! source file: /sfs/fs6/home-geomar/smomw258/UVic_ESCM/2.9/source/mom/relax1.F subroutine relax1 (npt, variable, bc_symm &, guess, dpsi, forc, res &, cf &, sor, mxscan, mscan, crit &, imask, iperm, jperm, iofs, nisle, nippts &, map &, converged &, estimated_error & ) !======================================================================= ! MOM 2 Relax using symmetric coefficients as input, but ! normalizes them as in MOM 1. ! Normalized coefficients are cfn2, cfs2, etc. ! Uses parallelization trick to get Gauss/Seidel update !======================================================================= ! O L D R E L A X ! solve: ! A * dpsi = forc ! for "dpsi" with dirichlet boundary conditions (dpsi=const on ! each component of the boundary) by a "hypergrid" version of ! Gauss-Seidel iteration. In this version, the grid is ! decomposed into 4 sets, each with the same values of ! (i mod 2, j mod 2). All calculations within a set may be ! done in parallel. ! inputs: ! npt = 5 or 9 (active coefficients) ! variable = character string identifying solution variable ! bc_symm = equatorial symmetry type (used only when the ! symmetry option is on. otherwise ignore it) ! guess = initial approximation to solution ! A = linear operator (assumed symmetric) ! typically A is grad{(1/h)*grad(dpsi)} - ! 2dt*acor*{grad(f/h) x grad(dpsi)} ! using 5 or 9 pt discretizations ! cf = imt x jmt x 3 x 3 array of coefficients of A ! sor = over-relaxation multiplier ! forc = the sum of all terms evaluated at times tau ! or tau-1 ! epsilon = convergence criterion ! max_iterations = maximum number of iterations ! imask = shows which land masses have perimeter equations ! iperm = i coordinate of island perimeter points ! jperm = j coordinate of island perimeter points ! iofs = offset in iperm, jperm for start of perimeter ! of land_mass(isle) ! nisle = actual number of land_masses ! nippts = number of perimeter ocean points for a land_mass ! output: ! dpsi = answer ! iterations = actual number of iterations performed ! converged = logical value ! estimated_error = estimated maximum error in solution ! based on step sizes and convergence rate !======================================================================= ! more specifically, the equations to be solved are ! sum (A(ij,i'j') * dpsi(i'j')) = forc(ij) ! where the subscripts ij and i'j' range over all "free ocean" ! T cells ij=(i,j) that are not adjacent to land T cells, ! and one ij=isle for each boundary component of the ocean. ! with this choice of variables, in the absence of coriolis terms ! (acor=0), the operator A is symmetric, i.e., ! A(ij,i'j') = A(i'j',ij) !======================================================================= implicit none character(16) :: variable character(*) :: bc_symm integer npt, mscan, j, i, isle, nisle, n logical converged real c0, c1, sor, mxscan, resmax, absmax, resis, step, step1 real estimated_error, crit, cfactor, convergence_rate ! dimensions of local arrays include "size.h" integer nippts(mnisle), iofs(mnisle), iperm(maxipp), jperm(maxipp) integer map(imt,jmt) logical imask(-mnisle:mnisle) real dpsi(imt,jmt), forc(imt,jmt), res(imt,jmt) real cf(imt,jmt,-1:1,-1:1), relmsk(imt,jmt), guess(imt,jmt) real rncfdiag(imt,jmt), cfn2(imt,jmt), cfs2(imt,jmt) real cfe2(imt,jmt), cfw2(imt,jmt), forc2(imt,jmt) real diagsum(mnisle) !----------------------------------------------------------------------- ! the parallelization tricks used in relax1 work only for 5 pt ! operators. do not use relax1 with 9 point operators. !----------------------------------------------------------------------- if (npt .ne. 5) then print '(a)', 'WARNING: relax1 works only with 5 pt operators' mscan = 0 converged = .false. stop '=>relax1' endif !----------------------------------------------------------------------- ! set locally needed constants !----------------------------------------------------------------------- c0 = 0.0 c1 = 1.0 !----------------------------------------------------------------------- ! "normalize" coefficients for "oldrelax" method as in MOM1 ! relmsk is now a locally computed array ! it is 1 on mid-ocean points, and 0 elsewhere !----------------------------------------------------------------------- do j=1,jmt do i=1,imt if (map(i,j) .eq. 0) then relmsk(i,j) = c1 else relmsk(i,j) = c0 endif enddo enddo !