/Pk8+OCDea+/9NJLD1teGKai/7Of/WxUMutP/2nZ/kpr7+MjOdafG2+8kS984Qu533v27GHRokUjlvdIou/HwPjluyqWoXPGEmZVlQ4QZDxt0o4F3lEGf93eSqi8mONDLr1HRWvKillKnA4sqmZNp640NnhCRznnFrus7TJYdvrpo5bmvKoYG19sojOj8TIKlV1xG6n2p6w6dnWAgLZZfSPpFjccoLgsAAiSzV0cqK3pc1xYJsL0lVsJlFhw3vxaAh37STe1UDlzGmrPbnYfSGGGLKZYLgHz0CL9jiZ1AXi9s+++3ko+0LOmwJB9FmfMtD2WLpiW+z2nrEdZCh2C4lRgYtGDbI81E61PXHDBBRQVHUqcjovxEjehN34XufWnnDBjLfd+9iq27J/FbQ98kfu2fYRvf8em+xvGcRweffRRzj///FEb8R0vjnbZtdZs3rw5F133ySefpLOzb8O4aNEizj//fFatWsXKlSsP6eNwpIz/8t8s5eXlgB92uPsrfMeOHdTX1wNQX1/P9u3b+xy7+OKL+xxbsWLFgOvyEQgECAR6poo7Ovr7pD6y6N0QjbQhHeuGd1HII3by8Yi2hnHJ71hmTgRCzdupnbcE7Wl6K/pCCFYQRxiSqkVnDu6/8Big1tbU2i6x+lrcUUozZJmc1L6H+O52kq0p0h3+IsSZq/yVcm89+iZSCF44bRnW8XNy181/dg3zzpmJkJLdr27nyVgROtqvoc8+qqumQm3YwCyP4GYEZ8b3MG3W8RzYs56y19+maFqMSE3JKN3R4VHSy3QsrF0S4iBdS/b+pFZc4+4mWlVJpKY4dzgwjIXWBSYxE6DpTwZ9wrKsQ1dei2fDiv+C478CG29Hb/gus6u38v1rr2N/+8389Pp/YNGl13HZFT2zh4eV3wRzNMne2trK448/ziOPPMIjjzzC9u3b+5xfUVHB+eefzwUXXMD5559P3QTEBpnQFvX9738/t99+OwBr1qyhoaGBM888c8Cxbdu28dRTT/Ge97wnd+yHP/whnufR0tLC6tWrufLKK0cuwDB0H2MY54g8XmCG480kOIwObUjPCoPlMwyPJ3kZhteE4ZSJ9ob22pD3umHkTx4vR8PpT5KZodU8+xCdkufzQNEfkcfjy3C8xxyq13YzNLQHo+F4XMmHsIZO2xqG55B8HjicYbjlGI63Ip3vHRiGKYg3jHdX5EnHy+eppH9SQ/3unccQ+R0SauA7MJy2aiTemUZao4zgcOrpCBMdAclheJjJx6F6tBkOeetuP/J6ZOvHoXoGCg/DE1E+a8DheE0bq2c54frEaBAoh+O+grhsByz/LmlzOtXFjXz5XTdxXryeP3ztepp27ZkY2QoAvjnOs88+y1e/+lVOO+00KioquPzyy/nRj37E9u3bsSyLc845h1tuuYVXXnkl52v/mmuumRAlH8ZpRP8zn/kM999/Pw0NDaxatYpoNMrmzZv51re+xYc//GHmzp2Lbdv88pe/zPkYvf7667n22muZM2cOUkpuv/12ysrKAPjwhz/MmjVrcuGGr7/+ehYuXDhiucJ3foVXX9xK1/4uAkUBln76fGQwjEolKLKDXHji2ehsJ6SCMf5m7gyshvVcfvYMZLIdmWik5c7/oLkjwcxTT2berOPIvPZX3OYGLlh+Dg3fv4v2LXspXVhPx7Z9lC+ZSaAkRrotTri2mvlnvhfZ1U7z/XeTbusk1dzO9EgMnUmh2pu5cOVVzClbQGXYpEhkQBoYrTt5sqkNwv5iva6N69n13A6MYIDKeBup5nbsWATlSnJdrtfTuYdNiZnpBC+7oMSwfLeP6axf/Wg5CIFMd6IALU085fukNpWL1iYasLULSmEJiZYmwnXQyS6EIRFa4TY34EkD1dWz8FkD2lO+D2/DJpH2KLJNZHE5MlJEZNkK1IKzEG4K6WZ440CSpkSG9pSb61ST2sCwY1gBaG13UEpTHrGxs71HTTSAbQhcpZECLEMwtTREVSxAcdhianEIQ/hKqNL+6OHUogCG8G2dO9IuRUGLiCWxtEvEMjCzqrZtCJSWuEqjDYsl9aUka4s4Y3Y5dTETUwo8pTHSndhGCBzfb3dJ0CTjaZpcTVPCoSPll33AlOxoTuA6HlbAQCuNqzyaEhmCpqQqFqA0ZKE1eNEKMuFyzHAplmGgDRs7FWfW7EXI6YtBmig7QiJYRnta8edtLVzyqW8htOb/dnXgKM3ra9v5xT0PsmzlfM5ZWMUrv7qbQKyM1VzI3k17aCorZV9JBztff4tfRW1qowF+/fJudm1t5dHqGEumFJGsijL/3deRtiJsa8ugtKZ65hTa0x4/+8urCCE4s34Zf1jXwO7WJFsbO9m7vY32xhZMq5bGaIrNTV20p112hm12tCbwlMZTGkdp6ouDvLS9lR3NXRQHTeqLg7zWEOfZTU1Egya7d3eQSbs0d2YI2QZNTQne3tfhx08IWmxrbWZhZQnFwQoCEYPqE08gdppBe9rjT7vaaW9oY0tjJxv3+/WyLZ5mdm0RZ8+rZN2+7by0pZkZVVGKQxbza2Ls70jxzvmzCZgSu3wmtdNPwTYEzWmPOf88G92yD9zsIq09W7BnLYZIKVMveQ0ZKyX98gbebOrxdPWO+7+PUTkL4aaY0bKTNf/7EJ299MzqkgBxy19EHz/jakrraml2FFUhg1kr3qKpfCE1C0+lcuULmHNPBClxymexudPjFy/uoqYkSFHAZGlNERHboKEzjSoJUlZzHHviDoa0qSkrJVhcx1tNaV7b30HUNllaE6WyZDYZpSmbtwQ5fTGZitkYnU00pjTbWxJURWzaUy5SCEpCJpVFEdpSHmbNQsJL98MjL/lNSsCGzEBFNWoZpAxByDZIAdIwmHL5B6G4Cqd8Fo5WmIEowk3D0/6iSssQyGQ70WAVAaeLWWUhpBAsrAxTbbksryuivsjG3PkWqiuOGa2gNlqJFoKA4ZurVYRNorZBkS0pi29HpuLoQATtmciWFlbNXsLyKcWcUuah31hDZudGzHgbK0/5EMdVxYgFJKtmleMozfL6EixDEjAll80tgb/cjYq3cdFp7+L8FbWYLdvRSYuaulrM9j3ooInsbCf9wvOESqr8vqSjmcWLT8XZsIkd9z9A8ew63ESKcE05RiBA09vb2fP8JsLlIWZcvIt9z7xOfVE5ly5/F3unxCgNGoSEx6pZ5UQtiWkINiyo4pXj2rFNybkzyzEkbGpOMrMkRE3Ub5tCThxee5C2V14gMm8BtXOWUhUuRRX7cqWKwkwtsqmOWJhdTf5zMAycJ35N7dIzqZUmcyL+4mrnsXuZe9yZ6GAM0dSAam8mtWEt8Z37aW+TEPPTdJsbsBrWo0NFEG/G8FzKi2spjcVAK4RyEW4SokXE3A7adm4YtL/uZrLqE6OKGYH5nyUw91M4W1bT8vS3qA69yXvm3kbmmf+ipu2d6PZZUHHcxMp5jLBlyxYeeugh7rrrLj7ykY8MsApZuHAhF1xwARdccAHveMc7iEQml9eRcVH0b7/99tzXdG+qq6t55JFH8l4TiURYvXp13mOGYeRN71hhpDOjk8Z8ZtIIUqDA+NB/8HJApNeDjW4eQdZWeVzfFzhGGetm/pjSJ6SFNfdqqud8iC3PPETbc//G8mlPc0rFH1AP/x+pqssInnADVJwy0ZIeVbS3t/PEE0/w8MMP88gjj7B169Y+x8vKyvqY40ybNm2QlCYHI1L0//rXv/LlL3+ZrVu35vzTAgMK4UjhWRUjfvwJqIyHMCXrd2uWVbhMMzWP7U8zO7ydFYvnDXp9xnH5QWsMjyKmvrGfU4wKuq1xldL8hWKapxRhOjZeRQSzI8BUBU2JEGJnmovaOygzNXfFY3TIEkpLyilds5lVcyopHSTPlvY4HeEe13sbRJTmkpkIKTiwWQNFRDt63C4CPP36ptx2MpU8jBIbOVvbekYz9yYP1QilQIGjk4Pr+Ue3ynys+8jf2Zbkz5FpiPYADW4UtsHyUpcWSmldvAzDkjRv1kQq5lP52h7OntoIJRO/8HowtIZfe+W0xnrsl19p01zoqYm1ET4aEILZKy/GOfVifnLb01Q1f5v3nPh/BA/8Dh75HbrqbMSiG6D2wkIQlUPAdV1efvnlnJ39Cy+8gNfL/Ng0TU4//XSmTZvG3//937NixQqMQwwKOhGMSNH/27/9W/7+7/+e00477Yi6ycHYpEMEi3rc2LWnIH0gQ3sUNscVm19ef1BF/43t+/CynfHujjTqrS3MmeMvrDvQ3slGIhDCH+II2OBBQzuABY7irS07mF9dTIf2y7LVCtF6IM6bUZuVFfnLd93W3QP2NVl9F/P1VvIHMM6j6tt7KfrFthh/AQoUmEBG2uVqIY/4N2Swe9ZS+EpIQREB4K9729lvhem9QvyVVgWEoKgn/kCXadPVluT1N99iyZmTV9FvcqCVgQss9zS3My1aMv4CHYVYFvztF0/ljjv+H3/zs1t496zbuPqMu7Aan4TGJ2HKxXD2AxMt5hHF+vXrOffcc2loaOizf/78+X3McYLBIA8++CDLly8/4vTfESn6hmHwyU9+cqxkmTBKGhpxIiG6YjEUkB7m2qxEqu/C0d4L1npv14k0qZRLc6Cv3ZZSGpVnQdXB1r152YW/ZjJFWboLsziMyrg0BIbnPnG8V7rLXiuvCqM6BY51htJx24t7vM8csSPeg4idKYoils1lJLG5j7QOdSQMucBZ6z4VRuVx+jCZ6HM7yl+LBSNbyF1geMyYEeejv1vJokV3srO5nq++7+v+gfimg19YYACtra3s378/9zsWi/GTn/yEK664os95R2KQr25GpHudccYZvPrqq2Mly4RgeB7BRJJQMmvSMkptUncyhvKICUXEy+9NJl92bcmDVKjsBWYqQ9DJEMMjqhzkEI1phXQJmJLacV713ZLsGa4qNPcFjjWmF9mI7LtZFzEw+ymuMwZxoVwSDRMrLhlj6UaP8qIIUe0iBSyvChGmZ7SktjSKmcfj1KyKwQcnlkY8ApbJshNOHBN5JwMHa7KFUkScdN+dk7wB7S1eMJ0mkHViUNDzx4bv/1cb33nf+3uU/JpVsOqpiRXqCOT0009nzZo1XH755QghiMfjXHnllZx77rk8+uijR0X8n2GN6K9YsQIhBI7j8JOf/IT58+cTDPaYvLz00ktjJuB4cziPtE99yG4POSaXpxJVRAZ3UdYTaVb32+/zgaJOKotD/KpR0pD2c59ZU85FXVuIrTiVRHkFqMRQUo0aM0sCvN7o53dahQkMw31mgQJHCYvKg8T++jKBylIq5s4dMEp/QZXgFLeZ8jNW8ua3f0IynqFycTWzr7mR/UeQn2nbNLjc3UvFuWcjEx1M37WJRFsnRTNqqDr3TN7+z+/x+hsdbLz4LAACKN63bPqg6Z1TqnjX2ReSqqqCeMOg5x1LHPnqRoHRonPbTj5Q9PdMm7kbpU3kCd+Ehf+Y1/V0gaFZvnw5v/rVr3j77be59dZb+eUvf8kTTzzBE088wfLly7nxxht597vfPdFiHjLDUvRvu+22sZZjAhmb5nO4qeY776CL8Ib4gDDRmKKfD24hEOLQfSofHkeo+UGBAqOEgcYSelBTHEv48QwMrTCVh4XuY/J2pCABU0pUdttCY2Vvw0AjnZ7ZPVMMbZokhxGH4UhmxD3PJB9ZHEw6XfhEGT2Ui/PKV/lAxbcwpGJf51xq3ncPVJw00ZIdFSxYsIA777yTm2++mX//93/nxz/+Ma+88gqXX355zmb/SIzqOyxF/x3veAcAd955J9dee22fY3feeWfu+JGI52kaOzKEMaEK3GSaREccgn6kveSzf8DtSmEXx8C02PfSG5QvnomXytDZ6AA9HnBUVwd7HnqRdGsXalknEEF5imRLO2kX6D9NH2/GdQ4MkEkn46T3xYkd2MysmoVYjRsh0YYIRlGtvi2ZpzRu0sXpSvVRCuxoGLu6FtHSCumsCZAQhGvKEaZNyJSQzEB20Z8yLITyCJiAkwKtQBioZBfSsFDpTixboeww2rAxhMBCIROt2Zv20HYIDANZXE4wEkPZUUQogk6nkL1eCKO4HEPGEZaN8DIETBO0wiitQoVLMSKlJIwAphVEummsjKY2FqAqEuCchVUsrIwSlBoHgfAylAZNTj69nlOnllBpezilQSrDJqaAlKcJCY8psQCnTS8lbBkETUlxwDedsKSgNGhgptogVkTEMogFJLYhmFESImZLRDpOcSCGTMfRhk3IChMwNBlPI7wMp8wsI2obLKuJEnY6wHOpjlQgW/dSWjqdtKeI2n6anvZdiwdNiQqYhC2DsCU5YXoJtimZWx1ld0uSpONRHfGjLlaEbYqCBjFbQkoihUALAy9SjgoW+z6oy2ewX4XwtCbhKPbvT7CvM83DbzZQGrSwDMmTm5rIeIrXNzdz4O0X2F5byRPZZxKpnIYdMimuriBaEiQYsQiX1+E6iq0tCRJJB8MUNHdlSLuK/Z0ZiuwQHYkM6w50knYVM0pCJBwPN6PwPMW2tiQ7mhPsa0uS6MqglaaoopTKqgjzqmNUZxfAd6ScPoGvEo5HU8Ih6Xh4SrO/M43jaXY2J+hoS5EKGCQ6/fSctJv7cNVKs689RWM8zV82HODtsjjlEZuQbTC1NERxwOTtxk5e2NKMIQXNrUla9nUipMB1PFJdDsmMy76WJAd2d5BKOESLAhyIp2hLOEwpDhIw/XozoyREcdDk7aYujq+ejlE7A0dpDAn1i8/jQNoj4ShKTllAPKNgDtSd9UG0NNmf1GxqSdK4uZOQZVAbm8Pi915PEYoN7S7Hff94RCaBUzWPe9Y38+enNzK3OkpnyuXk6aWsmLKAJ7a0sqKujqpTrmRbWwbLEOzZ2clr+zp49q39lJWFmF4eIRowKQ6YNCUcDCHY3eE/r7BlcFx1lJBl8vzuZrY2dlFbEqQ6YpN0FE0Jh7NnLSVZOoOdrRligRLWNnSyZlsLFRGbaMD01xbpIKmiCC2pDElXM23aiUz5QAp3xkkYqTi185b5MTSqptNWNJ05n/Ww33qdtzd1+W1BpIh9c1eRdBWtSZf2XV2UhSxmlc0lYgqipyXwyuppT3lYsSq6EopYNEqyM0VnxiXtanTQImj4cSt0JoWMleAEomghEMojZEmChsD20kQsiyIL9L4tZJobsKbORgYjaNchYArqigIY8e3ocAyzsg4hJUUBScQShFMtELDRZoDIrDLC3enufpX4np2kmtspjvwFpEGyuYHAnOOxUnEym19HFpfjNDfQtn4zJQtBp1O0bdpJiZMh09wM9MyM90e5CnpN7opkG3VWGtm2H9HWwKxpSxHJdmQqTmnNbGaWVlMaNAhvfxGvvZk5U+ZAcxPuWzvBtHH372Tfc6+R6UhQqRTBA37gJat2BiiPoGlTX1VH+q2XaNqwjXBVKXZ5GTv++BemdnX6fd6eA6iMS+NrO6lbuYHieTNJNzaRaotzYHcbVPnOKxzHw7AVGJLU+r/ipA6g2puRsRKM0irsiilow4ZEGyreRlnNTLyd6znw3CuDlscxT+c29HMfItz0PEi475VruPDL/40ojw59bYERUV9fz3/9139x00038d3vfpf//u//ZsOGDWzYsIHf//73fPGLX+RjH/sY4fAgtpeTjBENmXzve98b1r4jk+6h8r6jTGIEo0r5R+ez/+cZjRGmObyxjt52vcMcHOk9WpaTwRz4FTpArnxTf8Ywvl7zRMIV/b9680R7FP0ideYL9tg/AqOAgaNb+eTut3gt34yGNvqaSXlaD2/mo/9o5DAWyuVblJYvuuZorcHMdx/9I6yqPLbT+aKwxgJ9xwRknpkar1944OFEDjWkOKSZJpknLGf//PLlH8gTiVj3Oy/fSPOwokHnud1hPcv+dTdPXbLy3O9oR7TtjTEMwQfYruapN2KwSNe9ks8XIVw7Q5v4KXGIC3X7yZnvXvNGph0lswg9nDDaw0ooT3ua77xhRFXuf79mnmjF/eU2g/awIrCL/guq8/Sp2hiXkD5HLtv/Fx5ahmh6nvZEER+8/W6mvPfHFBeU/DGlsrKSf/mXf2Hnzp1885vfpKSkhF27dvG5z32O6dOn86//+q+0tbVNtJhDMqy36+WXX+bFF1+kqamJO+64I7e/vb2dTOYIt7nWB/05IQxLNxjJ/gn03iEG/VGgQIFjiT7mhIXG4Cik8ExHHScOL38Wtv0CgOc3n85V/303Z16Y4JRTJoO2cmxQVFTEF7/4RebMmUNjYyP//u//zrZt27jpppv41re+xac//Wk+//nPU1NTM9Gi5mVYQxR79uzh5ZdfpqurizVr1uT+Ghoa+PnPfz7GIo4vndLirazZDsATBxT3Nlm83OKxP+nxUKCW+/eDo+Flr6+7zKYMPBybzqNTF/Kb+PBCIG9uyRfAavAGc39netBjg6UwWZrfySJHgQIFJphjtDHYn1L8kXLu35li50HMdvJxuCb6aU/zRHQqv6k/gdtbi1gfHzrBTkfxl+o5rN4LT8Ytfi+quN+u5eklJ3BfZ5SnG33z0M1egEer5uZN44/71LBm9xIZl8etypHd1NFM8xp46ETY9gs0kh8+91VWfu0pZi6p533vK7jRnAhs2+YTn/gEGzdu5K677mLJkiXE43FuvfVWZsyYwXXXXce2bdsmWswBDGtE/9JLL+XSSy/loYce4p3vfOdYyzSuiKxvVOm4A/wWA7zSqgHJ/kaPkzxBoxGiMQF7g4J8vdWBfsGrchZBg7TSe+M9irtUCiXlQQfgQ1bWN7GV/9FNuv5z0glUoECBiWAyDj6MN+vaFQ0EaOjoMZkTWqH7mQVpwDX7t/GHp+nvTmr22D0uTR/cDwuHCL+yrdOjIVQMadiD6T84AUQCoKCpyWV5Jbyh+vZ7VmscGbLIGCYpBY0Jh+oh5NvWkmCvDA1x1jHC3ofgqfeAdiE8jZ+uu5tP3b6S8nL42c8cXnttogU8tjFNkw996ENcddVVPPDAA3zzm9/khRde4Pvf/z4/+tGP+NGPfjRgPetEMiKjw1WrVnHbbbdx0UUX8c53vpPvfOc7R7TpjpVOY27bC4B0PaLuwUfLezeznu7pqiqaBi6o7SbW1AIMrujL3gFRhrEeoNt+WGTtJQ8EomwNlaInaXCdwhR9gQIFCvjk6wWmd7UMjLMi5YA2/XANNYYxqD6sa8pUmvK21txvDXRb6kdTCcr2NmB0dFGV6Og5ZwzXkxyVtL7mK/lWEbxzLX/660oAPvIRGOdQOAUOgpSSSy65hOeee47//d//BcDzPNauXTuxgvVjRIr+Jz/5SZ5++mk+/elP86lPfYq//OUvfPrTnx4r2cacQCKF6NWSpYdYEDRYM2Q7zuDzqtn9+ZT4quIImTyLmeyDrPxrTvgdQrerurgZQGVHgyImhLLrnspDPQthU5mJi+hWHfM9yEghqAgfWS6pChQoMHoUByRWthWtqqyYYGkmhnYnz+J7oMsYuPi1f5/R1pnPzHNsyderRZRHKJN/UCzipLFTaQRZF6vZBcMFFX6EzP4omFFwOqDxSS691N/9pz9Nei+rxyTJZJLvfOc7AMybN4+bb755YgXqx4iWuj///POsW7cuN6r87ne/m+OOO25MBJuUjNILdo11AKJhptZV4LU28fsNTX2OT4+aEM9/bU00wL5e5j7ddj7vdPczb95UZMqfEj5vRgmvNfqu7FYsmAn7J2aub1ldKZG/vsi0976XQFcr3vCWGBQoUOAoI2gI/jbWjldaQvW7LmT/MaiwTAlJNncO9HTVm3I3SbM50IRlZk3ZYeU9esU9MCU9+KHDSPUYJlgJ8/8fvPUNeP0rvOeSS7Ftg/Xr4c03J1q4Ar1RSvGRj3yENWvWUF5ezgMPPEBZ2eG9q6PNiEb06+rqSKVSud+ZTIapU6cOed0//MM/MGPGDIQQvJmnlv7iF79ACMEf//jH3L5EIsFVV13FnDlzmDdvHr/97W9zx5RSfPazn2X27NnMmTOnjyegw+PgZiZ5At+OOEmJxhaaqPRTyGdxc1ArHJE//xLtYPdyU9g7jaEC04w1Ee0Rtguj+QUKHOvYAspsMeFt0mTG7B4FH1BG419mwxk9zvZkwzhndDhy9InDZOE/glUC7W9R3Laa7uWRv/710R1I7kjjy1/+Mr/5zW+wbZvf/e53zJkzZ6JFGsCIasysWbM47bTTuOWWW7jllls444wzWLRoEXfcccdBX47LL7+cZ555hunTB4Y83717Nz/84Q859dRT++y/7bbbCAQCbN68mYcffpjrrruO1lbfLvCuu+5i3bp1bNy4kZdeeolbb72Vt99+eyS3kkUf5NdokQ3qM0odW2+b98IISIECBQocXYzIdfIIGFWTj2GnNfq91OTVJ0YZuwQWftHffv2rXHmFb677q1/JgvnOJOEnP/kJ3/rWtwD46U9/ysqVKydYovyMyHTHcRxOOOEENm7cCMDSpUtpb29nzZo1Bx2hOeusswY99olPfIL/+I//4IYbbuizf/Xq1TnXnTNnzuSss87i/vvv55prrmH16tV86lOfwjAMysrKuOKKK7j33nsHtYtKp9Ok0z02I/G4bxcTLI9SU+rbkFuRIFu0edAVSzJWAi2+mU1g2kxo3Q1A8exq9iby33/R9HKKo0FCrsv+uB+Aq/KCi0Ea6NIpmNVJeLuv6U5g3nIipPCiFSAkygojY6DMIDJWCrQTrYpSFi5mX8K/pur8VQSnzgStUMGYv/bgxd8AoCJlhE6+AC9aScpVhEOlCDsDWpNWYAiJRKEDUZTngBBIKVFmEG2H0cJvWJQVJJRdG6BNOxtFV4I0UaFi7Nm+GZcTKsasnY1QLlqa1F6YgprZmGW1mPEmdJHvQi1oCLS2UZFyVDAGtu+S1FMaKSQVIT+YkiFg1ewKYrZEOklMK+RHxg0E+OSZM5kSNRHJFqojFZjpDlAuISuMcBJUhUuI2QYRyx9FDHR/2mqFcBLIdCdFAQhFQ5goQqZFxJRYbhLhpCiORBDxLoSR8YN7CYllWAg3zalTiwmYgqqgQLZ3gVaYhgnKxUx3UB6KEdQZgpaJEn4kXEOGcJXGlIKgISgLVbJyehlFQYPOtCLteUyJ+q+lp00ChsDy0qA8DLdnNk1ky16bAQwXUIKQKamM2ERtk3cfP4UZJSFMKTh/QRVKaxbUxghFr+KMuRXMr4piyE8wrzrGSdNL6Ug5FAUtwpbBxpOmUhkJsKAiQl1RkHjGY2lNjNKQSSgbXThgCpbVxHCUJmJJlIaPrpqDozRzy0P8zdIptKYcEo5Hc1cG25TMLotQHbGJ2Aae1nhKk3A8rKwtcsQ2sA3Be5bUEM941BcHCZqSirBFZVEA25Qc6PDf4+nlYcKWQWfaJWwZ1BUFcZSmOhbAMiQBU2JJQXHQIpz1VFUWsQlbBvGMy84m/8VxlaY8alNfGibheOxtS1JZFKAsaBEwJQlHMbc8jCUlCcejPGxhSUFtNIDS4ChFylFYhqA15ZH2FBlPE88okq5CaZAYCAGdGYUUUBT003A8TVPCj/DblnRpragjWCxoSri5e6yIBqiIBghbEkdpqiI2noL2tEfKVXhaYxmS+pIQ5yytpSxqUxMNUF8cJGwZRG2T4qBJ2lXUFQWxsgHKtIa6WJCyoEVpyKIibCMEhC2JVzyFZDZisas0xQGTs+ZXMq3YjwrseJqSkImnwZQChaYjoyipW0K7Z2IGyojUFSPcNF4gSmvcITrnNIy6RZSe3IU2bParMPs7HVqSDmlPIYXA05qOtEfKlVTOOJG4DJPKeHQ4Ajd7zwBR28TTms6Mh9Ia144iqmaj7TBdIoib9jCkwPUUGcC0AihXkdaSSN18rMp6v23NtmFuxn8f3eI6ZLAYc8o88DJ0edpXrq1grs0IWyYRS2IJUNEKoqecQyjehlle40fnLS5H1sxE2WGs+nkQLsEsr6EsWoI1bS4mm+DA5j7tfXRqNbT1mPMEqyqhNYGQou8ssh1GSxNthRExv2/AsNCmhXCSVISKMJMt6HQKXAe6Wv3oxPjBC0W0CGjpk7dZWYcIRSDZBcpDdXWAlBhBG7s4hkgFgb4LhQ3bwCjtMS0K1E1FdrRAWhMqL8IKCELJDMGKIoQrQYO0g8hAwA/aqBTa8e34VTqFdjPIzha02zd44mBMVn3CcRwcZ5TXw82+DvPt/0R0buaSJT8jGPwYmzcLtm0rGv28xoFumY8G2R9//PHcGtWbbrqJK6+8ctTvy+ofdPQQGZGi/7Of/WxUMu3m+9//PosXL+aUU04ZcGznzp19vthnzJjBzp07Bz328ssvD5rPLbfcwte+9rXDlrf3V7Qe7kjFwU6TYxgNcDhRHEdsN3SYjNIwhBhGFNp8DC+66fgOlRyKJ4yjCXmI9W04kVsPNb9DTXssmYwyjRaWFHgT+B4cctGOUqTcMWUEkd37XNYdzXaEz2WwfnE4yRxuFZhofeKRRx4hHA7nueLwmM0lLOFnyLf+P1acuIqnn5vJs8/WMWvWo6Oe13jx6KNHtuy7du3ihhtuwHVdzjrrLJYvX86DDz446nld2r0K+zAZkabZ0dHBV77yFbZv387vf/971q1bx2uvvcZVV1014oy3bdvGj3/8Y5599tlBz+k9S9BfATvYsf7ceOONfOELX8j93rNnD4sWLZoUjh/HrP8+ihWDAgUKFDjWGMm6hpTjEeo3ipCvmzyQcIgFXNy0i6s0kaCL62naXIGd0XS5Qw+qtKY9WjMH74NbEw7VlkE86VAezn/u4bjXnAz6xAUXXEBRUdFIRR8a7xz0g38inNrHbdf9kVOe+yzPPFPHL34xFfsIW/vmOA6PPvoo559//qiNVo8X3bIvW7aMz3/+8yQSCU4//XT++Mc/EgyOLPjdeDMiRf9Tn/oUixYt4rHHHgP8KbAPfvCDh6ToP//88+zdu5eFCxcC0NDQwEc/+lG+8Y1v8PGPf5z6+nq2b99OZaVv5rFjxw4uvvhigNyxFStW5I7V19cPmlcgECAQCOR+d3R0DHruwdjfkchtr2s4tDQG+pUf2HgLwaDDG4M19v13F9T8AgUKFDjy6G7LD1XtPRBP8NNntlBXfoCrT56V2//EjvYB59752n5gf689u7P/B6HFAYY2RfjF+rbc9mC92wNvN/BAdrs03MhnLjmzz3laax7e3DxkXoMxGfQJy7LGRnm1LFhyE7z8GU4K3kJp0UfZvz/CG2+4nHrqGFoFjCFjVlZjTCaT4aqrrmLbtm3MmjWL+++/n1hsiKhzk4ARzeu9/fbb3HTTTbkHFAqFDtnU4YMf/CANDQ1s376d7du3c+qpp/LTn/6Uj3/84wC8//3v5/bbbwf8r/WnnnqK97znPbljP/zhD/E8j5aWFlavXs2VV145Yhlc3bdZcoawoyiP9ny1GXJ4qrTGt3NNdw+MjJlCPnhKx7h1SIECBQoc8Qx3QH9TQxue1uxs6qvYW8OxXRwGATQSKDY1UuD/AUGpCYq+vU2xNbD3aU0MDLJ5uCaTk0GfGFNmfxRCU5DpfXzz478E4Ne/LgznjTe//vWvef755ykpKeGBBx6gouLIiAcyIkXftvsG9Ugmk8N6QT/zmc8wdepUdu/ezapVq4blfuj6668nmUwyZ84cLrzwQm6//facb9IPf/jDzJ8/n3nz5rFixQquv/763Jf8SLB6NUrtyhhSIXZ7GZL2Hpk/2PfBLtdkXbvHtq5BThjhu9rd2CcxaPd6udMccF7PnkO1gy5QoECBAmPL/lR+8xjdr1UfreVDU4NDJxQUmuI8A64B4S8oB6gPwXGVYY4rD7Kk1GRuWA9YB1Vtw+LywMCEDoPJqk+MKR3rIeXPvMxdNg2AP/3pCFgjcpRhmv4MykknncSCBQsmWJrhM6J5n3POOYdvfvObpNNpnnzySb7zne9w2WWXDXnd7bffnvuaHownn3yyz+9IJMLq1avznmsYxpDpjZRUr2+euphNY5eDbZnMqy5h/b4WltSVs72px1xnflWMNxv8EZODhz/pi+v1bdTrKkr6/J5eXU5ROARdKfLR3uVHR7RRpJWR2x8w+770QggWVUVpTClm1E+Fzn0jkLJAgQIFCow2c2rLefntbdSUFbNxn+8BJ94rWu6c6hI8Z+CIN0AwMDB67oiYxFO7IxHtSNAnRhXlwYsfB+3BtMtZPPd8hNC89ZZg924YRiijAqPEypUrueeee3j88cdpaGigpqZmokUaFiP6JPyXf/kXhBDEYjG+9KUvcfLJJ/OVr3xlrGQbc3oPPnQ3NKdNK+bDx9fwhVPq+H/vPImLj5/O598xjwuX1FNfFs2dP68qRsgc+Rf1qXPr+vyOBAPccEotX1pewZeWFvHhC09HHsQsqLq0Z7FPt8wn1cby2u6/Z2ENn7pwBcHA6I6oFChQoECBkVNdGuO6k+u54vSBziAumlfJlafMZ1F1/gWdNRWlYy/gGDCs+eRJ/BEy4Wz8b2h5GaxiOOm7lJfD3Ll+DICHH55g2Y4xamtrOfnkk1FKDfrhOBkZkaZqmiY33ngjL774Ii+99BI33XRTbiqjwHhRMMMpUKBAgSOd/otuRb//R5vJrEtPZtkmlK4d8PpN/vYJt0Ko1t88oRGAP/1pogQ7dul2PnP33XdPsCTDZ9iK/po1a7jyyitZsmQJS5Ys4QMf+ABr1qwZS9kmhJE0sodi+n645vLj7fq+QIECBQqMBwdvyAd6bBs7BIUhpQlHa3jp0+B2QeVKmP2x3KHly31F/9FHYZhxxgqMEu9///sxDIM1a9awadOmiRZnWAxrOP7555/n4osv5rrrruOqq65Ca81LL73EhRdeyEMPPZQ3QMWRgFlSRrQ8BlrTHk9DexeichrG4uNBK7QVAuUhAC0N2BYH/Ci2Ys4KxLPbwElhVUyBXfsPmlc3OlKGrj/Oj2AbKkGFijGXhPwgUErhFftf7CJWhQoVoxDIYAzPDoFho4P+tK4RjWGYFrTFkeV1iNnLcbMRHLVhg2EhF5yKZ4fI2DEon4GyI7iOJq0ElpE151F+iBMhBNoMoEIlfhpWEKSJNgMgJEKA0DobZVT7x4REaIU2LHSo2P/iyEZrVZEyUB7asDDmLceLViJCxYhwCdoOo8wAuCqbZ7Gfjy3RWuMhMAyLgKmwpO/hqDxkEjQFKHybRSERymV2aYigIfxojirrCk7IXNTesCkImhLDS5OLytP9ZSSkH+EXMFEIzyFoWBhBA+Eo/5jy/OiThtkTIEf5qzLKQ34kV+EmUVYoFzlXZyP8BiTgaoTnYEiFlCbFASMb+dePKlopBGUhA1sKigMaT1kEDZGNKiwRysnWxYC/T0hfDtWzMiRqdUfS9SObukoTsYsoDhgYAkJmGA3MLg0zuyzC1KIAUdugJhagImxTHDBwlMY2BBKYVRrCkoJYQFIeNvEUxAKSoOFHVbUEGJYfedbLXgfwjhlleFpTGTKJmGEySuOpHm9WRbbENgRmNuKnpzSe7glkZkqBFGBVRnIRd4WA0qBJfXEIISCTXeMSsQxMCd1uvkOmH3RpSiyAFP4jNoQfVdmQgvKwRdr1I6B6WtM1pRgjG43VkpJowI/+nHKLsQ1fTkP46UdtXw7XM3Pyh8wApiHwFGQsX4igKbCkxDP9e7ENv3wCpkQKKA5IAmYQrX35pICQJZFATdTufh0JWZKlNTFmlPiRaIWAqCUpChjMLQ8RMCSWhLoiGwFUhC2mxALMKA0RtgxCliRiSoQQlIVMPwqv0pQETQxJ7vrjqqPZ+/ejKivt34M2TEwFJUEDS8K04gBRu4zioIGVNSs0pV8ORbbMvlICZUUwXY0hBcqwEELiKU3IlGSExIqUo0PFaGlipBWlIZNYwMi9kiHTr2MAXiAKjiJkSgwpCGfrW2nQJGIZRLN1SeFHDDYi5SjDAkflomn70ZF9ZwRB069bXrQSoVyUHUFLA6E1Ee1H0tVWyE9DeQgvgyGy92X47bMWkmC3ut0dgbxqNqLCwzX991NUeHjZe5RmwG9HlYsRq8INRLJtd4XfXojn/HbKsMBzkDUz0VMXITstWN8woO9Q4VKUFYRQMdoO+WlIE2HaaDOAEKDNIERLgV0AyJqZyAoHpAHWTki5GEVlkGodkH5vhGUhLAucZN/9pkWgppKA5yICIYTRa8WuVmjlYVWkQClEKIIQEhcDmnf2SUcXVaEMGxGMYThpHHmY6w+ORnbcC/seAmnDyT/qE6Bt9uxWyso0LS2CF1+EM86YQDmPMaqqqjj//PP505/+xN133z1oBOXJxLBG9G+99VZ+8Ytf8K//+q9cdtllvPe97+WWW27hZz/7GbfccstYyzg+DDZ3OJbD5YeZ9qSe7jzE6LUTziFGuzzUaL1HM8OJ+jvegZiH4xV3mJ5zx5WJ9pxlFBx8DGSUI+OO2yMebj5DnTdcgYcTkXxy92bjT7oZXvmcv734Jiju6+HFMGDVKr/MCuY748+HPvQhwDffOVzXsOPBsFqqdevW5XzO9ubSSy9l3bp1oy7UuJG3ARp5azuiRuqwbXeGua9AgQIFCkxeBrTbQ5juHGY7362QjKcJUIFD5NUvQvoAFC+GRTfkPeWCC/zBpYKiP/5ceumlhEIhNm/ezMsvvzzR4gzJsEx3QqHQoMfC4fCoCTPe5PO6M9ZN4OGmn1/PLzTcBQoUKHAk0b/dzlkUDtqcD6+d39/Sltu+95Fnae9MYJsmbZ2JwS8aJqPd1/zpub/yyrrNo5rmEU/Dn2HrzwEBJ/8YjPxmTeef72stL78MjY1QVTV+Ih7rxGIxLr30Uu69917uvvvuXFTlycqwRvQzmQzr169n3bp1A/4ymfw+f48EHC+PucUI2rF8Li2HcdUhXDOa1xcoUKBAgcnCwBnhQdr4YTb9AavHbn7z7v0caIuzp6nHJt8chh1W2vUImEYu25KoP9hXVTTygb2DmZ0VlPx+KAde+qS/PffTUHnaoKfW1sKyZf72I4+MvWgF+tJtvnPvvffiTvIV0cMa0U8kElx88cV5jx2asjs5sM2egFPxZP4AVcNiAky0NIcpc4ECBQoUmHhGuf+wrYN36xl36BCPpeEgNaUxiiJhTJUhEI6SKnUICDVg/VVjW5x4IoVtGkwpi/b5HmnvStEU7zuTEA4WFt4OSroFOrf623WXDHn6u98Na9fCHXfAhz5U8MA3XiQSCX7wgx8A0N7eTiqVIhqNDnHVxDEsRX/79u1jLMbE072ewj1II1hTWQ5AJOR7t+lM+B4JvBEsxoiEg4cooU/vF1lnVzumHeew0ixQoECBAuOL6/l9jeq/an2MlbXdTW1DniOyHoeioQAq7SGEIBSw0E6mzyJ3pVSf9IrDNtGe8TP2tXaQSPftn6Khw+sDj2pC1TDn47D5R76dfs15IK1BT7/uOrjtNnj+eXj8cTjvvHGU9RilpaWF9773vTz//POEQiHuu+++Sa3kwzAV/WOB7pmJGXWDhzQ+fv5sIsKlsroaAMs0cFxvWO3ySQtmUlVVxeKFC4Y++eCS9mxl3YPMnlZ7mGkWKFCgQIEJods2f7zMMkdxBqF/Uv2/WboXAC+cOZVYKEBlSYwZddWjJ8DRyNJvwq7fQPtbsOG7sPAfBz21thY+8Qn47nfh618vKPpjTVNTE+eccw7r16+npKSEBx54gNNPP32ixRqSgtO0fpiGMegxKSXz62spLYoBEA0Pvki5PxedupRlC+cediThfFNzB5O5QIECBQpMPsLBbCyT8fIEMQi9bfrHihPmz+SCk4/jhHkzKI1Fxjy/I5pAOSz7lr/9xs2Q2HPQ07/0JbBt+Mtf4Kmnxl68Y5X169fzT//0T6xfv566ujqeeeaZI0LJh4Kif+SimeSO9AsUKFCgwFCMt54/tt2GPsivAsNm1t9BxWngdsJfv3DQU+vq4GPZoLlf//o4yHYM8uKLL3LOOefQ1NTEvHnzeO6551i8ePFEizVsxsV05x/+4R/4wx/+wI4dO3jjjTdYsmQJAC+//DKf/exnSaVSpFIp/u7v/o4vfelLgL/Y4aMf/Shr1qxBSsm//du/8b73vQ/w7QI/97nP8eCDDyKE4Atf+ALXXXfdyAUzbUTYjzSLiAOgQ8W56InasHqM94UArdHSBCvoH5P+SLoyA0Nm5RVVo03/OqFcUB6eEUAads/iJs9FBfzZAmHYKDOAUtqPGqttP79uV1uGiXZ1TmYVKvFlwo/i6yqNHS4Fw8JVGtOO4CJRKLTWKO1HDJXC72AMAVoIhDT86KvZyLLdUWYF/v+W4UfG7Y7QqoVESxMhJDoQzeWv7bAfKdEMogwTzwwizQAiG23XVb4MrgbLDKANG4XAcxUGfkRVmbUTFZCLSErvdWBaETLNXERav+BkT3lmo+dKIf3n2OueeqL62rnn6D9j/161kAhpghC5qLha9n1dbENgZntnbdq59LU0c3mjlZ8Pfjlb0sqVuSn8SKRK+1FULaXxlM7VD4HX515ydG9nj5n4eZjSRAo/WqvSBiFT5EzShBDYUjGrNETU9iOQ1hUFiJiSqC37RKgVQmBIiGSjkXZHTDWlQGiN8DKY0gRDog2BIQQSTUnQQGtN2BRIIQkof+re0z2RTy3pn6uFQGt/fYvAVwjMrClaVNMnoqwtdS5qrqP8SLJ2Nkqv0n4etuFHxrUN4UedzRaVIUW23AUZw09Ha03UkkghUNnIsH6UVXA9iWkIrOx1nvaj7krhR5ftlt+Qhi+P50fWBQgYAp2NhuvL5m9bhp+WQGIa/jvbLV93VOGw1RONN2gISoIGIVMSMP1oxSFLEjL9SLOmzN57r3S65TSkIGiIbDn0yOIqjW1oZLacDSkoyl5nSoElybYJ2fdcGrn0yNbdUK9oyL2jz2qtsbKC5O5VeQjlYho2QdPfpxAIw0Jn8wwaIlfphPBltg2RM/cwBD1lYopslOfuyMQC25CAQgpQ0spFnO5+7uDLKdG5uoVh+e2T7JkF7S4rIPveg8bO3TtC+u9v9h0zsu2QliY6WOS/39JEd7/rZsD/bYezbXIAJaQftRZ6tnP+NP3/lB1GBYv8tjMfhu23D9lo5b3vwc8/e3/D6I/6kGeaWBsWOhBGIxCG6UcMBoQZRKBBe2hpDlhfoK0QIhLIpmGDaPa3QyV4scpeecpDDjg2afWJ0URIWHEH/Gk57LwP9n0Uai8Y9PQbboAf/9i303/mGTjzzHGU9SjnT3/6E3/zN39DIpFg7ty5PPnkk9TWHlnm0uMyon/55ZfzzDPPMH369D77P/7xj3PjjTfy6quv8uyzz3LbbbflAnDddtttBAIBNm/ezMMPP8x1111Ha6vvIuyuu+5i3bp1bNy4kZdeeolbb72Vt99++xAk0wO3hjusovXEeBzq7pB6/dt7/4iTG9ZJw6wm/aPDjnLkyMPliIleOwnlHE49OZQIgYf6BnV/AB4KQ5XuZKi1YxVscbB779+W5WtOxrJcxjIasR6ibRRCHFr++dq3Eb273aMEfX5NEoZXAQc4Bh00wvxhCdOHyatPjDKly2Du3/vbL/89eOlBT62vh2uu8bf/5V/GXLJjhrvvvptLLrmERCLBBRdcwNe//nUqKiomWqwRMy4j+medddagx9ra2gDo6urCtm3KysoAWL16NT//+c8BmDlzJmeddRb3338/11xzDatXr+ZTn/oUhmFQVlbGFVdcwb333svNN9+cN490Ok063fOSxOPxQeU5EoNPHXkSFyhQoMCxjeir54+bb8T+H+TjMWA1mv3qZNUnHMfBGW0PeIv+GXPnfYj4Jry3voVaeGMuj/55ffGLcOedJo88InjmGZdTTpl8hlODyT4Z+a//+i+uv/56AD7wgQ/w/e9/n6eeempcZbdGaf3MhHrd+dnPfsall17KTTfdxIEDB/jRj35ETY3v9Wbnzp19vthnzJjBzp07Bz12sDDEt9xyC1/72tcOLszkeycKFChQoMAxwoQN2BwlI0UTrU888sgjhMMjDyg2FFP1VSznP+DNf+XJLTUkpO+16NFHHx1w7tlnL+PPf57O//t/TfzzP7846rKMFvlknyxorfnlL3/Jb3/7WwAuueQSrrjiCp7KrnQeT9kvvfTSUUlnQhX9b3/723z729/miiuuYOvWrZx99tmcfPLJzJ8/H+g70nCwUYihTAZuvPFGvvCFngUte/bsYdGiRflPHklk3NzUa4+d8ViTd/RlEkbJ2LR1Gw8/8TRLFi3i7FNPnGhxxpw1a9/guTV/ZcnCBZx32vKJFqdAgQKTnp7+w/85Me143tH2Q+zM+kf5zXXN43BrE61PXHDBBRQVFY3GrfRFvxP11F8xDjzFeSV/IHXKfTz66KOcf/75A0Z8582DJUs0r7xSQ3X1u1i+fHKNYDqOM6jskwHXdbnuuutySv43vvENrr/+eoQQk172gzFhin5TUxO/+93vuPvuuwGYNWsWp5xyCs899xzz58+nvr6e7du3U1npL+DZsWNHLjpv97EVK1bkjtXX1w+aVyAQIBDoWaDU0dEx6LkjmmLsHbxq+FcdEzy35lXinV08/9KaY0LRf27NqySSKV7669qCol+gQIEh6a/XH80j+mNtEjsZ9AnLssZOATz5DnhwKXLfA9hNjw2a38KFfoTcX/4SvvUtk9/9bmzEOVzGtKwOg2uvvZa77roLKSU//vGPufbaawecM1llPxgTtu6stLSUYDCYmw5pamrihRdeyK2gf//738/tt98OwLZt23jqqad4z3vekzv2wx/+EM/zaGlpYfXq1Vx55ZUjlsHzehZOZQ7D7kqN1cq5g6C1JpXOjHu+w+VIsMEbTVzXnWgRChQocATiqQlefJ+n+0r261ua29rZumsP+5pacvsaW9rYtnNvn/O27WmgLd6F47rs3NtAOjM+fdRk0CfGlOJFMPfTAMhdvxr0NNeF/fv97R07xkOwo4vu+vPRj340r5J/pDIuiv5nPvMZpk6dyu7du1m1ahVz5szBMAzuu+8+vvCFL7B06VLOOussvvjFL+a+qq+//nqSySRz5szhwgsv5Pbbb88trPnwhz/M/PnzmTdvHitWrOD6669n4cKFhyxfbyU/PIIgWPF4JwBeNpR5f7oDWZWVlhyybP3pnmLsTCRz+yJjYBdYoECBAgXGj+5giulUfu8qoWG28+0dgzubyEd5WSmhYLDPPtnPDdGehgN0xLtoaGoh4zh4SrF3fxNdyST92dvUSms8QUtbz8z5SPrVoZjs+sSYUXM+AKJt7aCnfP7z8MgjEA7DT34yTnIdRfzrv/4rAP/zP//Dhg0bJlia0WNcTHduv/323Nd0b1atWsUrr7yS95pIJMLq1avzHjMMI296I6Vbae49Il9aUjLs68PhEJl2Z1CvBR//wGXs2NPA9JkzDkfMvPSWubKifNTTL1CgQIECY0d/c5YpNVUARCJ9Ffq6miresfJMimIx3GFMHk+dUsOGLduGPO9D73s3re1xZs2cQSqZYPfefWzatpMt23ciZd8xwN5260prZC85Llh5KuWlpazftJm16zdlQ5b0nPCB915CRVkpqIGznp+4+v08/cLLzJ09i7LiGFs2b+bfhpB7suoTY05Z1gS2Yz0yNPBj8Hvf8/8A7roLTjz6LWZHnauvvpq7776bhx9+mI997GM89dRTA96FI5EJXYw72QgGRhZoJBqJ0Nae396/oqyM0uIiSouL0FZw1Hyj574psu3olJrqUUm3QIECBQqMI/1t9HsFt+vNnBn11E+tG/Y6sO6ZgaGoKCulfmodSJNYOEhlWQlCSLZs3znMnHxOXDwfYZjYpmDt+k19jh23YC4z66cOem15aQmXXXgumDYol6hZWO02KKEpEKxCpBopVn3tch5+GD73OX/73/4N3vveCZDvKEAIwQ9/+EMWL17MM888ww9+8IOJD542Chz5nyqjwWG2LYWmqUCBAgUKHC0MWHbWe8cgHV7u82QC1qwdEwgBpf4wfbHaktu9bh1ccQUo5QfNygYDLnCITJ8+nX/7N39e6YYbbsi5YT2SKSj6vRmhe7P+o+t9Dx62NIPlOmiWBQ6OnmSRegscej0+lCi8w2XyxSUePQpvwEAOuS4d5iztQE80ot//+X6NHvk9Nefv1EZSQpoeN5uTz/HzEU6Z79GtWG0F4MABePe7oaMDzjoLfvjDSelt+4jjuuuu44wzzqCzs5NPfepTY9rfjAfHtOmOBhCG/4ffyCkriNAalIEnLWS2wVIIpPYQhok2LLRh94RAz/NmCSF8kx1AWyHQCs8I4CiNIW1MA1KuwjIEdjYtIV3Syu94bDOI42lcpTFNG7RCCQMtjb75SIk2Ayhh4GX9+buuIuNpLMvfn8p4mFKS9jRJRyF7dfdetv66Svu2ldJEC4GQBgiZCx+vNQhp4LkKS4LQKlt+flpaSISQaCHxlO5bJtIk4ylMKbCkfw+eq3CVxpACS0gUAkdpHKVBCoQGR2lM2Z2/BgQo1+88lAsyW32VB17W/lOrng44uy20QngZ0Mp/blr4cmePaZ0tj14vs+iVjvBc/yPBULnr0ApDCoTnIPrZngrlopULyszl65eXjZQmCpBCIJSDIS0MAdJzMA3fZZdwnL73IGTu/kR3/r3z0wo8B6EVhhFACQCNEILuNXVSgJH9IfG3JQLTEARM/5kZUqA1pDwPS4pc2SsNJgqR9SwkPAe0xjQDPe+F5/j1GBBuGtMIoLT265L/SAlIEF4alJerX7K7/kgD6fmL4gUGQgiMXjK7SvcxabANXz5P+4/NNiSO0njZOiOFL7cU/rsolEYIMCSgBEgwhAAElvTTU9ovm+60pfDrpKV8zyHSsBFuCrQiYIXQwr+m+x0yBf79dm9LgSvAlAKhNZ4UGFmZjOytdJexITWWFEg0WnbfO1jZ7YAhMLw0tmHlZEtnn6PIPiRDitxzsw2JEOAJv651P0cAq7vslF9IRrc8UiCVztVny5CI7roiBEZWFmTPs5FCo3L+4BUC6cvkun498VPKPTetfRtvT2v/PSD7fARY2fv1NAjl+XW9l4rpP3+d25baw5ASQ/jl2/u87ppiCIFQHlLIoZXOXu+VUC4YAf+a7PsL2fdWa/93d931MwWk335m21At/N8AQprQ3XYLiTasgf2GGUCbAYTRr1s2TDAsXO2/B4ZpIJSbfWcNv22RBo6nEYaV68+GxAyizSDasLLvtMrJC9k2UsgBI/RaGn0GTXQwBtJAB6I913anY9p4Qd+3vHSzduVa++cL6Zez8tBWyG83g/kXIhfIkrXTL1FbSKd9E51t22DWLPjNb8C2J1i+owQpJT/5yU9YunQpDz30EPfccw9XXHHFRIt1yBQGeDhSR8ePTKkLFChQoMBRzhE+AjppyZruFKmdfObTHs8+C8XF8Mc/QkXFBMt2lLFgwQK+8pWvAPC5z32OxsbGCZbo0Cko+sDhKs35p3XGbMI1m+dY51OgQIECBcaMAYtxh3Xa2AlwEBkGMrDPO1Kith/RRKajrVIkLq8/vR7DgF/9yg+UVWD0+dKXvsTxxx9Pc3Nzn2jIRxrHtOlOfwZzk3lI549R+zYgmuIkbUcPNDWPSbpvb9pKY0ur/4VqmEybt4RA2OC1V1+nvKaOkAlbt++gqqYWQ3s4WrJwwfwR59Pc2sb6tzcwfeYsWvfvpS3eSTASY+nxx4FWvP76G4RKKpg1rY7HH3+8TyyGv7y0Fm0YTJs2Hc9JsXdfA4FgkOOPX0rAHNqzU0PjATZu3sKzL71CZXkZ8+fMQqIIBEMsW7IYM2v3Ee/sZMOmLSxatJhwoPAqFyhwJDFYtNgBbfrYjhkddmb5+sHuz4BJ2j0duQjBfucEanicE2f8lU/+0wmcf/5EC3X0YlkWP/3pTznllFO47777mDNnTi6i8pFEQTsoMOZkMhkIHX5Qr67OTn730KN99s1qbGZaTSVPPb8GWINtW2QyDvBq7pwpU2opCY/MdeqDjz7O7r37ePrFl/vst7NGkI/95TkA5s2dw8ZNm/uc88wrr/kbL/3VX6vRPf0iTVacctqQef/x4cc40OxHoDzQ3JLbBt+l64I5MwF4+M9PsnnrNvYfaOZdF5w7ovsrUKBAgUNB66HmwAtmO2PFmjXw9J9O5AsXPc4173mFlZ/66ESLdNRz0kkn8Y//+I98+9vf5oc//CGf//znqTjC7KQKpjswJu41BxutOXzGa7jn8OgdCdF180cOHinpzMCFWul0mlSvSJK+kt//nJGHYW9ta8u7P5VOk0735Ld7z96853XT26yr93UHI3UQeVO90ti81Q+K88Zbbw0r3QIFCkxiciPj/b3ujE0bny/dHp87Gq01qXQat1/kd8dxcJyBwa+65Xdcr6fdm6xTzkcoX/3nDPVlfrt/+pJ1EyzNscPNN9/MnDlzaG5u5oorrqCrq2uiRRoRx7Si35nww3e3dx7eQ1NqoJs1PW6jGpNz9MTrrdwfI239SE2/Dhfb8r2ZjCSac4ECBSYng7UeI+1LpDFMrzsHaa46E0n27j/A25u38camvlF2t+7aw8btuw6a3P6m7CxkYVHu6JFp4xur3snlJ/8GpSV61t9OtETHDOFwmJ///OcEg0GeeOIJ3vnOdxKPxydarGFzTCv63REEVbYxSiaTh5ROvhHrzs7OQxfsIGQyfUd7OzomZ2VL95IzFAyOTqKH3GeMYmejB+94h1Lzh9/nDX5iXa9IyJe88wLKy0q56IJVw024QIECk4T2jr5R1QPZyOzRaKTP/kRiZP3SvDmzqKmq5MSlxx/0vEAeX4zdo/ehQIDkMGZCp9TW5LYryssGHK+pqRmwr8Ah0LkdHjmdE6c8TjwZ5dYX70BPv3qipTqmOPnkk/na175GcXExTz/9NBdccAFtg8z8TzaOaUW/PyeeeOKIzj9YEIX58+Ydrjh5KSqK9fk9c+aMMcnncAmHekx3xnKkW2s9ZDCLQxtUyi+z5iAGqqN0mweTt7i4KLc9d/YsPv63VzO9vn50Mi5QoMC4UVNVldsuLyvNbXcr/N0UFxUxEkLBIH/3wSu44LxzmFLdk0ck3LNOanr9tLzXRiORvPsBZk2vZ+mivv3aheednds2DINlixf0OT5z+vSRiF4gH00vwSOnQMd6Otw6Vv7L0zz8xpG3IPRoYP78+Tz88MOUlpbywgsvsGrVKlpaWoa+cIIpKPrQo1kdpkI6HqYb/e0qjxGrmHHn0B7lkGP6h5LoiHIoUKDAEYLovSnybsNhdku98xhGQn1O6TfiIES+/mcIWQsN1uGx67fw53dAqhFKlvJU4AVe27GM/fsP37lFgUPjxBNP5IknnqCiooJXXnmFc889lwMHDky0WAeloOhzhLkCG9CQHhFSjwqHHoZ6dE13xp6DZHIMPe8CBY5mxGA/Brzih/7O9/mAGOTDYiSpDb1rfBYSH/VoDev/HZ6+HLwUTLkYzn+a2tlTAWhoGHzmpcDYs3TpUp588kmqq6t57bXXOOecc2hoaJhosQZlzBX9VCrFZZddxrx581i2bBkXXXQR27dvB+Daa69l/vz5LFu2jLPOOou1a9fmrkskElx11VXMmTOHefPm8dvf/jZ3TCnFZz/7WWbPns2cOXO44447Dk04DdCzkFbprOswIUArlNbZUOYCpf3Q8MJJ5UY6ehTPnrDsPQhQrh9WPBtKPOMpEo4i6WpcDWlP4ymdC68OkHb9447SpF1FyvVlQEgcpfH6rfvVQpLWkqSr6Mz46XdmFB0ZhYufZ9JReBoynibhaDKeRmk/hH33fTgKvNx9Zf/RKjeo42lfVqc7fy+DcFP+X3c4+Ox9uErTW1nV0qTL0aQ9jZYmrvJlyGTvv7usM54m6fj37CqN6/lmOVIIvEF0X6U16IN79dFag5tBOL68qF7nexk/xL1yEV7GD8Pe/fzyJubl7jO7I7c1ZJemlF+fuuXOyiEECDeNUB6CYX7QSMP/E9IPJa9Vrl56SpP2FFr7z7m7nB2l6Ui7eJrcfgDppDBRSCeFoZzcvUgnhSXAksKXz00jPAe6yzFbDkK5fj0QAkMKhJtCZu/TUzpXr4SbRmS6kOlOhJMEz0F4DsJNIz3HLw/l+dd1X6M1AvB0Tx3srrtmVjZDCqT2sGTPEzCkoNdP3Gx96y5arXvK2ZACM5uOEP62KcilKZwkIhX3/093IlMd2briexdxs/colItQnp+Ol0F6DoYQ/nNVbh95uvMzRc97KLWHcNMYQuConvcUwBQgMl25a6T2UPjPUYqetscQYBkCw0v3PFftIUWv+xXCL+/uqtRLBk/jPxPPQdB7f08b130b0nNQuvezUujuZ+Y5iEwClOe3q9k0/D9Iu5q0q8konW0v/LSl9vwy8xyk8K9R2q9H3e2Um90WnuOXo8rWISFy5SGz5SGEfz/+fYqeOqc1ItvGOQqc3u2wVqDcXNkL5fp103N6lOVsm+Gf4Lfv3ahsCQnloqWBlv7iWJ19V3PX9B/FFxJXA7Kf12shUIZF2tOkuttMIf16l20/obuMyLYF3W1U77akJz8tBBgW2rBwkWjD6ncfedogKf02pzdmEG0GUFYQbYUGHE9jkHAUaVehDRstTZAGWpoo4f+PYeFocISJNob2+D2pdYrRQLmw5jp49YuAhrnXwVn3gxVj1iz/lNbWIInExIlYABYvXsxTTz3FlClTeOuttzj77LPZs2fPRIuVl3EZ0f/EJz7Bhg0bWLt2Le9+97v5xCc+AcBll13GW2+9xdq1a/nSl77EFVdckbvmtttuIxAIsHnzZh5++GGuu+46WltbAbjrrrtYt24dGzdu5KWXXuLWW2/l7bffPmw5R3OwdLQGfuUwZVKjlWEe+uudQg/0MjTgmjGSZdQRMu/vsRg4Hw1PTKMt1rhP6fUv7/HO/lALUA5D7mG8F4fMoaY9huWth5H2cNqKQ34meS4cbns5Ggzv/g82Oze8fEbrlvqM6A9S6LnvmEHEHrEsw3y4I+2/jhSdYsQ4HfDUJbD5B4CAE78DJ30v9/FXWgr/f3vvHSZHcS1uv9XdM7N5VzmvVjmgsIgkgoQESIBsBDYgLmDyBctgfL8LxjbXAbD5XWPACV9hcCIYG0QQwZgcJAMiSMgSEgLlnOPmSd31/dEzszOzM7szsxN3632elaa7q6tOxT5dfepUZaVdWIF3G0UOGTNmDEuWLGHIkCGsW7eO008/ne3bt+darDZk/KlbVFTEnDlzQgPL1KlT2bx5MwBz584Neb6ZOnUq27ZtC7mqXLhwITfddBMAw4YNY/r06bz44ouha/Pnz0fXdXr27Mm8efN46qmn4srg8Xior68P/WXKLVJW3CuK6MPu82k05ky3TGCxbTotdxJJLwtyKBSKLkSGhvGMP5NyYEqYa50inj5h7y/Qib+6zcg3ToM9ryH1YvynPI1vxLfx+f2hMH6/j5oa+0GycaPZ+TRz8JeWssoj2YcOHcrbb7/NsGHD2LRpE9OnT2fdunVpSy8dZH1n3AceeIDzzjuvzfnf/va3zJkzBy0wc7Z9+3aGhq3Yr6mpCb0pxbq2fHnkDqbh/PznP+euu+5qc751hjVFK/02i5XCP8VmiTzV8/NLrHRq2PHjStczr/0XifwqWYVCkRqRkzQR0+1RAdPT5xNS+sPCRA9DtnlR9LnkjjNBtnWKePrEG2+8QUlJaotkK83NnOS5G4c8jFtU8bHjhxxd5YBVr7QJW1JyAjCQ117bgGFsTim9XPPmm292HChPiSf7//zP/3DHHXewbds2Tj31VH72s58xcODATqV1/vnnd+r+IFlV9P/3f/+XDRs28NBDD0Wcf+KJJ3j66ad57733Is6HD0zRs7ntXYvm9ttv55Zbbgkd79q1i/Hjx7cN2MGo1NjUxGN/fQany8W1117Hvv2RK62zMahFD9a5mtHftnM3n6/byORjxjFw6PCspOn1tfXrfGDfXoTZvr/nffsP8Ojf7NmZiWNHMWHCBKqHjWj3nnjlunvvPgaF+Y5Oxsf1jt17EgrX3M5+DoW+FnfT1u18sW49PXv2ZOpJJxVEfrbv3M1na7+kZ6/eeFqaaGxspKSiB6eeeioYro4j6KZ8vHINh+qbGH/8yfTv0yvX4uQfcXT7dCrLka8S4Qtz2zfdiX+xg5eQDL2kxCMXOkU8fWL27NlUJOkKFUDs/if6Rz9GyCZkxXj0017klNL4bkkXL4YPPwSncyxz5oyNGy4f8fl8vPnmm8yaNQtHYMPHQiER2WfPns3s2bNZt24dP/3pT3n99dcZN25cliVtS9YU/fvvv59Fixbx1ltvRbz1Lly4kLvuuou3336bvmF+haurq9m6dSt9+vQBYNu2bcyZMyfi2gknnBC6Vt2OL3GXyxXhm7g+aqOSRFm+4t80NDVDUzMbN26kuLgYX0MDVmjVVgFoLWli0Stv4fZ42LF7Lzf8Z3YU/cMHD7Y553Q5aXG7273v1TffDv1e/eUGDhyu46qOFP04dVnf0MjAsD1gilwu3B4P0LGdaWMC22an7lmoMHjrX0s5fLQO2MTIkaNC/TufeXfpx+zeux/YEHG+/4ABDBud+0E8H6mrb+DtpcsA8GlO+p89O8cSKbrax8Bc6RTx9AmHw5G88rrh97D82/YanP5nIU57Foezst1bRo40AzLqOByF6TgxpbLKE9qTvbq6miVLlnDWWWexZs0azjrrLN555x0mTJiQZSkjyUor+dWvfsWTTz7Jm2++SVVVVej8008/zY9+9CPeeuutNp3q4osvZsGCBQBs2bKFJUuWMHfu3NC1hx9+GNM0OXz4MAsXLuSSSy7ptJwdzY43NbUuc29oaAhVtsNhBO5vJWvqWo4G76Byaytt2UGL9vgAOBxOnEkOGH6/v8Mwuh67a0R38Kqq1kG5pKj92d1k5TSMBLeyLyB8YWWfSD3kA/HkLBT5c0F42ZiqnGIS13SnTcBODPLJ3hsWPrp9ixjR5cp0p1B0inbxNbQq+XoJTLobOlDyAYYPt7WLL7/sYm9uXQRN05g+fToABw4c4I477sixRFmY0d+5cye33norw4cPZ+bMmYD9Rvzxxx9z+eWX079//wg7pLfffptevXpx2223ce211zJy5Eg0TWPBggX07GlvsX3FFVewbNkyRgd2n73tttuy/3kkbMQLLvYJP9fSjvlFZ4ie8ZWZdLfTCZpb2p9lTxeZmgH3eOMvhAmf7dfCvLE0dmDGk6ysfn9bt6FZWfCtUCgyT1hXlmHeibQoD0+dGeMiRouwaOLFGQzvN018UeOPlCA68DTUxrQ0A+NVl9EpjDIY/z/wxS/AbIY3psLQS2Hy3VAW/yv5CSdIdN1i0yaNLVtg2LDMiqlIjG3btnH//ffz5z//OaT/jR49mptvvjnHkmVB0R88eHDcQaW9VcWlpaUsXLgw5jVd10Nv5rkl0n++19tqK96cISe3paVlEceF+vkrFWK5p2yor6O4d2z73/59elFcUsaWbds6jCeapnbqb+TwoXyxbh1llT04bvJEnl70QofxARG2/fEQQnD85GPYsLlV5rqGRkqKihg3eritBGTSjWOmyc/30naJp2d1dTOrzhDex9LhVrYrEq4CHzp8JPQ71QWdHaYX5nvUtNofQ6KVfLDnscaNGsGnq1YDMHjQQHr06BERZtzokWzbvh2vz8+AwUMoKS2NuwdKqnQZnUIImPwzGHEtfPZj2Po32PYk7HgWRn4LJvwIitqaNlZWwtixh/n88968/jrMn59dsRWRrFmzhnvvvZe///3vmKbdb44//nhuv/12zj//fHQ991/ms+51pysRPdZUVVZytM42Zenfr19G0iwqKoo4Hjioc6u6C4oYY3uPXr1jXwCuvXguVlEFzzz/Ipu2bE0qqb69e7H/4KGY1/r06sV1887HX94XzefmkvPOZuE/Xm8TzuVy4QmYOAFMmZSYnd6s6acw67SpQGATIt1A+L1Iw5lUHvIRpQB2E2Sc34qYDA4bx4UQuJxOPIGJo/Ky9OyCWjNkMEcCppbDhye/rmr4sBqGDBrA7TdfjzD9WK4yZNTEw+CBA7j+kvORmoG3pJet5KsX4vYpGwanPAFjb4VVt8Oe12H9A7D5ERh3G4y7BYzINnDssfv5/PPevPaaUvRzxdKlS7nnnnv4xz/+ETp31lln8YMf/IAzzjgjr76+F+ZKjjwlK2702ySSP40pF+RTZ4qmjWx5LKtCocgy7bhjjvTCk6Zxo5Pun/N5rO0S9DwWZr4GZ7wFPY8DfwOs/gm8NBI2PARW69eKY4/dD8Dbb4O3fadzijQipeS1115j+vTpnHrqqfzjH/9ACMFFF13EsmXLePPNNznzzDPzrq8oRb9TtPU0HO9Kpsiz9pRh0lOq6Ta5SNRVXbeqqkQokIm+eO1FTVTGR325SZL2BvJ06fmJpqfILf3PhLM/gVOfsm313Xth2bfgnxNg+3MgJcOG1dG3r6SxEZYuzbXAXR+/389TTz3Ff//3fzN37lzee+89HA4H1113HV9++SXPPPMMxx9/fK7FjEv3VvSlBMsMPbFD22YFzmtCICwTzfShawIhW+0WheVvVQBk0FY/InKE34vw26/bUmj4LPCaEq8pMSX4LGm7ZPS5EZYfLD8+C1r8Fi1+i0afRZPPsndjFQK/JfFFLb71mpJmn0Wj16TRa+E2JY0+izq3id+y0/FaEk3Y7h/dfvszq0MXaD43Dk2gawJTSturguUP5Q/Lzq8lZUhuf6zFv5Zpf74NfML1RZl/SsNFo8+kxWeB0PAF4vJatgogTB8ykJcWv8RrWpiWfT2YnM+KrS60p2xJoUEMTz0RN5n+UJ6RFlJouP3tbVsvkIHtyL2mBE1HxLOZj3qYSk1vU46mlLY4lh+EFlm+uhHIg2GnqTuxnKVYrnKaLB23cOLVXbitgEyabteVJWnyWfgs8Ft2mfos8Pgl+5u8gTYlafbZ9Ss8jWi+FoSvGeG3TY0k2MemF02aCG8zwt0Aphfh9yB8boS0sKREmD6EtwU9kF3htRcimYH2J2XAY4enERluG2z6EKbX3gdBWnY9SAufZZeRDNSJJgSmZZeT12otO2H50aSJoQmE34MW6J9a1L4+UspQnGYgeVNKgpLoAnRNhOTXNYGw/AjTh4aMuyZCSLuMm3wWHr+dUeH3ICwT4WsJySQsP8LvwdBESDYDCwcWmrcJze9BA7sOPI1o0rT7rWn3W0MTaJ4G9IYDOKUfzdsUqiewr4fKXggcAoS3yY4rENYI2GdLKW2Z/B47z5qw4zcDuz5a0h6PTC964LwInBeBsgqVkenDlBJPoH1JobW6mDXDbKUD58Kbts+SuE0rUCf2BZcGmrcJ3fQgPI0YmsC0CIyV9v92e7awJHb5+j12WQfKLYiGRIiA/L5mdCHsc343BNpbsM35A20jom79XqQMtEHLbG2noQCa3e8DfVwKLRRfqNv7vUghIvo3Iv4aG6kZeEyJL8bwYwZkbPFZIZlC5Rn2/BICO3+BvhTxNh22kNa0JJbuwI+Gx5TI0DgZf+zzCwNpuEB3InUD6Sim2S9xWyL07JHBfSV0gxZ/8Nlk0eSz82UJHUt34JPgNS2kpiM1I1QHwbG12yM0GHoJfOULOO534OoDDevh/YvQ35lGH/k5s2bZdfXaazmWtQvT0tLC73//e0aPHs2VV17J1q1bKS0t5dZbb2XLli386U9/Ci3gzme6t6IPHU/LBQZHkfT0XewZEyssnlhRxvWGEDofO95Yd0XPNMeK25Iy4gEshdZmsqfNXfEU2wQWico2G351kvYmwhJZtBrl4YIOvEoEkRHh4szotzmdRG6j5Yo+JkZ9SiuirrQ4yYV7Dk34a4S0EiobPSq+dDqFCo9LQNv2JjSiazxW+rH6QZv+neCC54i44pVRVNzx6qVVmMCY00E4KdvGFX0sgwppMGohEmvjUfnXEmy7iX4tiw4WS6LoMILI8TOkONM2XOSJqDAxFqKm8iCUsdKXVlu5YxSdFNHONUXU2CgiroXkjIos+rhdwk13UpjRb/NcCJyI6GMx+o0lZYftwkznQNGV0J0w5tswdyNM+AkYpWiHP+E09w+555zzmDBktVL0M0BdXR333HMPw4YN48Ybb2TLli307t2byy67jE2bNnH//fczaNCgXIuZMErR7wxqbMouabKVyF61qc/j7VEoJh1xve4UiPy5IOL9R5VTXqBGowLGUQGT7oLzNmKO+CYWGoO1V1j1v5P5r5OuYd/m7bmWsEuwd+9efvCDH1BdXc3tt9/Ovn37qK6u5oEHHmDjxo3Mmzcv5JK1kFCKflqIdLOZSdqu7+zew3faFqp1TojYp9v4lM6CLAqFojCIXHEb91L61uJ2LqK8GGu7O8X9sab8jneKf4c1+EI0TXLN6Y/S+8PR8O/vgedwriUsSDZt2sT8+fOpqanhF7/4BfX19YwfP57HH3+cjRs3cvPNN2fM7W02UIp+EoRvAtXY2NSur3WAphY3azdsTvPmWfk32AZ9x2aamPOCKRRHR/WWLPFEaHs+/+ouURoam1i9fhMHDx+hoamZ1es2sXfvPgA8Xi9rN27l4MGD7cYhpaQprA/t3rs/ozKni0Nxdn/2+bK346vb42HN5p1s2ry5dYO+DLFn/0Heef/Ddn2Sd0R4H2tuakqHWF2O9nX52KY76UswhTgLd/jqcjRpgzBPfpKHt37M4rWnowsPfHEfvDQC1t4L/sxs2NnVWLlyJZdeeimjR4/m4YcfxuPxcPLJJ/PSSy+xevVqrrjiii6xV5Fa+ZIEW7fvDP3+8JNlod/xPu0//8Zitu/ex7CN25h30UWZFi9rRCvKq9Z8zrFTjst8wmky3fG2s+ttWulCU/jPvPo2ew8cQtM0+vWqYs+Bw8D73Pjtm/lk6ccsX/kZ8C9uufW7xBsWd+2LVOzffu9Dxo4aSUVZ/s6UhO+DEM32HTsYPTk7nhbeXLKUNV+uB5bzta+cw5jRozKW1qPPvAjAnoNHuWxeauPWG0taXYHs3b07LXIpOoeake96TJxxIqee+i4Xn/oqC2//AaJuNaz8Pqz/HUz8KQy7MrZDim7OkiVLuOeee3gtbIHDueeeyw9+8AOmTZvW5Swl1Ix+EvTt07oDa2VlBWWltoKiBVbARQ+k23fbM55bktysqT3autHPfoNsbo6cLWhszM6MXZxlyknHU1aang1oWkVITIZCHjvq6hsBsCyLuobW+m5paaG+oTF07PfHn+Vuamo7y9Sc1q9d6cftdse9lvZ21A6NYbPijRmcIQ9fNLl9e+p2v+EPyorKik7J1GWJMN1px8wvXeNGfEuhBG8v4AGsi3LiiVBVJXjmgzl82vffMPUxKBkCzTvh42th1Q9yLWLesXDhQmbMmMFrr72GpmlceumlrFy5kldeeYXp06d3OSUfuvmMvttju0trdnduxwkrhx4Dul6TzABRHTfdilJc051usLmZECRtSlJa7MLrM/G181KgUHR12tPlw83C0qfndzKmrjd8dQmCw6irSIfhV8LQebD0CtjxLLTsza1weYg3sMNYUVERn332GaNGZe7raL7QrWf0XQ77PccZ+L++LrYtboiobd2jPV4ePHyYmsEDABg/bhzjRtYAMGHCMWmSGIqjFoRUVlWlLe7E6fjFZtrUEwA46eST05hsTE/6EUd9e9tfXQYNGBA6d+ykiRmVwRNna8KGhoaI47I0bWWfa5rdreYsxcUl7NrT+jBpz56xEL2vtOcW8NBhtfAtHrIDN8KKSPZHrW8JfwmuqqxMSxrl5WWtcfaI7TmkvS9yPap6pEUORfpYtQoaG6GqCo4Jqhl6EQT3I6hK47Ovi3DhhRdSVVWF2+1m06ZNuRYnK3TrGf3oGYq+/fp1Kpo+vXtxyZwzaWrxUDpgIOefOY1Tpkym55ARnZMzDIfDGXHco2evNpu95AOnnngc48eMpqTPwKyme/bM03AKSY9+g8C0zS5GDh/GV2eeysvvfpCRNON90enfrx979+0LHRe5XMQ3BCkcSopcIWXf6XRyzNjRARt90GL4+++q9OvbN9ciKLoIA9p59lRVVtC5b86tadx8xUV4HaUU94ydXpHLFXHcs0cVX585FaPPUEorKsFKhySKdPHee/b/p54atdXK0dX2/5UTsi5TvlNSUsJVV13Fb3/7W37/+99zzjnn5FqkjJPxp7Lb7eaCCy5g9OjR1NbWcs4557B161bAnvW58847GT16NBMmTGDGjBmh+5qbm7n00ksZOXIko0ePZtGiRaFrlmVx8803M2LECEaOHMmDDz6YJmnb/zYZOaEviZ5N1nUdXdepCMycaJpGv949u5zy03aGLsYGRELQs0dVWu3dYqrT0RvvCI1+vXthGJHvsFVhs1mJEE/uZF6pdL11EVRxUVFS6ecz0e054TrOv/fRTpI9W4bIGfLMFWQm41ZEEt5vRFSfysgzQ0B5WSk92vsKHNWXdV2nX68qKtP0VSEdFJZOkVmCiv60aWEnTS/Ur7N/VylFPxbz588H4OWXX+7UWqRCISsa6A033MC6detYuXIlX/3qV7nhhhsAeOCBB1i9ejVr1qxhzZo1PPnkk6F77r//flwuFxs3buT111/nxhtv5MiRIwA88cQTrF27lvXr1/PJJ59w77338uWXX2YhJxG7wIQpvN3NeDFSGciabhBrl9Nsa49KD0qZQiw6pfimRni/LESTLUV+03V0itSRMo6i37AepN/eZKtkSE5ky3fGjh3LjBkzsCyLP/7xj7kWJ+Nk3HSnqKiIOXPmhI6nTp3Kb37zGwDuu+8+Fi9ejNNpm6MMCLOrXrhwIY8++igAw4YNY/r06bz44otcffXVLFy4kPnz56PrOj179mTevHk89dRT3HnnnTFl8Hg8EW7yom2ng3R28rm7qfsFRS4qpwuu3o8mlS82XcV7RzeoXkWWyEZTSqTfFYL7gFzrFPH0CZ/P16m9JxIlmMYXX/g5cMCByyWZNMlPMGlxaCUGYFUcg5lnDg+CsmejnDri+uuvZ/HixfzpT3/i9ttv79Bffi5kT5cP/6zb6D/wwAOcd9551NfXc+DAAZ5//nmee+45AP77v/+bSy65BLBduw0dOjR0X01NTegTS6xry5cvj5vmz3/+c+666662FywJpg+k7TVESokQIEw/wtuMZrgQgetCWmCFbQwlw6b0ZeC8EAjTh9QdWAh0ywQhQdgfTjx+kzqPSZEhcWjgNi3K0dC8TUhpgenDZ5TS5LMQQKPXwuO36FdqIDSB17Ta2OM3+Sw8fsmBZi9uv0Wly8HBZi9H3D4GVTjwm5IjLX76lRi4TcmeRg89im2TEmF6MQwXEjAte95NWH4soYPlR2gGppT4TInbL9EEtPgtjOgJOmmG8ojQaPFZVAYO3X6JpQt21XvoV+qiskjitSQtfonbtChzaCAtTEviNS3qPX50zaAYMC1w6ALd9KCho8V46thVEOb1xTLt+tTtDiKFhhCWXY8xED4PaPZgKLwtCEcxpjTiPuBkoK0Iy49pSRAWMiGvMzKUT58l0XWBsPygu+w253ODqxwQCL9tBysNJ8LyI3GC0JC6Az8amhA0+/wIIdCExLQkRcUupBC4vRbNPot9jV56FhmtdabZ/2+va6GmqhjTCXUeP5pwobnrkH4PwvQidSdacTEOXaDV12EJDaEZRH7NssJzRfRcvfA1IwT4LDClRErQDIHwNoXdH9hN2u+x864ZYHoRuhOPX+I1JZYENA1T2u1FCInHLzF0iUQP9E2JkBbC7wbdgZQapgQdu3v7A+snmn2Swy0+Sh12wwzGbx8KkBaa0AGJsMzWfm/Ff1BKodHkszjY7KPCZYBTAyGQmg5moE0F45AWUtr9TGgi1B6FtxkcRSAMhKcR4WtBusrwWxpNXpPexQYOXYTiA8DnRvM0YhkuBGAIMDWBBjh1geZtQm86BIAVkF8zXIBmj3F+L8LTiO4oxQzcL3wedIeB34xsy8LvQdNL8Jp2/9c1gS5tBVD43Zg48JoSp26XsyntvkH4uhVpH0opCQ5fbtOiweOnxKGji8B45GtBuBvA6UfzNCDKeuO3JLoGHtPCoWm0+CX1Hj89i3S7vQDC04Twu5HOEoReHMhPC7pRjPB5EJ4mtKJKhOlF8zTZdVEcMEWR9jjk0Ow2EBzHhN9W5ESgjoTlB6EhpN2PQ88MzQChYQkdHcD0Y0mJLgTC78G07DwXA1ZgVNFCdRn21UMIvKakyWcR60O737KveU1JpSswZobqyI2m6Qh0NL8Hzd0QkovwsUnTkJqBNFw0e+x0gvE6dYHL8iOiv9YKAUKj2W+P2xVOF3qgXPyWpNFnt2u7DQhwOShxFCGNIurcpt13fRZFhkaxQ8Op249Er2mPW04dCOQdsJ89SZJtnSKePvHGG29kdffUP/7xS+BYRo48xNtvt64/G+t9iTHA9rpyVr3yStbkSYY333wz1yLgdDqpqqpi79693HXXXZxyyikJ3ZdN2c8///y0xJNVRf9///d/2bBhAw899BAtLS14vV5aWlr46KOP2L59OyeffDLHHHMMEybYdmXhs4XRn9DbuxbN7bffzi233BI63rVrF+PHj28TLubspBAJ2xyE320l8Mk/EasALdvThiIRa67UPsXncgY04Znn0AtLMrHH8fAfnWZCZVuA5MAyI5HqSYdY7cWRseYcs612nJtE2nisMDKh+zoMkjIF+2Wkk/05fIY9la9cqZqVJVLfQdoLGcsHQbZ9kOdCp4inT8yePZuKiszvGeHz+XjzzTc5etT2qHPeeT0ivnDoH/wZdsOQCecyaNSceNHkhKDss2bNyosdZz/99FPuueceli1bxt13391u2HyTPRmypujff//9LFq0iLfeeouSkhJKSkooKyvjG9/4BgDV1dWceuqpLF++nAkTJlBdXc3WrVvp06cPANu2bQs15uC1E044IXSturo6btoulwtXmDeB+vr6lPIgIyapZPe1PW0zo5+rhJX9by4IL/GuuLlIBO1q+tlcjBt+kMF0MhKn6qMxycSmWO0ll1B7LQTjHZtc6RTx9AmHw5FVBfDDD+2vH6efruNwhH0Jqf8cAL3XZPQ8VUizXVbx+Na3vsW9997Lu+++y+bNmxkzZkyH9+SL7MmQlSnGX/3qVzz55JO8+eabVIWt+L/00ktDWxAfOXKETz75hEmTJgFw8cUXs2DBAgC2bNnCkiVLmDt3bujaww8/jGmaHD58mIULF4Y+z2UWGfNniK6u9ASIfnDnUM/PYOJxvO7EmOnpdus1o/ObqNOdAiynfFRSMytRemKXHY2VCkUn6Do6RWocPlzE5s0CTYMIixN/EzRutn8r15odUl1dzVe+8hUAHnrooRxLkzkyrujv3LmTW2+9laNHjzJz5kxqa2s56aSTAPuz26uvvsqECROYNm0at99+O1OmTAHgtttuo6WlhZEjR3L22WezYMECeva0N/m44oorGDNmDKNHj+aEE07gtttuY9y4cUnLFv0Q72jGY+/BI6HfDTF2V+0ean7uiLWIuu7wwRgh25LszHO84Hv27Y9xNo4mU0Avfhu27uSvL7/LEy+9wbYtm9tcb/G0+s9uY5aWoCL37vLVnREx78hm7W7feyD0e9+h9jfqcns8PPfOx9z9l0X87+8fY/f+xPpIOjla39ip+9du3sELzz9PS3Nzh2GllLzy/nI++OiTTqWZbSIn9NPXmvymyYtvv88nKz5LXqZoa8M8HMLyWafIFmvX2nJPngwR1kJ1a+3/i/pCUZ/sC1aABF1tPvroozQnMN4UIhk33Rk8eHBce7fevXvzj3/8I+a10tJSFi5cGPOaruuhN/NsUl5aQkNTa0MI36a8W9HGdCc7U3ZOl7PNuZKy8qykHaRnj6qEw+bhMzIuH322lh0BZdL696eMHT0ydC16t8xwpT9RWpqbqWu0+47D0PH4zQ7uKACypAW1sSXuoGVt27GTL7buCh0/++o7fPvGjj9JA5hh9RL0XJIKxUUuWkI7KCc/Pjz/zoe2DGWVnDr99HbD7j14mH9/uRnYzOSTTsXlLJR9IEXMn51l4/bdfL5xK59v3Ep1/1ZlL7WXifwbxbqSTpEqa9faO8CfdlrUhaNr7P8r1Y64iXL22WdTU1PD1q1bWbhwIddcc02uRUo7XXR1YGI0u700e7w0uRNTXPQoty9WwPNCc0vwgZZ/g2JmyI3pjqa19ciQuc3IRMwjPcX08t16wQrzzmGZkUp4hwvLE2j2VpinniG982fznQ7Jw4qLHoeisaK8QDU2tyQRe2uGR41MfUfv8H7SmXmAxvq6DsNEvIgWon1YmvHkgetCRWYJKvoR/vMBDi+z/1cbZSWMrut885vfBOx1H9ETW12Bbq3o+0yLdbsO4QnMzHdk3hH9DLECbgfqmloC96dfRkUYsezjAX/YLGS66qAo6utBqG0kk0B42K6sgCSStbAwqb4s5YJ8tNHPLJ3zBBNEpmn1cHFJacr35j/x1zGUlRSnKYXOtt/u1v7zn6NHYds2214nYkZfStj1sv27/1lZl6uQmT9/Pj179mTt2rU89thjuRYn7RTOEzfD9O/bh5phw9sNU9fY1i4/SI+KciZNOCbdYuUlbXXW7DwMfP62M1VN9XURM5Z9e/VMS1qnnjCFPj2rqKyINA1KRvUJD+tOwdwlq7S3djKDLykF/f6TJeGjzRQ6SrUzYjldLiaNHkavqgomHJO6jXK/3q39sCEFL2dnnzKFgQMHckzt8UndV0jNKfxrZHFxUcS1WaedRK/KcmaffXZWZSouipSjrj725pKK3PHRRwIpBSNGSML2A4MjK6F5B+gl0O/MXIlXkFRVVfHDH/4QgJ/85CddzlZfKfrAlFFDuOayefTo2b6SOLhf79DvqsoKaseNCh1/6/KvM6kTD8bCIkrxyNLTtUePHm3ODRw6nGNGDQsd63rsDVeS9Tk9ZNAArr/4q0w9rjaB0B2r/4MH9Esq/WzTXul0WHIJvP0UkgIWQTuCF2yeOuC800/im5fMpSZsA6FkOeXYVhvhHj17JX3/8eNH8o0rrqAsWb/kBfTmOGp4Tej3sGHDIq6NGT6U+RedTW1tbecSSbI4osfPEcNqOpe+Iu28/7494J56alTl7nzR/n/AbDDS80WoO3HTTTcxdOhQdu/ezW9/+9tci5NWlKKfFCLiVwE9U7oIsTY0y74UbUSIJ0N3seVKyHSnMDtL9zPdSRNZ9hFf6KTT6044ybbe7jJkFTIffGBX0mmnRe3Ivusl+//B6dlNtbvhcrlCm2bdc889HDyYfW9lmUIp+oqkyZXpjiKTtNZhm68f7c1qd1KB7+z9OSVXpjsdpJtvZZopJTYW+ZVzhSK9uN2wbJndn045Jay1N22HI/8GBAz8Sm6E6wJcdtll1NbWUl9fz//7f/8v1+KkDaXod0TYQzNitkOIdmc/tDRtK9+hx5N0I62Ow6Q47dPZrMRKNe1KRAf5j71gO7YMbc4mUrZdlGDVi6j/Oxtfe6SlZeRCc0yxoySi4McKIxK6LzlZkin7PHsvSZxO9ueIsSuqwKTo+NGc0N4gSdd34o70Yzl/yreXzK7G8uXg9QoqK92MGhV2YVfApWifU5T//E6gaRr33nsvAAsWLGDLli05lig9KEUfkLoDj6OUOo9Fo9eiRepIVxkeqeHTXUhHMZbhihj0hNCQotWeUbrKsJwlWK5SrKIKGr0m0nAhHS6a/ZIGn+Sw22TT4Wb2NXpp8lkcafHjMSUIDakboOk0+yRHW/y0+CV1bj8+y8LQBMKyPctEK/5eU9LitzjY7GN/k5eDzV72N3nZcbSFZp+F15J4/BaWBFNKmn0mpmUP58LbDNKKVL4sE93yIbwtCG8zDhHpzs/QBMIdtbjO70OYXoTpByHwWxKkhRQaXlPiNSVHWnw0+0x8psS0bLndPgszkB23KWn0Wexp8HCkxU+Lz6IpEF5qBi1+iT/GQ8SUQPhD0VGEdBRhag6kbmAF68jnibhPmD6wTITlB8sEy4+w/EjNwB+ok6hWEnUo0TWB8HsQVuyFtm2kFRrSvhVLAqYXXQg004fwNtkygR2n6QPLsgMLDTQDqTvxmJJGr0mdx6LOY1LnMWn0WfgDiWnCrkfTkjg0u74AHJoI/TY0QbEhKHPqlAkf7NsKYQudNQFOy4toOIjWdAjRfChm/oJxYbbm3/A2Io7uRfc0UmQInLqg2KFRRKtnJNncECod0VKP1nwU4W5AczcgvM0IAboGTl2geZtwSj+6ZudBCNAQtnzuBjR3PcLbFLi3CUOz0wy2W10TCCGwkFhSogvQhS23IxC2SBdongZ0v5siw/4t3A0ITxP42lmUZZmYEhq9Jn5LhtqS5nOjeRpCMuFzI7zN6KYnJJ/mrkdrOYrWdBjhbkDXAul6WxCWH0sSktcRrVD5vQhfS6iNCctv50sT6MJuk7FkFcIuC2F6EX6PnWYwbsuPKaHFZ/c3NB2pGUjNsPuq31ZqhWWG0kJaeEyLeo9Jk8/Ch0aLz8IrDNBbt4iXgN+SobHAbUoON/vY1+gNjHGBtmB6EX43wu9FBPqrz5L4TYnbb9/b4rNo9NrljmWBz43md4fS0oVdD8LyYwjssve7EabX7uem1/4trdBfqD9KidR0u78FysNvSYS07D7pbYpU7nUHPgl+NNx+C2m4QDfwW9IeA4UWyjeagdtv2eVoOPH4LWRYGfmlRovfotlnP4MwnBAoe6k78JoSj1/iNe2xXFi2pzhNmghPE8LvwaELhK8FzRvmTjVMXikEQlr4JLT4rUC92vH6TGnLr0XtQaDpWI5iGrwWh1tMDrf4aZL28zJ4fLDZz95GL3UeE7cpkboT0yjiSIuf/Y0+tte5OdDks5+tPgtPIF2fZT+TTEvS4pc0+Sy8ZvedDEmE99+3/x837nDkO9jOgNnOIGW201lmzZrFrFmz8Pl8/OhHP8q1OGlBKfqK5Glj2ZH/sziZnGnKpmlCppBxD2Ich19KuVyDZZb/bSce2ZI82TLOvxLNbP8ILx81oazoyrz3nv3/+PFhky/eOtj/rv178NzsC9UF+cUvfgHA3//+d1asWJFjaTqPUvSTovAVukImlkKd7RpJyo2+ai8hCuFlUKHIJpGmoJlJI+kXn2jLnbRJougspgkffGD/jlD097wOlg8qxth/ik5z7LHHcvnllwPw/e9/P8fSdB6l6CuSpo3S1g10uK6fxbBZ0UzsfBwnknwv1/YVpdxI32GqeVaomfbkkpCterclzxqDImU+/xzq6qCsTDJsWJj5bNCt5iA1m59O7r77bpxOJ2+99RZvvPFGrsXpFErRT4Lw50l3fras27w94njZ6i84cDC+HXfaSHwdbBu8vnRta52Ei88CaCM7du7i4cVr2HO4dWOcPbt343a7efTtT/m/ha/w7ier4t7v9XpZv2VH6HjfgYP85Z2VPPrkMzQ2tMZ58FDs9vHoK++xYNFbrFi7Pg25ST9utzvutX37D6Q1rXeWreH/Fr3NyjVrI877fJEbxa3etIOHnv4nyz98P2Y8h+uS36Aq7WSx7e85eCT02zTNdkLmM+krsGZPa3vZdfBoklIUwKDVTQma7UydKtH1wAuc5YPdr9i/lVvNtFJTU8NNN90E2LP6llW460eUop8Uyjk0wKGjdW3Obdq8OePpxn4IJVYP0bN+6ey0Locj5vlCeGiu27CBg41tldkv1q1n58E66hqb+feXm+Lev3fPHkqKXaHj9z78hN1HGtmzbz87tm8Lnd9/wFaKg/OLLqN1IfuRhiZef+/jTuYkM7i98Xc0rigvj3stFZauXs/RxmaWfrw84vz+/fvbhD1U18DKZR/FjMdhRG56VF6a/c1zstn2G5tb229DQ+Hs5CoinDukL16Xo3VBbYnLmdzNbZzu5P8Y1l0IKvoRbjX3vwe+o+DqDb2m5kSurswPf/hDKisrWblyJU8++WSuxUkZo+MgCkUkwaF/cK8KjjS5aXJ7C24RnJQysadrAhlLxJVqvrqdC4pVUeyiuncFa3bYCrllJSavBIqLikLHVriXjxh5riq2X4pq+laxevv+dsPmA7EUVpeh4/GbGVOCfGYnvz5FyTWwd9sdpbNKxm13Yv7stuix/F4qcoZpmm2+yqVCQwMMHQpjx/oxDAO32425/XVwDoVBXwOvD+h8OpnE5/NhGAYejwdN0+LuZJ8v9OrVi+9+97v8+Mc/5m9/+xvf/va3cy1SSmRF0Z89ezZ79+5F0zTKy8v53e9+R21tLfv37+fKK69k06ZNuFwuHnroIU477TQAmpubue6661i2bBmapnHPPffw9a9/HbBnY//rv/6LV155BSEEt9xyCzfeeGPK8vkL9nNvbtGEPXvU5I4/69kdEHEerOFKb2lJfm9JXuJy4jB0hEhyAZ+UeDyt9a914P87+FK0+0hhzLzKGL7SPf7MjhfNzS0Rx1nfSyPNyCx+8i7skko/XXURfL7rFEEaGxvZuXNnWiYy/ud/bGW/tFRSUtKfHTu2I7QzoGYmFPWDAvD5LqWkf//+bN++HU3TGDx4MGVlZbkWq11qa2sBOHr0aE7l6AxZUfSffvppqqqqAHjhhRe49tprWbFiBT/4wQ+YOnUqr732GsuWLeOiiy5i06ZNGIbB/fffj8vlYuPGjWzZsoWTTz6ZmTNn0qNHD5544gnWrl3L+vXrqaurY8qUKZxxxhmMHTs2JfnqG1s6DgREPkZklx1EOyJXuY5d3jKjs8GJxDywd8+Y531eH3OmncCaDVs47YRj0ytYntCrd2/MMEVu6JBBbNjc8QPHl2FlOV2Ul+f+IaRrSVpYRu+km0ZZUqG+gB+QmSQrbkFlzJ8Jhc9n8l2nAHsmf+fOnZSUlNCnT59OfwHs29fW5YWQDBrUQGWxiWhusfesKB9dEAsHLcuisbGR0tJSDh06xM6dOxk1alRez+wHX0QaGxtzLEnqZEXRD3ZIgLq6OrTAg+vpp58O7Tx2wgkn0K9fP95//31mzJjBwoULefTRRwEYNmwY06dP58UXX+Tqq69m4cKFzJ8/H13X6dmzJ/PmzeOpp57izjvvjJm+x+PB42ndRCbajrNnZWIP8/DBuMAn2QqT2Hp+grdGKT9SktCH/kBFi3aSMgwdl8PAE7Xgd0j1EI4dO4wpo4ZgFvcojGdokkIahsHwwQPYe/AwEGnGExFtnimfieJyJmnjnIE0dSO5YbpN2ea4sPsOGJjZBNrdBKJQSKPcYQpfskVTKJNXudQp4ukTPp8vwkTH4/FgWRa9evXC5XK1iSdZnE7YtUvg9Qr8fpMisQvhBFncG5mG+LOBlBKv10tRURG9evWisbGRlpaWtJRPpigKPNOCin46zLASxRFn/V+yZM1G/8orr+Tdd+1NHV577TUOHTqEZVn06dO6XXNNTQ3bt9seXbZv387QoUMTvrZ8eeQCtnB+/vOfc9ddd6U1PwpFOLFna/J/hqWztMl3189yiGwtVOxGRZoSXULPTyPh7SVf176kg1zpFPH0iTfeeIOSkpLQsWEY9O/fn6amprQph8XFRXi9RXhagGL7BaPe40R688DTVhI0NDTg9XppaWlhyZIl+P3p8oqXfnbu3AnAkSO2d68333wza2mff356PCllTdF//PHHAXjssce47bbb+Otf/9rmQRk9KIVfT+ZaNLfffju33HJL6HjXrl2MHz8+uQzYKUUedeFBtD1yle9Ys00yzvmYAVNKM3UK4EuqogMK0utIAe5c3R2JGEazUEWZHCdzQa50inj6xOzZs6moqAidd7vd7Nixg7KystCscGfRdUFdHRRrdfZXZkc55WW90hJ3NpBS0tDQQHl5OR6Ph+LiYqZPn5628skEQUXf4/EgpWT27Nlpm2nPFln3unPVVVcxf/780PGBAwdCb+Dbtm2juroagOrqarZu3Rpxbc6cORHXTjjhhDb3xcLlckV8GqqvL6y3X4UiW3T2OV8ILkULjkJ82Qgj8+LH3+ytu9MdSiPbOkU8fcLhcEQogKZpe+bSNC1kWtRZysrA6ZT0KrP3JRGu3ogk4/Z6vfz4xz/mueeew+FwoOs6t956K9dccw1bt27l+OOP5+DBgxH3CCFoaGhg3rx57N69G4BVq1YxceLE0ILo94L+P9sh6NY6WC5CiDbllm/07GmvwfP7/fj9/ryXNxYZ96NfX18fahgAzz//PL169aJnz55cfPHFLFiwAIBly5axd+/e0Ar58GtbtmxhyZIlzJ07N3Tt4YcfxjRNDh8+zMKFC7nkkktSllFIiaEJnLqg2BAYmkCYXhyaCHkJkRIIW3TYxubbcGFaEjT73ckCcBQhjSK8lsRrSiwp0YTADMwWlDp1LAlIy45baBg6OHQRmu3RhMBvSRAaxYZoM3DrAgxN4Aj+6fZfmcvApWuUODR6FDsoMQRlDp1+pU4qXRpOXxPC24TmacBheigyNBzSj/C7wfQhTK/9v+UPlANYEvTwp7aURFiDWiZYJkbAC42w/OgaODTbJaEmbPmllDh1QZFDs8va20ypQ6PModG7xEmPYoMyp06lS6fEEGjuOipdGo4YCoMGtmBBrLBPgGEeYGTUvRIBQkMG6gvLAsuP8HvaN8MRAmH5QVpIKe37hRb3Hqk7kUYRGE4QAp8lMS2JKQHdic+SSKHZsmp2e5COYixXqd1+XKVYzlL8zjLcpqTJZ9HilzR4/TR5Tdx+iyavfc7jt/BZEr9le2oxJaG2FqguwD5nSfCZErSwRVAReUhMRTAlSCNs0AuLT0qJ37TzG4xNCAGGQSyDFMtZinSW4A/0F68psRzFmJoD08IuO2n/Sd0uT6Rl/wXK0JR2en6JXc6WxG9JpAS338IbaCsyUDamJfEFylwaLnymRDpLkc5ipO4AI/5Mk6XpePySOrePIy0+TFcZpqMEr+7CcpVjuUqRzmA9luHVnHgDdS8dRUjDiXS47MV04URszCfa1ZQNTSD8HhzSj1MX6KYnsg8EMxtWJ6G4pUQE2zP2WKJrIKRl3xMoW0MT9vlwv++WCZaFMzDm6MIWO7ZrR4FpBdIKxFHi0Clx6JQ5DRxaYMz1exF+n90HTS+a34MeiM6hCXRNUGTYY5pTt/MtLD8yrP/rEBiH/AjLb+cFIsaC0DguJUJarWOaptttVTNC47gQwq4n3RlqY6E/aeE1JR7TrlM/GlJ34g60Xak78FnY7U932GEsu+3aIofVhZDoQhCq7oC8urDzEyy3kCtfaeEI1lVAluD5eHUfbFgidEmiBepcE/a98V6UhLDDCGHXg0OAyxA4dY1ih0aJQ7fbnxAIaaEhcRkaDl1Q4tApMrSwZ6xGhct+njmlH4fpocxpx+PUO1ZJCkGniEZKaGrq/F9zM5QVN+D3+KlvdNDkqwpdS/RD+9VXX83GjRtZtWoVX3zxBS+//DL33nsvf/jDHzq895VXXmHlypWsXLkSgKVLl7Jy5cqElPxCpbS0NPS7pSVRxy35RcZn9Ovq6rjwwgtpaWlB0zT69OnDyy+/jBCCX/ziF1xxxRWMGjUKp9PJX//6V4zAwrPbbruNa6+9lpEjR6JpGgsWLAi9WV1xxRUsW7aM0aNHh8KOGzcuI/JbgcEQ2tqCttexElnrmUjH1Nt5yLdHIr7dRQzXgYkQUhbaSyL4AEqSBMb5yGQCxjsJBOzohE2UzJ0yU4ounxjlkYjLaylE5qbmsmSGJVs1/Q7DJuTCP8W2m3RvaueGfJtnD1fgkkEKrcO8JDKeJBImFsn2+bxBaB32y3b7d3vOHRJo31acZ0zUXEyb5Mw0dXkzhohae14L0kQh6hTNzfZsfHqoAKa0OdvYCGE6aUw2btzICy+8wI4dO0IKbE1NDb/85S/55je/yezZs9MlZJfBMAyKiopwu93t7pSez2Rc0R8yZAiffPJJzGv9+vXjjTfeiHmttLSUhQsXxrym63rozbw7krSvc4VCoegGqGERiPjO2vVKROkUqbNixQpGjRpFr16Rdv0nn3wyO3fu5MCBAxw9ejTkO15hU1ZWhtvtVjP63Y2EZ5IVaSNmacvEaqHNhFnnxVEkRWGWePtrDvJtTj82hVnyiSPbnRrPXyKV8Gysxu04je7qYCLTlJTYM+6dxn0AmnbgMZ18vvMYevQQDBvWmkYidORgoKqqKmSak+g9XZ3y8nIOHjyoZvQLmRXrtlCzcSO9Bw9rN9zOfa0LVI4ercNI0wKb5Mn899FP125k0849nDnrHMp79o64tjtQDtnu+s1NTW3O7du1jabizK/Y7yivscbB7rAwNfoB0NEDoeBKpD3TnSxlJtmH7Nbd++z7sEeJjTv2pl+oZEhSfiklr37yOUfNdUw69Qx6VFa2G37Tzv2h394oN4Ybt+3g4xWrqBk5hpOPz69N6+rqWp1CHD50mEE16Yk3vLT9YfY1Hq8XaN9fudLzM4MQHZvVJIT/IJRamGY5xcUCnw+KiyFRVeTYY49l/fr1HDp0KGJW/8MPP2Tw4MERrkkVrQQ3zSpURb9QrSPTzqLnnuswTHlpceh3cXFxzram18IMP60MbS//2gfL2bBtF8tXrGhzrbLcHrH8CRlTp49YGwcVFZdgJWKvHVVXfl9ifnsTn+EqOBU2qygFInsEx4RgkadqO58ukk39SH0jy9dvZ+OmzWzfvLHj+MPy5476tP7+spVs23OAJe+9n7GxMlVE2Dje3Nx2EiMd8YbjSUBJcXsKU5HpFvhbwN9k2xI4SnE4JKYJyTgRHDVqFOeddx433HADzc3NAGzdupVbb72VH/7wh5mRuwsQVPQL1XRHKfpJoIUtptQ1Lfmt6dOEnsIi11RpifFwCLoKcxnZ3bY6VnmLlOshC5pnQej+udoToSuQoQruZOEE+0P/KvvhlC7XftnCDFPILdPsMHy4px9NjxyTfGEb8eSbWUp4vWha+sbSeK0ykXbQ3U008hrfUft/RyVSGAQ3B07WW/jjjz/O8OHDmThxIuPGjeOrX/0qt956a4SLUkUk5eXlAKGXo0JDme4ouinpfaA1uz0dB8pnUiwOIUAPU1ISVRQaWwq8vICMva6kqWm6E/xq1ZWJcAmqlFhFIRP8cq05A/67bfQk3xFdLhf33Xcf9913X5trNTU1bXzoQ+yX5Hx7cc4kgwcPBuw9GgqRwprqySBnnHFGAqFkjF/Zpyt6UkiEmANLgkVRGmbHX1VRTnGCdv2pKAcVpcWUFBcxdGhN0vdmm3hjdSL5HjGsBofDyYSxo6gsLW7jqaG9qsm1OUmi6O08RfN1dufAkTqgtQ79CcyKZ5KkR6skbwgP7o+y0Z88bjQOQ2fM6FH592UjwvVl+sb0eDEllEJUoKNHj3ZOGEX6CfRrT2CuxOnMoSzdhJqaGgD279/ffsA8Rc3oA1PGDOP4E07gqDu5B2KB6CpZId/f7suKWxeh/cd5s20lKAmZOwrpdBh4AzOo37loNmZZbzwlvaAhxwshOyTOZkrt3HHFrJOorh6CWTEArxD0qKrkO1+bgXfgRNatXZNkqvlNey8kAwYMzKIkiTOkfx++3LIjdNyjPB2rAAuDouLiiOMTJo3nxDFDMHtUg+mLc1duKIQJm/79++daBEUcvF77f1f766sVaaDQFf08m+LIbyI3zEpgR6wuSn49nhKUJvwTfoYk6VK0+xabYAnmV0NJjfbKIUsNKfWX6AQ2tssGyW7glfSUfmIvqHlNOvtK3Cn9BNxrRt+sZrPyiMhdzoOKvprRzzxK0e8CJPxgibHLYC7I+eR5jgSIlaryidM54prupCPudmsn1424G9BNijgim4WkmGbMdCd2XKmY7ijyEYFl2X+gFP1sEFT0Dx48iJljU8hUUIp+JyigR0pGCM9/zl8+kiLxmuv6C/jiVVz8fHf5Igmj/e8a+VkQwTYbrNl8lbO7UwhDpmo5+Ynfb9eMYSTuQ1+ROgMHDsQwDEzTZPfu3bkWJ2lUEwGk5sC0JIYm0DWBKUFqBlrY3IgQMQbmMI3H0h0B/7bFSEcxhiawHMVIw4UGmFKia4LKIoMiQ0MCTl3g1AVSM0A3kIYTXQjKnQaGDg5d4DI0BCAsP05dw6VHVpkEHJqgR7GDMqdBiUOnb6mT3iUOigxBqUOjzKkh/B7KnBr9ypxUOEBrOoTwNCG8LWjuesoDYYTpR/gjXWpqgZxLKXFoIIP51rTWMtA00HT7D0Czl384AuVZ4tAoMmzZnbqgOCBbsSEQvhYcAsqcOgPKnFS6dModgh5FOpq7Ds3dQIVTQ3jbLn4UwUIIndBAaPYeB0LDlBLLcIGj1ZBROouQuhM0HelwIR2u0Ghpl7OwPRzoDju+6PYiNKThwmeBNFxYReWEPxKtkiqkqwyvKZHO4lA7kJqBlNDil3j8FlK3253UdNAMpGbYbc9RhDSKkLoDy1lKs8/C7bfs9KTdliwpMcPervyWxGeB35QYGpQ5DfSASIZmt6MSh2BAmYsKp06JIehV4og0ewjLa3vKvOUsRTpLQdPxmRLpLEU6i5FCYOmO1nKStutDpy4QYXsdCMMRK1ownHY5SbAkmJbEh0aL38JtWkgJGgJdCKSmIw0n0nCC7gyVry17pKJrWjK054XXkghhy6QL0RpWdyKFQBOEebfQ7HbSDsUOEep3wjIRIqwlCA0pNDs+aWFG7zthWXb7klaoroI4NDtehwZY8WeQQmY9wTBCQxLWJ+0CwXIUhcJK3YnUDPyBMkZooBloQtjjnOGyG4DQQv252NBwaGHlKjTQDQxdUGxoobUMQth1F659BEdRhwaaAF0IihwaPYsdVLh0ig2ttc9Bq/wBdE2ga6ALcBmCcpeBK9imhEZ435MIu18bRXZ/cxQhHSX4hIHlLLHPO8L6v2ZgaITSl4CFQBquUH1JRzHSWQyW3x4jLb9t7y8tvKbEtCSaADNQFaWOMDfMwv5DSrvNaXY64fkF+0FcZIjWsgiUsSYEwvTi0IJtTaNElwhvCyWGQPg9djx+b2spxJl1MaVEOooC/cHuJ0KAS9cQIvAcitXvdQMNu4wcmt02g+OknScC9SPQhT0++qU97pQ6dTRhP8u0QNuwpF3DwbIQlh+XLnBoIvSsUcQgfLz3B56lajY/K+i6TnV1NQDbtm3LsTTJoxT9DJGIXW0i+03l5expKG8iNFuYyIx+bvMSbqMfXxCZ8h4FCdi/ZrAAUo46UHFtvly0E2GiXzny8ZGtJTJHmeDnqbzsm4TJFcpG+4Jmsl0mQjqTz2pWMrmfSQKbAKZab2YyHbOdNFJdO1IoHrfyGZ9PKfrZZujQoYC9wVihoRR9SMLuJNJDSa6Gq/z01pB5mWKmkGGboa5uuhOvLaUl1wnUTb6Xb/vyZWs1brI3RL+0pUuQFMnw0JCPo2FChPePNI5j8RTwRJKIDpPrpqOIhQjN6CuPO9lDKfodMHv2bCZNmkRtbS3Tpk1j5cqVEdcfe+wxhBC8/PLLoXPNzc1ceumljBw5ktGjR7No0aLQNcuyuPnmmxkxYgQjR47kwQcf7JR8Cav50QFzp+nnlHyyx09YlIzXVdd6JKZDAW+3bvKoDeU7+flinzmSH18ibPfSKEn2yE4NJ5JKYbS1fNcpMkN6THe8Xi/f//73GTlyJOPGjWPChAk88sgjoes1NTWsWRPpJnnGjBmhsqytraW2tpbx48djGEbo+JJLLkkhT4VDcEFuIZruZMWP/tNPP01VYL/mF154gWuvvZYVK1YAsHPnTh5++GGmTp0acc/999+Py+Vi48aNbNmyhZNPPpmZM2fSo0cPnnjiCdauXcv69eupq6tjypQpnHHGGYwdOzYl+Tze5P0rt7S0UJkj/9ThW8SnSovbwxfrt2O5jjBu1Aj0OFlpaW5pc+7gkSOtB4HnanOMcOng0OEjbN64gUGjndQ3NLS53tzY9lwsws11EtFhW9xuvly3nkN1jQnLWojErbd2TXcyJEyBkaly8Hi8kSeS1L2CcqW6GHfz9l18unotc87/OsWOzs8FNdTXJZ727v3sq3d3HDCMA0fqQ78z2TT3HTrKnl31jB83jiQ3I41JY1PrmqOGGGNbouw5cIhDDS2MmNQDgPU7Y+/eaaXy3MjTzp7vOkVGEZ1T9K+++mo8Hg+rVq2itLSUrVu3cu655+Lz+bjhhhs6vD/4UrV161aOP/74Ni9ZXZXgjL5S9OMQ7JAAdXV1ETsU3nDDDfz617/m+9//fsQ9Cxcu5NFHHwVg2LBhTJ8+nRdffJGrr76ahQsXMn/+fHRdp2fPnsybN4+nnnqKO++8M2b6Ho8HT3AbOdoOql5fahuppDRw5gkfrFzLx6vXAXCwroEZ5wwJXWtuaVX+Dh890uZeK2xxQbAMDhzMzNbQz/3zDQ4dOYr2ySoqyss6DH/g0GH69OrZ6XQXL/2ElWu+CB131VnVYF1blpX+edF2pma7Zmmmjscdqdy2NDeB0978qampKcVYUyvlp15+A4An/vY3rr/6ihTTbsXjTmwSoLG5hb+/+WFScac6dqfCYy+/i89vYloWtceM63R8e8N8ch/ohH/uRxa9CsDc0h70LzVYuz32Jn1NTR3v5JxPX2vbI5c6RTx9wufz4Qtrjz6fDykllmVhmmand9IWzU0ITwuW2Ux9fQumqeH1WgTVmZKSkg6/xG7cuJEXXniBbdu2UVxcjGVZVFdXc9999/Gtb32L//zP/wTs50G0fhN9Lvg7GT0o5BAgUC5SSnw+X7s7kOcLgwcPBuwXHF+Wxh2HI47jiiTJ2s64V155Je+++y4Ar732GgC///3vOeaYYzjppJPahN++fXvoDQrszybbt2+Pe2358uVx0/75z3/OXXfdFfd67x5VCeUh2vbR0At3Y+EWtyfmbwB32Ixi/3792tyraxqmZeFy6BiBDlpampmvG0fr7VHMsixKS4o5WmfP3lWUFFHf7MZVVIywTNyB3UNa3HFmA0Xcg5js3luYG2MkS1mg3to+INJrm16oL0rZstH3eiNn8b0eD86Aoq8bKT4EW6f0U+LQoUOp3RhFSWnHL+jQTt9tB78/yiNRBmegfYG0Dh5MT7mUl5Wy/8BBAMrKEiuj9jh65AiVRkXc60VFRQnEEtlP83M+3yZXOkU8feKNN96gpKQkdGwYBv3796exsZEjR46EFMVMsXPnzg6fwx988AHDhw/H4XBQX9/6JWzChAns3LmTzZs3Y1kWF110Ea6wBQBbtmyhubk54p7GxkaklBHnEqWhoQGv10tLSwv/+te/8Pv9SceRbQ4etPvq9u3b+cc//pGVl5Pzzz8/LfFkTVN9/PHHAdt27rbbbmPBggX88Y9/5IMPPoh7T/hDNlrJbu9aNLfffju33HJL6HjXrl2MHz8+LK7E8hBNoSov0aQ6mAshcDoy24RibU4xtG8PihwG9c1tFYNMPZiCTSxe/Hn6hTthHFGDViY3hD3S1FpvQohO7PyaWwq9zhUpUqAVX6BixyVXOkU8fWL27NlUVLS+aLndbnbs2EFZWVlWNlmqqKjoUNEvLi7GMIwIOaH1OVteXo6maTz77LNMmDAhdP2MM86gpKQk4r6ysjKEEG3iag8pJQ0NDZSXl+PxeCguLmb69OkJvoTmluDEh2VZzJo1qyBkDpL1KemrrrqK+fPns3TpUnbv3s24cfYn0L1793Lddddx9913c/3111NdXc3WrVvp06cPYNtFzZkzByB07YQTTghdC/o4jYXL5Yp4O41+Ay0PewtPhrzYIU3KlDSvdvcsDRvkDh9pa7pjhj7ZRWztmHEOH2m19fUFyj5Rs4BI+ToWdlj1YPbHmLk7Uhd79iKVdR75QMQDLcE6LCstjnst/DNuc3OYyUlY3PuOtn7Cnn78ZBZ/8m+OGZeHtrCk79NpR7jaPDTS4JGljZvN5BgxfHhqNwJ62H4fTQmuoyktid+u4tFmoqGAXhrDbfRjjbPJI9vNvyfqy23MGKJuL4TSzLZOEU+fcDgcEeOFaZoIIdA0jeLiYhobO7neq2knuPdjOvuyaoP9deDYY1tf4BIx3TnuuONYv349R44coVevXqHzH3/8MYMHD6Zf4Au+pmkR5lCxzgV/B/9/8cUXqaur4+STT+bUU09l//79fPe73+Wmm25i2LBhQOvzIVguQog25ZavhOe9qKioIGQOknGvO/X19RE7iT3//PP06tWLyy67jL1797J161a2bt3K1KlT+fOf/8z1118PwMUXX8yCBQsA+7PRkiVLmDt3bujaww8/jGmaHD58mIULF6a04nv68RO55JwZHDcheSXD7lS5906a6YG4V4/O27uni6pKe+ZAiNblhaXlFTiM8Id97IEu2a8vp598Av/x1dlMPznyE/DYUSNjhi92FbhD43aeDz0ry+nbozJ0XNXOWokePXqEfpdXVMYME6yLc6edxNTaY7jia3M4Z9aZSQqcHXRdp7Qong+79E2ROp1OKspSm3CIT2ryfevyizjrlBP42te+lnLKxWEvLuMmHZvQPSVFRcy/4Awmj0n8BcMwIhX9QlBMg0wIe7kdNGhQWuIsittWoWca1i7lA/msU8RDCEFpaWnn/srKKC0tprSkmOLiUkpKSigra72eiKe0UaNGcd5553HDDTeE1gxs3bqVW2+9lR/+8IedymOvXr2oq6tjwYIFzJ07l127dtHc3BxS8gud8Ind6JegfCfjM/p1dXVceOGFtLS0oGkaffr04eWXX+6wUd52221ce+21jBw5Ek3TWLBgAT172gPVFVdcwbJlyxg9enQobPAtPhlOmjiOivIypKaRrIVYRXk50sx/u7K4JPhEjGUf7HI68UTZFGfKjMnQdfyBDuZytn2DLiouxsCkriHxukhk0k/XdYZXD+JIc+QsmCuOQq8VwGKiZIj8jA0DelexP+yLSkJxhP2OVeQ9Ku3PxEMG9MNyOMDf8YxjLqgsL6EpgdnQztKzsoL6xsAsbyc+lkWbmSXbN3tUlnPi5PGYug5p+GrpciX+ibt3ZXnEi2QispeXFNOQIa9fmcQR9jXCmYadjzoe1xJ58Yue0s+/V6d81ikyS3Bn6s45AXn88cf50Y9+xMSJE3E6nei6zq233hpaiJsqvXr14t///jcjRoygV69e/PSnP+W///u/OxVnPqEU/XYYMmQIn3zySYfhFi9eHHFcWlrKwoULY4bVdT30Zp4zhMiT2aPOS9HeABnLNV948EybfcaTLXJv3gRcZ2a4srqG+Wua21KXMQqOk4+ukr0MkNWiiUgsP0blREjW7WkaEuwSdFmdoiNCfnNlxGGyuFwu7rvvPu67776Y12NtCBVdlmAvWA4uUAVb0X/hhRfYtGkTf/vb3/jiiy/y0z1pigQV/aDJUSFRWK8lOSbcnllEHeeMFEVod6YsFT+LmSqKjtIX0WEyq+nHX4xbWB0/SPbacNt0CqfI4u0enLkMyM5M6beZle2sNCkQXjRJVnSyeQ+vh3wYkhMmAxMm7bXJRNprIdrodx8C6poM2rnnUJQY9O3bl8OHD9OjRw++/e1v8/e//z3XIqWVoKJfCK5Aoylc/5BpwCzpgVneAywTvyXRhD3QSSlBdyCFfUJYfoSM9DMe6+OZQ2CPjNKizKkjAx2x2CEBC79Do6iiCCGg3Knj0iVFhgDdAZqB1AzKNI0yp92ldSFw6gIDCyk0dMtHpSuyyoodGoahUeJw0aPYQBcCXTjoU+rEqQucpocqlxOkjyLppVexA2H5okZ0iYEF0kIaTjvfYQjLjxAauiYCG+gErhsOpC/gFxewiiqQupMi3ULqLpASXYApYWC5izKHhi4ATVCiCZyWRNcE0lGMhcCpQ4VLt2OXFk5dj3w4CbuDWboDEehsAgFhayUsRxHSUYwpwXKV4/NLDE0gjVbzAYmwB0tpIV3lSKEhTJ+9UEh3oFkgHcVIowipR31S1x32n6MIhwZS0+24w01dnCX2sbTjEZoPy3BhWhIh7Es+S9rnfBYev4XuKsVCoAmJNFxI3YmFwGdJvKaFoQnMsDpzaBqaEDh1zRZJCFseXWDogr5ljsA9UGQIigyBLnRG9y6lxKEhfC30KHIRepRrBpbDFZnPYH6EXUehMi7pgRQaUjPQLPAKA63Itsf3W5GqgRCgayKUjNANpDAB086nqxRpuLAMF5plIoVGsSFxSoGuCXQhEEiKDY1Sh4YlQddAM312vQf6DboBmo5DCvRAmk4AXWBokkpLR9dcuAxBsSFw6Bpe026fDiyEZYFm2LKahOpdCoEUsYdJDYtyp87AChcOrbX+jbAmawkdoRkIy4+uCRwSuw8AwrQXcEvNwNAEhC/2MgRlTg2nroEV3yzN0AT4/AjA6XDZbS5U+MH4JFISKE/sALoDTdjtTUiJ1B3olo9SQ8NyVCB8zQjTa5etCWVOe/zB9OEwXICGNIooEgLNpWEGEtWFwG9JpCPMzaAWbAsCHbs/Vjh1Kpw6JQ67XnXTNo2yisoj+pyh2WOgEBpOXVDh1CjSBQ7La5eLdERoyRoSqRmtZkuBdqsF5NJdpbbJZaD/o+mUOjS7HGVrOUtHkb1gUICpuSI2yJKiVeHyWQJnYFzzmpIi3YEDCx8C6bK9kljYfVoLlJE0XPZjIiyfFthtWwhMC8ziKqTuxGtaaK5ysKA4VJAa0uGy6y1s7JNIpDO+1xVLSntc80scmj1eOBAEM+eRWhvtUQbuMUz7vM+yxy40B2Da8SDQELgMQZEuEF43huGi0qXjNS0c5S7KnTrlTltW3fSgWyYO3WH3AZ+b0mIXUjNo9HTtDQo7RahuOjejr0iN4ELiQlT01Yx+B1hxpjREB6Y7lrQfoB3RUV/tuILsNMyotLRY8zdCizmD2yaktMKuEfEwCZ1sTTo+MUaieOUZP47kkojIS1g+4iXbJm8JEn1fQrNlMc5ZMrGvAdH1Fl3fKZPGKTtbpHAzqvbzlc9fQYTs2A42ejF+rHuymUUt0cSilbnAhEYSt3ScROSUfsc3pNKeQ+Uf9pKdyG0x6klLpZ5ijR1RcceL15JEFGp0X0jk2RFbpo4vpmubR4sY7SJG2bYZ82PkTWrdes4xQVpf3EEp+tmmkGf0laLfCfLCdCdF0iF5NnIfW4GWnfpE3ym544yu+ay0tk/cN9nWEGmo6EhTscLtN5kk8iU17GeyFRD8ehJp0lswRLp8LTDhc0k6+mkbpbzzcSrSRKhD56fpTlcn3Ea/0Cg8ifOJPBgE0/IcbG/AiDGaRCx+TUPy7RJrNIvIc+Ri3EwLFDf6Qh90gyYdYYcpx9MRedBv0kK6n7SF3obCyWJeItfiFk7jykQRtWuj35XaV7dEme7kEjWj312IUIREnuyMmwZPKdExRi067vCGtEgRm/hjWZgPwQg9P/YdUmZ2RrlQx9x060WRL4GxZ6hbrxc2mZS/M9XSQe/NCpGesFKXI6FyaL+Z5S8iTl9JEYlMQ5XLqKOCKtGuTcBULGWzLkWnUIp+N+XwkaOdjqO5qYnfP/Esz//ztYTC19fVRRzv37s36TQbm5r4fNP20PFn6zbx17/9PbTYJHzHxpyThmmLffv28eATz4aOO7WLbTx5CnR6ZffefbEvhOWnrr4en69zO/9u3LLFjrZTsXQtvD4ff3j2VX7z57+xY8f2CGVv1/atod9Nzcn1x3Wbt0UcH6lPbGfafGHbztbNkLZt3pjUvc888wx+f/r3N/l42fLQ7/374vSZHLNr565Ox3Hw0OE0SJI4pmny6DMv8eijj2ak3roWwfFBme7kAqXodxNkWmwbItm6dStH6hv4csOmhGxxw3cEBNi3O/nBfc+eti8Hu3fvpq7B9ngQsRlWTNOdGGRolsEI61T+GBuUiei5sBjCvfvOOxHH3qjNvtJB+E6ghUTf3vY26H5/5MZI0cV4IFEFIM4azPJS2xuI3wpbrNfNn1QHDh/lwJE6Wtxutm7ZGnGtqbFVOXcluZlSWantaSZYvGUlxe2EzhCdqNqy0laPPUXFHcsePRt++HD6ldV1G1pfOPr07ZuWODsat5LF4XB0EE3HiZjRY2yGJ4+P1tWzZ/8B9u3fn5F661IItRg3lyivO4qUCVfus7W4N24qnUg/U5JrWtvv8s1uT1JfHTKh2EfTs0dVxtPIBMF6czra93rR6foNPJXKi4vwm+ny+9GV6LiEHXpiw3VQ8bWswi/nRExarCybMugFuBgvVZTpTh4RcC8tpA+BRQHqmwWNYdjPyKampoJzxNJ9Rqw0k66K1o3W3pqYm8XIh3cmHnJWEj4w6wMKt8yQUhGRvUDxHDxSx8EjtglTG7d0sSJJ49RHvHx2pCgXAo0t7taDFMtMC3M5GF43QaXT7fVhFpgCWuRKbkY9HUir7QSAL8EXpMbmFgCONjRFHBcKEZMfCSia9Y1NEceZ8IAV/sLhSdPEQboneYQA0cmXkOixP9PexETYRE7hei7LEnoxUjjQMCkvbqB37+SjqKmpYezYsdTW1jJmzBjuueee9MvZRRk9ejQOh4P6+no2bNiQa3GSovC1kywSPhYfPnQoLXEOHz6ckUMH07dvP3ug62C879GzZ8SxZZpxQrZDnIdK8GzETGAsn8dhvx2Bt1xfNuwro0Tp17cP4yfV8u+P3ms9meGHRTx76eMmT+TgocMMGzEyo+mnn9ZC9Ye1pTazlgkqIj169mT8qOE0+ywGDakOna+rqwfACJuV7lFZkYrAWeeU4yfj8XoZMGgIn65YkbZ42/Mi2dzUunFQzx492tw7qH9fBteMiBNvHsw2dUKEzirSvXr1In3e4m2OO3Yyu/bsAeDQwYNpibO4pNVEqSTsd2eorKhg9NDBrN+2k4rycuobwtdndFwpfaK0xzFjxqZFrnj0qKxkwpiRmMKgV69eNB9Kfs1ZQSAlmJ1f+9bY4qLcqKd36Q6qKoaCP2yc1ksSev49++yzTJgwgd27dzN+/HjOOOMMTjzxxE7L1tVxOp2MGDGCL7/8ko8++ojRo0fnWqSEUYp+UrQOlP37D2D7dnvRW2dstpxOF/O+MgvpLEno2VhcHPlAqKiqSjrNjkx3ilyu9sPKtj+HDB6ctBzJEj67d+Kk8Zxx5pkcNF38+8P32rkrvfSIU959evXkGxeeh1VUCd6mmGHyklCRtm6aNGzY8PjBOkDTNC6YdTpmWR+OeFqVrQH9+3Hk6NGIsHqCpii5pnrgAK66aC5HTSNC0e+8Oh3pCSq8fVf2aH2hL46yUy8pLuLKC8+jpbhXzFj79OzBgcNHOi1dZwjPS7IvHoP692PL9l3BiJJi6tSptp/rNH81Gj9uLC+9YjtM6BHjxSsVSktbd7HtP2BAWuIUQnDx2dOxHMWs23WARS+8lNT9lRWRL9/9+vUDMjeJI4TgvLNOxyqN3Za7DGYzPF3W6WjKA//3jHVxXiMY8XdGjmbgwIGMGTOGbdu2UV1dzXe+8x22bt2K2+3mggsu4Kc//SmWZfGd73yHt956C5fLhWEYfPDBBxQV6Jq0zjJ69OiQon/llVfmWpyEUYp+quToK2NWkk1pl8gsF0g85zcZT7eLfl4O96MvsvUZvbDKMlfStrv7syKCQi2ZTNRpSnFGt7UEvjIrCpMvv/ySgwcPMmPGDL7xjW/wwx/+kOnTp+P3+/nqV7/K888/T01NDW+//TZr165F0zTq6upwJukcoCsxZswYAD7++OMcS5IcStFPgnz4Ip5JYs/exzLdaXsuKw/YOOWvFoylTsJll6bG36VqqpNl0sZ0pysVTtry0pUKJbck0lwL9UUp79FL7Bn3FGlogKBZ+MQR23H4DyJdPRFlNZFpJMBFF12EEIJ169bx61//mpKSEt555x32hbmNbWxs5Msvv+SMM87A5/Nx7bXXMnPmTL7yla8U5M6w6SJorrNq1Sqam5vTZnKXabJSY7Nnz2bSpEnU1tYybdo0Vq5cCcDy5cs5+eSTOfbYYxk3bhz33ntv6J7m5mYuvfRSRo4cyejRo1m0aFHommVZ3HzzzYwYMYKRI0fy4IMPZiMbEeRsVq3N4tPczQTl8qEQf4faDC8ey2jsuSOOV8z0xR/LTWuhFWaGBQ5/6Wr3i0qhlVuShOc9aTW/gBpVRB1nZpvcLkvB6RRC2GY1KfxJvZQde0qxtFJ69SvFKB8ERjFYXtCLW8Mm2PafffZZvvjiC9544w1+8IMfsHnzZoQQLFu2jJUrV7Jy5Uo2btzI7bffTmVlJZ9//jmXXXYZX375JZMmTWLjxuT2tuhK9O7dmwEDBmCaJp9++mmuxUmYrMzoP/3001QFbJtfeOEFrr32WlasWMH111/PXXfdxdy5czl8+DBjx47lq1/9KuPHj+f+++/H5XKxceNGtmzZwsknn8zMmTPp0aMHTzzxBGvXrmX9+vXU1dUxZcoUzjjjDMaOTXLhkO5A6k7QwRkYFTVpUqRrYNk70Dk0gZRamA/b2HhNiS5A0xwhTzhSCMyAFwOnLihBw7TAoUGRIXBooAmBVVSBNFxIIXD4LATg0G15dE2AEPglSKGhRXVmXRM4An9FYfcUO6QdVgiKDQ18tvwlDg0Z5/1Oag6koxhphNnoCw1L6Dg1C78lsbNjpyOdRSCC9ugilAenLuxyBVxCICX0KTFw6QJDgIVACDAtibBMpKsMIUAX4DA0NCRIaf8fLl/4b6MIdAdlukb4E02iITUDTYIldHRNtt1JUGgIaYFlIoSGFFpgIA7IrIu4a/kkAqkZCGnh1DWkxC4v6QBpITXdLkPNwLBAak6k7sRvSQRQbGih0pfSbgcCkI4SNKSdtikRlh9NM3BpoDm1kGVNkS4xJeiBdmBodjsqdWgIAc7AcpEiXeAytED703EIcBiC/qUOO6zXoqpIDxWq1AykiLDdaZPv0G/dYfcHoaFrdulbxZWAXYdWcSUWdjuwzwm7jIP3BuNxliEdRXbaEqTDtkUvc9p5DOLUBWVOzS47EahtadltwHY1gjSKkLoTw7L7lLBMdKEH2pUtR6lDs8tLFxiaQBcCDYkwWzcDEwCajtRa193IonK7sloiF4lKoDhQplJKZLCIpAWOIlvGYL78HgzNHg80Ybch6Wi1cxWCkPs8u16hLFiZYWUWDCyLygkUb6jcNKRdzjFm3ISw24omQAonlqsMDYkzuE5C05FCo8QhkLoDYdl9QUiLIsOBQ0owfXa/MX1I3YHUHRgInLqGLzDOFRm2UC1hMjt1KHbYbVjT7HZa7rTr0qlraNIM5MMuD6m1Ppb0gNy6sMc1J/b/UtexispjjstSCNAM/BIQBoaz1C5fCZarHOG08KOh6S67z0jLjhNbZlNKdEcxjkA/EwJMvXVMFEK0tlWHRA+UqxB2f0daFBkaUjrQhaDMoSEsP4Zu+7kX0sSh6REz7Bp2HksdAkvaY6RmuBBSYAkNQ5OUOe1rUgikszSQ1zAvV4ClO6C0l90ntKNtysbSHRQFPLfpgT4QuiYlphbZ1kwp0Q0XRVhYmogYg51h95c47LoiUPbC8lPqcFBk6JQ6JEaYdx1puBCWv7Wui8qRQqCZvoh+1x55q1NkgMOHobnZ7tYDB4LUy5Dodr/x1YOzKqV4zzrrLL71rW/xox/9iGnTpnHPPffw4x//GLD31bEsC5fLha7rzJ49m1mzZrFkyRLWrl3LyJGF5nQiPQghOPHEE3nxxRf56KOPmDZtWq5FSoiszOhXhS1grKuri/j0czSwQK+pqQmn00nPgFeZhQsXctNNNwEwbNgwpk+fzosvvhi6Nn/+fHRdp2fPnsybN4+nnnoqbvoej4f6+vrQX0PQE4HsxIKtNMyWJOHFMqsk4OSz9VeYbpgXZHpGrxPR52d1t11ZLUT6qzMUX4S71HxpNImR+XULMXzJxpIjbzpbehBR43B47rJhLpnsOJzM4uKEP8yk0LZkiu2xvfy2cVecp300lzpFPH3C5/O1+ZNSYllWyn+mabFrl11h/ftLdN1CSolX2At7pfdwUvEBEcc//OEPef/997nzzjtZu3YtEydOZOLEiVx44YUcOHCAbdu2MWvWLCZNmsTEiRM55phjOPvss7Esi9raWnbu3JlU+sG+EywXKWXMcsvXP4Djjz8egKVLl2YlvXSQNRv9K6+8knfffReA116zvRc88sgjnH/++fzoRz/iwIED/OEPf6B///4AbN++naFDh4bur6mpYfv27XGvLV/eukV5ND//+c+56667Op2HyMdwbgbANgvzUhAjvl12mKYXPBPLRj9nGmts04bs2ujn54MvVWKXXKw8drKMA/WVmCpbIHS6I0QZ6YcdtqsEFkLBybYvkAkTkd8kb85TxTQmYbJmx1wuP6caUiVXOkU8feKNN96IsNk2DIP+/fvT2NiY8qaNR4648HqLMQyLoqJ66m0vxeiijCJZh/Qcpd53tEOLgyBBE6f6QES6rrNp0yYAfv/738e85+233444bmlpoaWlhcWLF0fElQwNDQ14vV5aWlr417/+hT8b7rnTRPCl8r333uOVV17JaFrnn39+WuLJmqL/+OOPA/DYY49x22238corr3Dfffdx3333MW/ePDZv3syMGTM48cQTQyubRTsKZ3vXorn99tu55ZZbQse7du1i/PjxyWeii6/G7Uz2svHiE1e+rl0tmUXGOYg23VFl3IY0qvldugl3tcXy+TTLnZTr0q5VDTnTKeLpE7Nnz6YizD2p2+1mx44dlJWVpeSO0jRhyxZbpkGDBFVVFSHZGuolUnOgWT4qSwTSURh7kkgpaWhooLy8HI/HQ3FxMdOnTy8Id50+n48333yT66+/np/85CccOnSISZMmMTgLrsU7S9aXT1911VW8++677Nu3j+eff5558+YB9sZRJ510EkuXLgWgurqarVu3hu4L+nrt6FosXC4XFRUVob/yctsb7b79yW18ErEpVM7G+uiEkxfE6mCHzfAYY81EeDyejsVKVBbLYsPmrWzbti3m4NrQmJyngmQewo2NTWzctBkzsFHUzj172bp9O1JKmpub+XL9hjb5z59HfOoEy/zQwYPsD2z8Fp6vWKY7R+vqOpVmzOWVnVSYmpqa2LI1drvJBNFtq71Pq1JKNm/bzqFA+W7fuYvDhw9HBWr92VBfH6oLO7GYPwPHyZfb+vXrE54183q9fLF+I9t37ow439LSwtp1G2iOs2lcPBJNd9eefWzZHplmvKr1eDysXb+J1V+sjzifrf7pdrtZv359yjO1bUiD4HUdzKwm8sLVWdMdv9/Puo2bO5QlnWRbp4inTzgcjjZ/Qgg0TUvpb88eDdMUFBdD796t8YjA2jucPQAQviMpp5Htv2B7CpaLECJmueXrH9hmYxMnTgTg008/zXh66SDjin59fT27d+8OHT///PP06tWL3r17U1RUxJIlSwA4ePAgH330ERMmTADg4osvZsGCBQBs2bKFJUuWMHfu3NC1hx9+GNM0OXz4MAsXLuSSSy5JWra/LXw6ttIag7zYbTJN7A7s8BhNi7ulzbnInRXTzxdffsmzL/2ThU89xf79+9oN29SU3o2onnnxHzz7/At8umIFdfX1/PXp53nq6WfZu2cPz//jn7zw8issDrTPrsTazz/n2Zf+yZ///Gfc7kD7T+KBHrFzcg557sWXWfjc83yxbl1O0g9+9o/Fxi3bWPjCP3n0kb+wZ88e/v70szz6yCMR40hDWHtet24dzc1t+1+6eOH55/ls5b8TCrv0ww954ZXX+fvCZzlwoHUy5KVXXufFV9/g+Zc7/lwdrtzv29vxbqd19fU8/swLPPXCP9m+I1zZjz3uLl68mBdff4eX33y3w7gzwauvvcbzL7zAe4vfyUn6sdgbZ1wP0pzm8TMWSz/8kEX/fJ2/PfVMxtLIZ50iFqnoDm43HDhg/x4yJM7w7LAVfbxHO7feMEcUsk41depUAD766KMcS5IYGTfdqaur48ILL6SlpQVN0+jTpw8vv/wyuq7z9NNPc8stt+D3+/H5fHz3u9/lhBNOAOC2227j2muvZeTIkWiaxoIFC0KLaq644gqWLVsW8ml62223MW7cuJTkc7vduMJ2go1HtHKTMxv9Do4TobjY/kxm6DrlZWUcCczWhmZvwiKtrKxsc7+u65imiRbh8SG18ghX3jtS5MOVh3R8Pd+33x5JN2/ZypCBrTtTNjU1sWPnrtg3dYEp/boYs/PlpaUcDc3CtfW6E45pmmh6kkNHLPeaycXQht0BBXLjxk2MHzWik7ElT1lZ/J0ug19ALMviYGCmPnpm22G0lqGmaVFjTPiUfnoaXaIvyhF9srkptAvnlm3bAOL3jTDCH+LBGc/2CH/JSeSFJ25esmRWs369/SVh7ZrVzD7n3JTiEBE2+umXOzpGlyvz5hFBBTyTE0T5rlMECc7oHzhwgD59+iT8dURK2LrV/r+0FJxOW/EPYlmWbd/uLEPzO8DyQcNBcOa/+U5I9pYWDh06FJrRLzSmTp3KQw89xD/+8Q++973v0bdv31yL1C4ZV/SHDBnCJ598EvPaWWedFdcXaWlpKQsXLox5Tdf10Ju5InX8ptmpdW9H6zr/eVamwVC5o0/SHUYbNbNQuPMMqaPriX/c60z5+PxmJ+6OTd7XVwIzV1mZ3UohjXSIVcATdzHJp5nIZGTpKmslCkWn0HWdwYMHs3PnzgizoI44dAiCFqsOB2zZEnldSklLSwvFxcWIlv0gTXAJMPJ/86Zw2TVNY/Dgweh6Yi5V84mzzz6biooK1q9fz3HHHcezzz7LSSedlGux4tLtd8ZNdDtnIQQupxNPwCazqLiIysoK6urqGTBwYCZFbJei4uKk7wnvWIePtp3dDZ9damlpO7umaRqmabJ73356Vtkz/qk+RBrDbPA7yovfbFUSW1rCpjgizL5jzJp09DAUguKwxUDBLx6xSNTUK59JqK7aK7NOKDpH61tn+tI1wGfrI4vD4Qh9zQIi2kx7hC/QCyefFMZcE16WRUVh+3jECZ/KuNdZHIaBz++nV+/e1NTUsHXrVkaOHpNyfOELEDORHxG1n0JxAmmEf91OJHw0ffv2Zdu2bQl9Je8OlJWVMWrUqIRdJf7ud7Bggf1h6re/hTExmpfP5+Nf//oXp483MNZ+ExyVcNZ7oCemy+SSkOynn05xcXFBKvkA/fv358MPP+TrX/8669atY9q0aTzwwAN885vfzKvF+kG6taJ/0QVzEx7MNE3jkgu/xs4d2xDOEkaOGYvldbNl6zaGjhiVYUlbiX7wDRlak3Qc48aOZcm/3osRd9vH6rBhw9qcu+C8r/DMoheSTjcW4eYMAwYMiBvOMAxqhlazfoO9K1+/vn0STqNNrmIoWD16VHHReefikxqDBsVfRd+7V++E0y1cMqCAhvlPBujdq1fBDfJOp5NLLvwae/fsxnAWMXb8MQndN2jQIC746hzKe/ZO4iEQ5XozDaQWS2p3iSQ/FVZVVXLReefg9Xo5XN/Ejl272w1/+vTprF69uu2FDL48feOyS9m7/wBjx49nwvjxbNy0iSHDU984qKKigou/fj5e01Yc0i150CwFbKV98JD4DiuCFBUV8R8XX8i+fXsZMnR40mmeesop9CovZlACaXUXdF1PaKx76CH43vfs37//PQSWD8SMz+/3U7Lzr2jebTD0JijNf7MdaJU9uBFXITN+/Hg++eQTrrnmGhYtWsS3vvUtPvroI37/+9+n9JKcSbq1ol89JDm3SAMH9GdQnyosVzl+NAxK6NmrN54crYMpKSmJ2CgkUZKxiQv3CxykXyx7tFTNbsIezO0pQWPHjsVptA4M8b7EdOZletTwGqSjGF87kehG9+gy7VVnOhSSQQPjv9TlM9WDBzF0YD97F+jg7qsJMHb0KCxHER5/7MFCze7DqGG2H/MPlq9qPRmnWEpLS7MgUST9+vahb/8B9u7fhkHt5Mk0J9oA4jBi2DCk7sRCpL0NhI+nY8eOS/gls6Z6CDWDB9pjYZIiuVwujp14DNJwkbml5V2P556DG2+0f//kJzB/fvvhDdmE2GVv9sXwqzMqmyI+FRUVPPvss9x3333cfvvtPPbYY6xatYpFixbFnCTNFVl3r6noLBlUCGJEHfPREOOBkWn7z/YeUh0+IJUNfru02VZHknbTneAdGfmomYefSsOJ1z7bbbft7DeVcl8rEBv9zvTW7ta3E345yO8u0q1ZsgQuu8zuJzfcAHfe2fE9g/wfICw3VB4DPY/LuIyK+Agh+N73vsebb75J7969WblyJccddxyvvvpqrkUL0T2mJ6MIerdoaGhABuzarMBIqEkThIaw/EjNwELY5wBh+hB+D5ZLBmb0LRBaaEZfF6AJgRUYfHVNYFr2Y9m0JB5TYlrg0MDn0PCZEq+hofvd9gyhELT47MgcusDts+w4DIE/sHFmS1Mj7sASfE3TaAjzV2xaren6LAlOHd30YBkuNJ8bNB2fMPC2NIXiCKehsZH6+noaG1vTaAycc/stOw+GhtncELru9rhwu900NTZRX1+PFAKP38KrB3ZCFQIpwe238OgCQ9hlLYQtb1Nzqyz19fVoQqAhbXdhQgtda25uxmHorXI1NdtyYeB2u0PnGxoaKXI68UnQhV0OLS0tEfltbGiw7w2ca2m24xJ+L9LhwyeMmOUD0NRkl4cwvZi6K9RmhLRAWnZZmz6kZuCxwBV4lQ7OjFkSvIFZXcupY0qJABymB2m48Ev7N5qO1IzQvQJC7ciS0BhoJ4YQODQ7LiFalSqvaeEyNExL4vZLpMOuj0afpKkpsv6FEDQ3N9PSYpdjS0tzRBuIpq6hgSKvncegbA7LLg9LytBvdyCfPkOjubkZt9uNrmmYlkVLS3NoR8VQPwuoaW7TzqOuCRya3Z+afBY+Q0ML+Ph3SH9r22gKtD2HD48FDs3us5ZoLZNg+9U1gUMXGJrdLjUkwrTX3UjdaZe/bDUns3QHmt8DUiINF8LvQVgm0vCEZvTdfmkrXA6Qmo6wzIgyrq+vxyksLIcXj9/CqWvovmYaG2P3Q7udNdFQX4/p0GhqaIgIZ+g69fX1+DR77HJYrfIjrTbtPRRnoJ07BAhfC9LhC/VFzfQhhUazKUJ1BdDYaPcVU8qIOIN150dDC/QzhyYwAw2wMUzm5ma7fgT2+CgEtPgsNIFdFpYPLBPh94Ty3npvi123UobGU0uCaYjYeQyMV0LK0NcWAwup6fgtiQMLIS18woiQxaELHFj4AnNfTumnReo4dS3UhnTLbvNSCEQgn81+Wy5N2H3bpWGPA0JHkyZS0zEtiUP6sXRH6Lep2V9VddMTmtG3pMQfyJ/X0NCkiUdqoT4gsdNw6gLNb4/rlru5Tb1o3mYQGg1uX8T4WV9fj1O3nzE+S2I6NPSwl2RLSjQh0E0PWKY9FkowNHtMDzxeQv3SHXYOQBPgNwSapxFpeGjBYddVoN85A88EQ4CwAn3MMkGI0LjZEPDWky8ufBMhKGsqO8SuWQPnnQdeL3zlK3DPPdCRwyKfz0dV/ZvUW8DISzq+IY/w+Xyhtlho3nY6kv34449nyZIlXHnllXz66afMmTOH22+/ne9973spWV6A3aYGDhyY8v1BhOyG34zff/99pk2blmsxFAqFQqFQRPHJJ5+E3GLmO8uWLePEE0/MtRiKLsqOHTs6vftut1T0Dx8+TK9evVizZk1MP/GFTkNDA+PHj2ft2rUJ+bAuRFQeC5+unj9QeewKdPX8Qf7k0bIs9u3bx7HHHotRIOuh/H4///73v+nXr1+nZ14TIV/qKhWU7MmjZvRTpL6+nsrKSurq6uK6vitkunr+QOWxK9DV8wcqj12Brp4/6B557CoUcl0p2XODWoyrUCgUCoVCoVB0QZSir1AoFAqFQqFQdEG6paLvcrm44447uuzufV09f6Dy2BXo6vkDlceuQFfPH3SPPHYVCrmulOy5oVva6CsUCoVCoVAoFF2dbjmjr1AoFAqFQqFQdHWUoq9QKBQKhUKhUHRBlKKvUCgUCoVCoVB0QZSir1AoFAqFQqFQdEG6hKL/ne98h5qaGoQQrFmzJnR+2bJlnHrqqUyaNIna2lreeeed0LVNmzZx5plnUltby9ixY7n11luxLAuwd+e7+eabGTFiBCNHjuTBBx/Mep7CSXf+7rzzTvr27UttbS21tbVcfvnlWc9TNKnkccOGDcyaNYvJkydzzDHHsHDhwtC1fKtDSH8e860e3W43F1xwAaNHj6a2tpZzzjmHrVu3ArB//37OOeccRo0axYQJE3j//fdD9zU3N3PppZcycuRIRo8ezaJFi0LX8q0eM5HHfKrHVPP3l7/8hYkTJ2IYBv/3f/8XEWdXqcP28phPdQip5/F//ud/GDduHJMnT+bEE0+MGIvyrR67Ixs2bOCUU05h9OjRnHjiiaxduzbXIrVLTU0NY8eODfWL4POrvTaYC+I9m1Md0/MO2QVYsmSJ3LFjhxw6dKhcvXq1lFJKy7LkoEGD5DvvvCOllPKLL76QgwcPls3NzVJKKS+44AL529/+VkopZUtLi5wwYYL85z//KaWU8rHHHpNnnHGG9Pv98tChQ3Lo0KHyiy++yEHObNKdvzvuuEPeeuutOchJfFLJ4ymnnCIfeeQRKaWUe/fulUOGDJE7d+6UUuZfHUqZ/jzmWz22tLTIf/7zn9KyLCmllL/73e/krFmzpJRSXnPNNfKOO+6QUkr5ySefyOrqaunz+aSUUt51113yqquuklJKuXnzZtmvXz95+PBhKWX+1WMm8phP9Zhq/lauXCnXrl0rr7jiCvm73/0uIs6uUoft5TGf6lDK1PP4yiuvhMaelStXyqqqKtnS0iKlzL967I7MnDkz9Dx45pln5NSpU3MrUAeEP+vCaa8N5oJYz2YpUx/T840uMaM/ffp0Bg8eHHHu0KFDHD58mJkzZwIwduxYqqqqePXVV0Nh6urqAGhpacHn8zFgwAAAFi5cyPz589F1nZ49ezJv3jyeeuqpLOWmLenOXz6SSh5XrVrFnDlzAOjXrx+TJ08OzRjkWx1C+vOYbxQVFTFnzhyEEABMnTqVzZs3A/D0009z0003AXDCCSfQr1+/0OzIwoULQ9eGDRvG9OnTefHFF0PX8qkeM5HHfCLV/E2ePJlx48ahaW0fKV2lDtvLY76Rah7PPfdciouLAZg4cSKmaXLw4EEg/+qxu7F//35WrFjBN77xDQAuvPBCtmzZEvpSU0i01wZzQaxnM3SNMR26iOlOLHr37k2/fv147rnnAPj4449Zv359qFP85je/4ZlnnmHgwIEMHDiQK6+8kmOPPRaA7du3M3To0FBcNTU1bN++Pet5aI/O5A/gySefZPLkyZxxxhm8++67uchCh3SUxxNOOIEnnngCsE2Vli5dGrpWCHUIncsj5Hc9PvDAA5x33nkcOnQIy7Lo06dP6Fp4fbRXV/lej+nII+RvPSaav/boKnXYEflah5BaHh955BFGjBgRUoDyvR67Ojt27GDgwIEYhgGAEILq6uq8r4PLL7+ciRMn8p//+Z8cOHCg0/0sW3R2TM8nuqyiD/Diiy/ypz/9iSlTpvDggw9y2mmn4XA4AHj44Ye54oor2L17N9u2bePvf/97hD1icCYEQObpnmKp5m/+/Pls3bqVVatW8bOf/YxLLrmEbdu25TIrcWkvj48++igffvghtbW13HbbbZx11lmha1AYdQip5zGf6/F///d/2bBhA//v//0/ILIuoG19tFdX+VqP6cpjvtZjsvlrj65Sh/HI1zqE1PL49ttvc9ddd7WZsc/XeuwudKYP5oJ//etfrFq1ihUrVtCrVy+uuuoqoHDy0ZnnVj7RpRX9SZMm8eqrr7JixQoee+wxdu/ezfjx4wF7hiPY6Pr27cu5557LkiVLAKiuro6YNd22bRvV1dVZl78jUs1f//79Q8riqaeeyrHHHsvy5ctzk4kOaC+PQ4cO5ZlnnmHlypUsWrSIurq60LVCqUNIPY/5Wo/3338/ixYt4tVXX6WkpIRevXoBcODAgVCY8Ppor67ytR7Tmcd8rMdk89ceXaUO2yMf6xBSy+OSJUu45ppr+Mc//sGYMWNC5/O1HrsLQ4YMYefOnfj9fsBWLHfs2JHXdRCUzeFw8P/9f/8f7733Xqf6WTbpzJied2R9VUAGiV5IsWfPntDvP/zhD/K4444LLU6aOHGifPTRR6WUUjY2NsopU6bIp59+Wkop5SOPPCLPPPPM0KKj6upquXbt2izmJDbpyt+OHTtC961fv1727dtXrlu3LhtZ6JBk8rh3797Q79dee00OGTIktJAsX+tQyvTlMR/r8Ze//KWcMmVKm0VJV111VcSipiFDhoQWNd1xxx0Ri5r69u0rDx06JKXMz3pMdx7zrR5TyV94mOiFql2lDsPDROcx3+pQytTyuGTJEjlkyBC5YsWKNvHlYz12N04//fSIxbgnnXRSbgVqh8bGRnnkyJHQ8S9/+Us5bdo0KWVi/SwXRD+bUx3T840uoejfeOONctCgQVLXddmvXz85YsQIKaWUd955pxw1apQcOXKkPO+88+T27dtD96xYsUKecsopcuLEiXLs2LHyBz/4QUih8vv98sYbb5TDhw+Xw4cPbzOoZ5t05+/KK6+UxxxzjJw8ebKcMmWKfOaZZ3KSr3BSyeMf//hHOWLECDlmzBg5Y8aMiA6ab3UoZfrzmG/1uGPHDgnI4cOHy8mTJ8vJkyfLE088UUppv7DMmjVLjhw5Uo4fP14uXrw4dF9jY6OcN2+eHDFihBw1alREPvKtHjORx3yqx1Tz99e//lUOGjRIlpSUyKqqKjlo0KCQsthV6rC9POZTHUqZeh5Hjhwp+/btG7pn8uTJ8rPPPpNS5l89dke+/PJLOXXqVDlq1Ch53HHHyTVr1uRapLhs2rRJ1tbWyokTJ8oJEybIuXPnyi1btkgp22+DuSDesznVMT3fEFLmsWGRQqFQKBQKhUKhSIkubaOvUCgUCoVCoVB0V5Sir1AoFAqFQqFQdEGUoq9QKBQKhUKhUHRBlKKvUCgUCoVCoVB0QZSir1AoFAqFQqFQdEGUoq9QKBQKhUKhUHRBlKKvUCgUCoVCoVB0QZSir1AoFAqFQpEm/H4/P/3pTxk7dizHHHMMY8eO5YYbbuDo0aMpx7ly5UqefvrpdsO89NJL3HbbbQAsXryY448/Pul0jh49yr333htx7j//8z957733ko4rHlu3+wnflwAAFztJREFUbuUPf/hDSvfeeeedCCF44YUXQueklAwbNozevXuHztXU1LBmzZqIe2fMmMHLL7/M1q1bKS0txev1RoS//vrrQ8fvvfcew4cPT1iuRx99lKqqqlCZ+3w+LrjgAiZPnszXv/51/H4/AG63m+nTp3PkyJGItGpraxFC0NjYmHCaiaIUfYVCoVAoFIo0cd1117Fs2TI+/PBDPv/8c9auXcusWbM4fPhwynF2pOj7/X7mzp3Lfffdl3IaEFvR/9Of/sS0adM6FW84nVH0AY477jj+/Oc/h47ffvvtCCW/I2pqaujbty+ffPIJANu2baNnz5588MEHoTCLFy9m5syZScl11llnsXz5cgBef/11evbsyapVq6iqquK1114D4Kc//Snf/va36dGjR+i+adOmsXLlyqTSSgal6CsUCoVCoVCkgY0bN/LMM8/wyCOPhJQ5TdO4+OKLQzPE9957L8cccwwTJ07k8ssvp66uDrBnqy+77DLOO+88xo8fzxlnnMHhw4fZv38/P/nJT3jrrbeora1l/vz5AAgh+OUvf8mMGTO4/fbbefTRR7noootCsvh8Pq655hqOO+44jj/+eFatWgW0ne1fs2YNNTU1AMyfP5+jR49SW1sbChOcCQfYt28fX/va15g4cSITJkyIUNhramq46667OOWUUxg2bBh33313zDKaP38+a9eupba2lrlz5wKwfPlyTj75ZCZNmsSJJ54YoXRHc/rpp7Nhwwb27NkDwF/+8heuvfbaRKonxMyZM1m8eDEA7777LnPmzKFHjx7s3LkzVEZBRf9Pf/oT48ePp7a2lokTJ/Lxxx93GL/D4aC5uRmA5uZmnE4nq1evZt26dcybNy8pWTuLUvQVCoVCoVAo0sCKFSsYNWpU3BnmV199lUceeYQPPviA1atXU1payv/8z/+Ern/88cc89thjrF27lr59+/Lwww/Tt29ffvrTn3LWWWexcuVKHnrooVB4j8fD4sWLY87kf/bZZ1x11VV8+umnfO973+Oyyy7rUP6HHnqIqqoqVq5cGZqdDuc73/kOY8eOZfXq1bzzzjv87Gc/C82Mg/1FYOnSpXzyySfcd9997Nq1K2Ya48ePZ+XKlbz00kt4vV6+/vWvc+edd/LZZ5/xq1/9iosuuoimpqaYMgoh+MY3vsHjjz/O0aNHWbZsGbNnz24T7qKLLqK2tjb0F56fmTNn8u677wK2Un/66adz+umn8+677+L1evnwww+ZMWMGALfeeitvvfUWK1euZMWKFRxzzDEdluOsWbMoLy9n8uTJVFZWcsYZZ3DLLbfw29/+tsN7042R9RQVCoVCoVAouiFvvfUWl19+OVVVVQB861vf4j/+4z9C188991x69uwJwMknn8zq1avbja+9meyRI0eGlNV58+Zxww03sHv37k7LH/wy0LdvX77+9a/z9ttvc+KJJwJw+eWXA9CnTx+GDx/Oli1bGDRoULtxrlu3DqfTydlnnw3AaaedRt++ffnss884+eSTY95z9dVXM3v2bMrKypg3bx66rrcJ8+yzzzJhwoTQcbAswFb0v/nNb+LxeFi6dCkLFixASsnChQsZOnQogwcPZvDgwQCcccYZXHnllZx33nmce+65jB49usNy0jSNP/7xj6Hj3/zmN1xwwQX4/X4uu+wyPB4PN910E2eccUaHcXUWpegrFAqFQqFQpIEpU6awYcMGDh06RK9evdpcl1IihIg4F35cVFQU+q3remgRZzzKysqSkk8IgWEYmKYZOud2u5OOI95xsvJD7DKJlU44gwcPprq6mrvuuoulS5cmInab+wcNGsTTTz9N7969KS0t5dRTT+Xmm2+muro6wj5/0aJFfPrppyxevJg5c+Zw9913R7ycdcS2bdt45ZVXeO2117jqqqu44YYbOO6445g6dSqff/550rInizLdUSgUCoVCoUgDI0eO5MILL+S6664LedmRUvL444+zadMmZs2axVNPPUVDQwMAf/jDHzjrrLM6jLeioiJky58oGzdu5F//+hdgz24PGjSIAQMGMGzYMLZs2cKhQ4cA+Otf/xqRTnNzc1wF/ayzzgrZ5R84cIDnn38+6Vnp6LyMHTsWj8fDO++8A8DSpUvZv38/EydObDeeu+++m7vvvpuRI0cmlX6QmTNn8rOf/Sw0019aWkrPnj3529/+FlL0/X4/mzZt4vjjj+e73/0uF110UYSpUiL813/9F7/+9a/RNI2mpiaEEKHf2UDN6CsUCoVCoVCkib/85S/cfffdnHTSSRiGgZSS6dOnM3fuXM4991xWr17NySefjBCCSZMm8eCDD3YY55lnnsn999/P5MmTOfnkkyPs9ONRW1vLU089xS233IKUkr///e8ADBo0iO9+97scf/zx1NTUMH369NA9PXv25PLLL2fixImUlpa2sdN/4IEHmD9/PpMmTcKyLH74wx+GzHYSZdKkSYwZM4YJEyYwfPhwXnrpJZ577jm+853v0NTURFFREc888wylpaXtxnP88cen5EI0yMyZM/njH//I6aefHjp3+umn84tf/CKk/JumyTXXXMORI0cwDIM+ffrwyCOPJJzG3//+dyZPnhyy6//BD37A9ddfj9fr5cc//nHKsieDkFLKrKSkUCgUCoVCoVB0MR599FFefvllnn322ZTjEELQ0NCQtDlWRyjTHYVCoVAoFAqFIkWKi4tZvnx5Sl8Yghtm9evXD01Lv1quZvQVBYHb7aZ0xDSsA1/Sv1d633YVCkXXwr33IA88/hcuv/zyjDw4FQqFolBQir4ir7EsiyeffJJvXDMfDCd6/1pwlCCEjtA0hNAQmg6ahqbpgWMNwq4JoSF0DQL3aIH/7TCt8aDrrfdoWmjFv9AEAtA0AZqwF9IIgdAAIdA0gRD2ZzehBf+3w0WcC/zWRDAeAvHYcYB9rAfCaJrACPyvaaALDU0T6MI+1kTwt31P8Lcdh0ATBK5FnROtaQWPW38HZBICPZAnXdiytj2Odb71PiEg6DNBCPvzoX0umHf7mkZrWBGQI3Qcdi10PniM/UNICUiEtOwIpQz8WQjs/4PHSMsOHzwX6zoSLAskgeOw65aFDKZjWSBNpGmFroXCBK5hSaRlhq5Jy2q9z5KBMFbrn7SQln1NWpYdJpCWtCykKbGsYLxWWDj7WuiewP9WUBbTljs8TOh/MzIty8IOb0ms4HUpA2lLO20zGDetcZkycGwF7rMjC8UBmFJiR2GnZUqwkPb/gWv2OQK/Zev/BMIE/rfvscNGhzuCj+UcxYXGU2++ktBiR4VCoeiKKEVfkbe88847nPnVeeB3ow+YgugxIkz51iP/dN1W9EN/Wpvrwd9a9L0xwtjhwhT9oEIf+Asq6EElPajMtxsmqOhrok2ceiAtPfA7+GdEHGuR10W8cB38hSn6evBlIKDsB49Dv0MvCNHHtN4T/tIRdmwr94EyFK2Kuham6AvCw0Yq+hHHBO8Xbe4LKu6tin6rYi4Cynvozwo/FzuMCCntMa5bpq04A1imfWwGlXUzpNTLwDUsK3DdbL031u+oOGzF2f6zs9R6bJmR16VlYZmRx6Gwod9mVBzh4WTgOKDomzLsvAzEI1vDmTLinjbhLStwLnBvMLyUmAEF3QxT9MPPmTLeudb/g4p9e+EA/EjWUM+/qaMfLv752ScdevFQKBSKrobyuqPIOz7//HMmnnIOsnEfWr9JaH3GIzTVVBUKReIYCGqpZCxlrKCOYydNZiQlvL1zXYcb+CgUCkVXQRkvKvKG3bt3o/UazYSJkxHOCozxF6H3m6SUfIVCkTJF6JxCT+YxAD+SmsFDmCIqqa+vz7VoCoVCkXGUoq/IOQ0NDej9axk0ZChYPoyxF6APPglhFHV8s0KhUCRABQ7Oog9fpR978NCvsgcPPvggPp8v16IpFApFxlCKviJn+Hw+9CGnUNGzL7JxD/qIszFqZiJcFbkWTaFQdFH64WIu/TidXvzwpv+ij7OEF154AbVcTaFQdEWUTYQiJ9TV1VHVbygg0QefgqisDi20VSgUikwiENRQwhCKWUcjl33tQnriZKdsybVoCoVCkVbUjL4iJ2iahtCdYPrA9GD7MlQoFIrsYSFxY+FH4lKPQ4VC0QVRI5siJ5SXl2M27mPh3x7F3PcZ/nUvYtXvUJ/PFQpFxrGQfEkjT7GbbTTz1pLFbJJNuRZLoVAo0o5S9BU5QwjBvHnz8DQcROs1GnPbe5ibXkc2H8y1aAqFogsikWynhefYwwrq+MtTf2Ov5Wb69Om5Fk2hUCgygrLRV+Qcp9OJufNjjh49Sq8x0/BveAVRVWNvkuUsy7V4CoWiC3AQLx9xhIN4mUIl77r34HK5ci2WQqFQZBQ1o6/IG6qqqjD3rWbb1s0A+L9YhLl7GdLvybFkCoWiUGnAzzsc5EX20hsnew4fZKk8rJR8hULRLVCKviLvqK6uxjq8kRWfLkM2H8L/xXOY+z9HWmauRVMoFAWCB4uPOcLT7EYCG7duYaWso0ePHllJ/8iRI1x33XUMGTIkdG79+vV87Wtf41vf+hbf//73syKHQqHo3gipVj8q8hgpJa+//jrnfu1SsEz0fpPAUYrQNITQQGj2b01DaDpCBM5rwv6t6ZFhgr+FjtAC9wfOERWH0Gx3n0LY/2hC2OcEbX6j2WsONGGfE5pACIGI+B08JuxYYItrp6VpAk2ALgSaJgL/29fta/afHginhYcThMLo0fcEjoPh7HyFxSEEAtCD8iLs3xFhbLeEdlygIVrPR4cL5DV8JkET2OWFnVagqFrLhUD8oXCt94XCB+SMuE9KkBKBFWw0rX9Ygd8WIMGy7PBYtqMnaSEIXA+/x2r9LSLOW60Lxi3Tvs8KhjeRlh2P/b9p32daoXBSRv227GNptf4OpiEtC2kF07J/2+daf2PJsOOwewL/WzIQxgymZ4exTBmSU1oSacpQvlrjknYWQvKAZVp20YXSAiuUXvC3DP0vw37b/wX+D3jZsiSYoXMEwtjXzajwrdfCj+3/zdC9Egs4go9/U0dPnPzj0w+YMmVKUuOOEIKJEydyzz33MGfOHL7zne/w0ksvsW3bNlavXs2ECRNCYTds2MBVV13FwYMHqaqq4tFHH2X8+PGh62eddRZvvfUWAL/+9a8ZNmwYF1xwAd/97ne56KKLmDp1KjU1Nbz88suheGfOnMmqVav46U9/yre//e2kZFcoFIpwlI2+Iq8RQnDOOefgbzyIs2Y65p4VjBtVE9vnvpV9+ZJFkh5HolJKDh48SO/evbv1/gOqHFrJellowbcxQT59HJZSsv2L9Tz1wiLmzp2bclksXbqUsjJ7jdBFF13E9773PU477bQ24b75zW9yww03cPXVV/Pss89y3XXX8eGHH8aM8+qrr+aOO+7gvffeY+fOnWzbto2pU6e2Cffuu+9y9dVXpyS3QqFQhKMUfUVBoOs6Rz5/lcrKSj766CMqKrr37rn19fVUVlaycePGbl0WqhxaUWVhEyyHmTNnpu2FJ55Xnv3797NixQreeOMNAC688EK+/e1vs3XrVmpqatqE79GjBw888ABgK/3HHHNMWuRTKBSKeOTPNIxCoVAoFAXEjh07GDhwIIZhz5kJIaiurmb79u0AzJ8/ny+//JL58+ezadMmdu7cyVVXXcVVV13FMcccE2ECpFAoFJlAzegrFAqFQpEi0V8Nwpe9PfTQQ23CP/bYYxmXSaFQKIKoGX2FQqFQKFJgyJAh7Ny5E7/fD9hK/o4dO6iurs6xZAqFQmGjFH1FweByubjjjjuU/2tUWQRR5dCKKgubbJZD3759OfbYY3niiScAeO6556ipqYlpn69QKBS5QLnXVCgUCoUiDCEEDQ0NIa87N910Ey+++CJ79+6ld+/elJWVsXHjRgDWrVvH1VdfzaFDh6ioqOCxxx5LepHt4MGDWbx4MSNHjgydu/rqqzn++OOVe02FQtEplI2+QqFQKBTtsGDBAhYsWBDz2pgxY+K600yEPXv20NDQwKBBg1KOQ6FQKOKhTHcUCoVCoQijX79+nHrqqbzyyisZTedXv/oVM2bM4P7776e4uDh0fubMmSxZsoTS0tKMpq9QKLo+ynRHoVAoFAqFQqHogqgZfYVCoVAoFAqFoguiFH1FXvOXv/yFiRMnYhgG//d//9du2I8//pja2lpGjx7NmWeeyZ49e7IkZXZobm7m0ksvZeTIkYwePZpFixbFDSuEYNKkSdTW1lJbW8t7772XRUnTz4YNGzjllFMYPXo0J554ImvXro0Z7s9//jOjRo1ixIgR3HDDDSG3h12JRMpi8eLFlJSUhOq/traWlpaWHEibOb7zne9QU1ODEII1a9bEDdcd2oRCoVDEQyn6irzmuOOO4+mnn+ayyy5rN5yUkssvv5zf/OY3rF+/nnPPPZdbbrklS1Jmh/vvvx+Xy8XGjRt5/fXXufHGGzly5Ejc8EuXLmXlypWsXLmSadOmZVHS9PPNb36TG264gfXr1/O9732P6667rk2YLVu28OMf/5j333+fjRs3snfvXv785z/nQNrMkkhZAIwfPz5U/ytXroywAe8KXHTRRbz//vsMHTo0bpju0iYUCoUiHkrRV+Q1kydPZty4cWha+011+fLluFwuZsyYAdjK0AsvvIDP58uClNlh4cKF3HTTTQAMGzaM6dOn8+KLL+ZYqsyzf/9+VqxYwTe+8Q0ALrzwQrZs2cLWrVsjwj377LN87Wtfo1+/fgghmD9/Pk8++WQOJM4ciZZFd2D69OkMHjy43TDdoU0oFApFeyhFX9El2L59e8TMXnl5OeXl5V3KfCc6jzU1NWzfvj1u+BkzZjB58mRuueUWmpqasiFiRtixYwcDBw7EMGxvwEIIqqur2+Q92fIpRBItC7D9u0+ZMoUTTjiBBx98MNui5gXdoU0oFApFeyg/+oqcMm3aNL744ouY1/79738zZMiQhOMSQkQcF5pDqY7KAiLz2F7+tm3bRnV1NU1NTcyfP5/bbrutoJW9ROs20fIpZBIpiylTprBz504qKyvZuXMnc+bMoXfv3sybNy9bYuYN3aFNKBQKRTyUoq/IKelaJFpdXR1hvtDQ0EBDQwMDBgxIS/zZoKOyCOaxT58+gK3Mz5kzJ25YgNLSUm688UZuuOGG9AqbRYYMGcLOnTvx+/0YhoGUkh07doTyGCS6DQRfdroSiZZFRUVF6PfgwYO59NJLee+997qdot8d2oRCoVC0hzLdUXQJjjvuONxuN4sXLwbg4Ycf5oILLsDhcORWsDRy8cUXh3bn3LJlC0uWLGHu3Lltwh05coTm5mYALMti4cKFHHvssVmVNZ307duXY489lieeeAKA5557jpqaGmpqaiLCXXjhhTz//PPs27cPKSUPPfQQ//Ef/5EDiTNHomWxZ88eLMsC7Jfel19+uaDbQKp0hzahUCgU7SIVijzmr3/9qxw0aJAsKSmRVVVVctCgQXLFihVSSil///vfyx//+MehsEuXLpWTJk2So0aNkjNmzJA7d+7MldgZobGxUc6bN0+OGDFCjho1Sj7zzDOha+FlsXTpUjlx4kQ5adIkOX78ePmNb3xDHjp0KFdip4Uvv/xSTp06VY4aNUoed9xxcs2aNVJKKa+77jr54osvhsL94Q9/kCNGjJDDhg2T1113nfR6vbkSOWMkUha/+93v5Pjx40Nt4I477pCWZeVS7LRz4403ykGDBkld12W/fv3kiBEjpJTds00oFApFPNTOuAqFQqFQKBQKRRdEme4oFAqFQqFQKBRdEKXoKxQKhUKhUCgUXRCl6CsUCoVCoVAoFF0QpegrFAqFQqFQKBRdEKXoKxQKhUKhUCgUXRCl6CsUCoVCoVAoFF0QpegrFAqFQqFQKBRdEKXoKxQKhUKhUCgUXRCl6CsUCoVCoVAoFF0QpegrFAqFQqFQKBRdkP8fUqmDwMsMwhIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(7.5,8.))\n", "\n", "axB = fig.add_axes([0.79,0.1,0.2,0.4]); axB.spines[['top','right']].set_visible(False); axB.set_yticks([]); axB.set_xticks([]);\n", "axB1 = fig.add_axes([0.79,0.36,0.2,0.14]); axB1.spines[['top','right', 'bottom']].set_visible(False); axB1.set_xticklabels([]);\n", "axB2 = fig.add_axes([0.79,0.1,0.2,0.26]); axB2.spines[['top','right']].set_visible(False); \n", "\n", "axA = fig.add_axes([0.79,0.56,0.2,0.4]); axA.spines[['top','right']].set_visible(False); axA.set_yticks([]); axA.set_xticks([]);\n", "axA1 = fig.add_axes([0.79,0.82,0.2,0.14]); axA1.spines[['top','right','bottom']].set_visible(False); axA1.set_xticklabels([])\n", "axA2 = fig.add_axes([0.79,0.56,0.2,0.26]); axA2.spines[['top','right']].set_visible(False);\n", "\n", "ax1L = fig.add_axes([0.08,0.56,0.65,0.4]); ax1L.set_xticks([]); ax1L.set_yticks([]);\n", "ax1 = fig.add_axes([0.08,0.56,0.65,0.26]); ax1.spines[['top']].set_visible(False); \n", "ax11 = fig.add_axes([0.08,0.82,0.65,0.14]); ax11.spines[['bottom']].set_visible(False); ax11.set_xticks([])\n", "\n", "ax2L = fig.add_axes([0.08,0.1,0.65,0.4]); ax2L.set_xticks([]); ax2L.set_yticks([]);\n", "ax2 = fig.add_axes([0.08,0.1,0.65,0.26]); ax2.spines[['top']].set_visible(False);\n", "ax21 = fig.add_axes([0.08,0.36,0.65,0.14]); ax21.spines[['bottom']].set_visible(False); ax21.set_xticks([])\n", "\n", "axcb = fig.add_axes([0.08,-0.01,0.65,0.42], frameon=False); axcb.set_yticks([]); axcb.set_xticks([])\n", "\n", "\n", "##\n", "pc = ax1.pcolor(dsOHC.time_counter, dpt, OHC_ano.T/1e19, cmap='RdBu_r', vmin=-1, vmax=1)\n", "ax1.contourf(dsOHC.time_counter, dpt, np.ma.masked_equal(MHW_WMO.T,0), colors='grey', alpha=0.6)\n", "ax1.contour(dsOHC.time_counter, dpt, MHW_WMO.T, colors='grey', levels=[0.9,1])\n", "ax1.set_ylim(-4000,-300)\n", "ax1.set_yticks(np.arange(-3800,-290,400)); ax1.set_yticklabels(np.arange(3800,310,-400))\n", "\n", "##\n", "ax11.pcolor(dsOHC.time_counter, dpt, OHC_ano.T/1e19, cmap='RdBu_r', vmin=-1, vmax=1)\n", "ax11.contourf(dsOHC.time_counter, dpt, np.ma.masked_equal(MHW_WMO.T,0), colors='grey', alpha=0.6)\n", "ax11.contour(dsOHC.time_counter, dpt, MHW_WMO.T, colors='grey', levels=[0.9,1])\n", "ax11.plot(time_counter, -dsMLD.MLD_max.rolling({'time_counter':15}, center=True).mean(), 'k', zorder=20, lw=0.8)\n", "ax11.set_ylim(-300,20)\n", "ax11.set_yticks(np.arange(-300,10,100)); ax11.set_yticklabels(np.arange(300,-10,-100))\n", "ax1L.set_ylabel('Depth [m]', fontsize=8, labelpad=30)\n", "ax1L.set_title(r'a) VIKING20X-6th-fixed$_{30yr}$', loc='left', fontsize=8, pad=4)\n", "\n", "##\n", "ax2.pcolor(dsOHC.time_counter, dpt, OHCd_ano.T/1e19, cmap='RdBu_r', vmin=-1, vmax=1)\n", "ax2.contourf(dsOHC.time_counter, dpt, np.ma.masked_equal(MHW_detrend.T,0), colors='grey', alpha=0.6)\n", "ax2.contour(dsOHC.time_counter, dpt, MHW_detrend.T, colors='grey', levels=[0.9,1])\n", "ax2.set_ylim(-4000,-300)\n", "ax2.set_yticks(np.arange(-3800,-290,400)); ax2.set_yticklabels(np.arange(3800,310,-400))\n", "\n", "##\n", "ax21.pcolor(dsOHC.time_counter, dpt, OHCd_ano.T/1e19, cmap='RdBu_r', vmin=-1, vmax=1)\n", "ax21.contourf(dsOHC.time_counter, dpt, np.ma.masked_equal(MHW_detrend.T,0), colors='grey', alpha=0.6)\n", "ax21.contour(dsOHC.time_counter, dpt, MHW_detrend.T, colors='grey', levels=[0.9,1])\n", "ax21.plot(time_counter, -dsMLD.MLD_max.rolling({'time_counter':15}, center=True).mean(), 'k', zorder=20, lw=0.8)\n", "\n", "ax21.set_ylim(-300,20)\n", "ax21.set_yticks(np.arange(-300,10,100)); ax21.set_yticklabels(np.arange(300,-10,-100))\n", "ax2L.set_ylabel('Depth [m]', fontsize=8, labelpad=30)\n", "ax2L.set_title(r'b) VIKING20X-6th-detrended', loc='left', fontsize=8, pad=4)\n", "\n", "cb = plt.colorbar(pc, orientation='horizontal', ax=[axcb], shrink=0.6, extend='both')\n", "cb.set_label('[10$^{19}$J]', x=1.12, labelpad=-18, fontsize=8, rotation=0)\n", "\n", "##\n", "axA1.plot(Contributions_profile[:,0], dpt, 'b', label='OHT')\n", "axA1.plot(Contributions_profile[:,1], dpt, 'k', label='Vert')\n", "axA1.plot(Contributions_profile[:,2], dpt, 'orange', label='Res')\n", "axA1.plot(HFX_contribution, 0, marker='d', mfc='deepskyblue', mec='dimgrey', ms=6)\n", "axA1.set_yticks(np.arange(-200,10,100)); axA1.set_yticklabels(np.arange(200,-10,-100));\n", "axA1.grid(True)\n", "axA1.set_ylim(-300,20)\n", "\n", "axA2.plot(Contributions_profile[:,0], dpt, 'b', label='OHT')\n", "axA2.plot(Contributions_profile[:,1], dpt, 'k', label='OHT$_w$')\n", "axA2.plot(Contributions_profile[:,2], dpt, 'orange', label='Res.')\n", "axA2.set_yticks([-300,-600,-1000,-1400,-1800,-2200,-2600,-3000,-3400,-3800])\n", "axA2.set_yticklabels([300,600,1000,1400,1800,2200,2600,3000,3400,3800])\n", "axA2.grid(True)\n", "axA2.set_ylim(-4000,-300)\n", "\n", "axA2.legend(fontsize=8, loc='lower right')\n", "axA.set_title(r'c) VIKING20X-6th-fixed$_{30yr}$', fontsize=8, loc='left')\n", "\n", "##\n", "axB1.plot(Contributions_profile_dtr[:,0], dpt, 'b', label='OHT')\n", "axB1.plot(Contributions_profile_dtr[:,1], dpt, 'k', label='OHT$_w$')\n", "axB1.plot(Contributions_profile_dtr[:,2], dpt, 'orange', label='Res.')\n", "axB1.plot(HFX_contribution_dtr, 0, marker='d', mfc='deepskyblue', mec='dimgrey', ms=6)\n", "axB1.set_yticks(np.arange(-200,10,100)); axB1.set_yticklabels(np.arange(200,-10,-100));\n", "axB1.grid(True)\n", "axB1.set_ylim(-300,20)\n", "\n", "axB2.plot(Contributions_profile_dtr[:,0], dpt, 'b', label='OHT')\n", "axB2.plot(Contributions_profile_dtr[:,1], dpt, 'k', label='OHT$_w$')\n", "axB2.plot(Contributions_profile_dtr[:,2], dpt, 'orange', label='Res.')\n", "axB2.set_yticks([-300,-600,-1000,-1400,-1800,-2200,-2600,-3000,-3400,-3800])\n", "axB2.set_yticklabels([300,600,1000,1400,1800,2200,2600,3000,3400,3800])\n", "axB2.grid(True)\n", "axB2.set_ylim(-4000,-300)\n", "\n", "axB2.legend(fontsize=8, loc='lower left')\n", "axB2.set_xlabel('Contribution to MHWs [%]', fontsize=8)\n", "axB.set_title(r'd) VIKING20X-6th-detrended', fontsize=8, loc='left')\n", "\n", "plt.savefig('CapeVerde_HeatBudget.png', dpi=400)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save data for publication" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "MHW_WMO_xr = xr.DataArray(MHW_WMO).rename({'dim_0':'time_counter', 'dim_1':'deptht'})\n", "MHW_detrend_xr = xr.DataArray(MHW_detrend).rename({'dim_0':'time_counter', 'dim_1':'deptht'})\n", "\n", "MLD_xr = dsMLD.MLD_max" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "MHW_WMO_xr.attrs['long_name'] = 'MHW mask for the Cape Verde Archipelago based on fixed 30-year baseline'\n", "MHW_WMO_xr.attrs['units'] = ''\n", "\n", "MHW_detrend_xr.attrs['long_name'] = 'MHW mask for the Cape Verde Archipelago based on detrended baseline'\n", "MHW_detrend_xr.attrs['units'] = ''\n", "\n", "OHC_ano.attrs['long_name'] = 'Ocean heat content anomaly relative to 30-year fixed baseline in the Cape Verde Archipelago'\n", "OHC_ano.attrs['units'] = 'J'\n", "\n", "OHCd_ano.attrs['long_name'] = 'Ocean heat content anomaly relative to detrended baseline in the Cape Verde Archipelago'\n", "OHCd_ano.attrs['units'] = 'J'\n", "\n", "MLD_xr.attrs['long_name'] = 'Maximum mixed layer depth in Cape Verde Archipelago'\n", "MLD_xr.attrs['units'] = 'm'" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "HFXd_xr = xr.DataArray(HFX_contribution_dtr)\n", "HFX_xr = xr.DataArray(HFX_contribution)\n", "\n", "Profile_xr = xr.DataArray(Contributions_profile).rename({'dim_0':'deptht', 'dim_1':'BudgetTerm'})\n", "Profile_dtr_xr = xr.DataArray(Contributions_profile_dtr).rename({'dim_0':'deptht', 'dim_1':'BudgetTerm'})" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "Profile_xr.attrs['long_name'] = 'Contribution of budget terms to MHW events detected with 30-yr fixed baseline'\n", "Profile_xr.attrs['units'] = 'Percent'\n", "\n", "Profile_dtr_xr.attrs['long_name'] = 'Contribution of budget terms to MHW events detected with detrended baseline'\n", "Profile_dtr_xr.attrs['units'] = 'Percent'\n", "\n", "HFX_xr.attrs['long_name'] = 'Contribution of surface heat flux to MHW events detected with 30-yr fixed baseline'\n", "HFX_xr.attrs['units'] = 'Percent'\n", "\n", "HFXd_xr.attrs['long_name'] = 'Contribution of surface heat flux to MHW events detected with detrended baseline'\n", "HFXd_xr.attrs['units'] = 'Percent'" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "dpt = xr.DataArray(dpt.values).rename({'dim_0':'deptht'})\n", "dpt.attrs['long_name'] = 'Vertical T levels'\n", "dpt.attrs['units'] = 'm'\n", "dpt.attrs['positive'] = 'up'" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "ds_out = xr.Dataset({'MHW_mask_fixed':MHW_WMO_xr, 'MHW_mask_detrend':MHW_detrend_xr, 'OHC_ano_fixed':OHC_ano,'OHC_ano_detrend':OHCd_ano, \n", " 'MLD':MLD_xr, 'HeatFlux_contr_detrend':HFXd_xr, 'HeatFlux_contr_fixed':HFX_xr, 'BudgetTerms_contr_detrend':Profile_dtr_xr, 'BudgetTerms_contr_fixed':Profile_xr,\n", " 'deptht':dpt})" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "## set global attributes\n", "ds_out.attrs['title'] = 'Ocean heat content anomalies, MHWs and heat budget terms'\n", "ds_out.attrs['institution'] = 'GEOMAR Helmholtz Centre for Ocean Research Kiel'\n", "ds_out.attrs['creator_name'] = 'Tobias Schulzki'\n", "ds_out.attrs['creator_email'] = 'tschulzki@geomar.de'\n", "ds_out.attrs['creator_url'] = 'orcid.org/0000-0002-3480-8492'\n", "ds_out.attrs['license'] = 'CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/deed.en)'\n", "ds_out.attrs['keywords'] = 'Temperature, marine heatwaves, VIKING20X, numerical model'\n", "ds_out.attrs['summary'] = 'Created in 10_CapeVerde_MHW-Events.ipynb'\n", "ds_out.attrs['cdm_data_type'] = 'grid'\n", "ds_out.attrs['processing_level'] = 'Level 4 (numerical simulation output)'\n", "ds_out.attrs['source'] = 'VIKING20X'\n", "ds_out.attrs['pi'] = 'Tobias Schulzki'\n", "ds_out.attrs['pi_contact'] = 'tschulzki@geomar.de'\n", "ds_out.attrs['pi_url'] = 'orcid.org/0000-0002-3480-8492'\n", "ds_out.attrs['institution_id'] = 'https://ror.org/02h2x0161'\n", "ds_out.attrs['research_devision'] = 'Ocean Circulation and Climate Dynamics'\n", "ds_out.attrs['research_unit'] = 'Ocean Dynamics'\n", "ds_out.attrs['project'] = 'iAtlantic, METAscales'\n", "ds_out.attrs['date_created'] = '2025-07-31'\n", "ds_out.attrs['date_modified'] = '2025-07-31'\n", "ds_out.attrs['publisher_name'] = 'GEOMAR Helmholtz Centre for Ocean Research Kiel'\n", "ds_out.attrs['publisher_email'] = 'datamanagement@geomar.de'\n", "ds_out.attrs['naming_authority'] = 'de.geomar'" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [], "source": [ "outpath = '/gxfs_work/geomar/smomw379/Publications/Schulzki2025_MHWs/DATA/'\n", "ds_out.to_netcdf(outpath+'Schulzki_et_al_2025_Figure10.nc')" ] } ], "metadata": { "kernelspec": { "display_name": "py3_mhw", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 2 }