----------------------------------------------------------------------- ! initialize arrays !----------------------------------------------------------------------- do j=1,jmt do i=1,imt cfn2(i,j)=c0 cfs2(i,j)=c0 cfe2(i,j)=c0 cfw2(i,j)=c0 rncfdiag(i,j) = c1 enddo enddo do isle=1,nisle diagsum(isle) = c0 enddo do j=2,jmt-1 do i=2,imt-1 if (map(i,j) .eq. 0) then rncfdiag(i,j) = & c1/(cf(i,j,0,1)+cf(i,j,0,-1)+cf(i,j,1,0)+cf(i,j,-1,0)) ! normalize coefficients (mid ocean) cfn2(i,j) = cf(i,j, 0, 1)*rncfdiag(i,j) cfs2(i,j) = cf(i,j, 0,-1)*rncfdiag(i,j) cfe2(i,j) = cf(i,j, 1, 0)*rncfdiag(i,j) cfw2(i,j) = cf(i,j,-1, 0)*rncfdiag(i,j) endif ! sum diagonal coefficients on island boundary if (map(i,j) .le. -1) then isle = -map(i,j) if (imask(isle)) then diagsum(isle) = diagsum(isle)+cf(i,j,0,0) endif endif enddo enddo !----------------------------------------------------------------------- ! normalize coefficients on island boundaries !----------------------------------------------------------------------- do isle=1,nisle if (imask(isle)) then do n=1,nippts(isle) i = iperm(iofs(isle)+n) j = jperm(iofs(isle)+n) rncfdiag(i,j) = -c1/diagsum(isle) ! normalize coefficients (island boundary) cfn2(i,j) = cf(i,j, 0, 1)*rncfdiag(i,j) cfs2(i,j) = cf(i,j, 0,-1)*rncfdiag(i,j) cfe2(i,j) = cf(i,j, 1, 0)*rncfdiag(i,j) cfw2(i,j) = cf(i,j,-1, 0)*rncfdiag(i,j) enddo endif enddo !----------------------------------------------------------------------- ! pre-multiply all coefficients by sor !----------------------------------------------------------------------- do j=1,jmt do i=1,imt cfn2(i,j) = cfn2(i,j)*sor cfs2(i,j) = cfs2(i,j)*sor cfe2(i,j) = cfe2(i,j)*sor cfw2(i,j) = cfw2(i,j)*sor enddo enddo !----------------------------------------------------------------------- ! impose boundary conditions on guess ! dpsi(0) = guess !----------------------------------------------------------------------- call border(guess, bc_symm) !----------------------------------------------------------------------- ! set residuals to zero and normalize forcing !----------------------------------------------------------------------- do j=1,jmt do i=1,imt res(i,j) = c0 forc2(i,j) = forc(i,j)*rncfdiag(i,j) dpsi(i,j) = guess(i,j) enddo enddo !----------------------------------------------------------------------- ! begin iteration loop !----------------------------------------------------------------------- do mscan=1,mxscan !----------------------------------------------------------------------- ! compute residuals without using updated "dpsi" values to get ! vector of maximum length !----------------------------------------------------------------------- do j=2,jmt-1 do i=2,imt-1 res(i,j) = (cfn2(i,j)*dpsi(i,j+1) + & cfs2(i,j)*dpsi(i,j-1) + & cfe2(i,j)*dpsi(i+1,j) + & cfw2(i,j)*dpsi(i-1,j) - & sor*(dpsi(i,j)+forc2(i,j)))*relmsk(i,j) enddo enddo call border(res, bc_symm) !----------------------------------------------------------------------- ! correct southern point using updated "dpsi" to get vectors on "i" !----------------------------------------------------------------------- do j=2,jmt-1 do i=2,imt-1 res(i,j) = res(i,j) + cfs2(i,j)*res(i,j-1)*relmsk(i,j) enddo !--------------------------------------------------------------------- ! correct western point using updated "dpsi" to get vectors on "j" !--------------------------------------------------------------------- do i=2,imt-1 res(i,j) = res(i,j) + cfw2(i,j)*res(i-1,j)*relmsk(i,j) enddo enddo call border(res, bc_symm) !--------------------------------------------------------------------- ! make a correction to dpsi based on the residuals !--------------------------------------------------------------------- do j=2,jmt-1 do i=1,imt res(i,j) = res(i,j)*relmsk(i,j) dpsi(i,j) = dpsi(i,j) + res(i,j) enddo enddo !--------------------------------------------------------------------- ! find the maximum absolute residual to determine convergence !--------------------------------------------------------------------- resmax = absmax(res) !----------------------------------------------------------------------- ! do a line integral around each island !--------------------------------------------------------------------- do isle=1,nisle if (imask(isle)) then resis = c0 do n=1,nippts(isle) i = iperm(iofs(isle)+n) j = jperm(iofs(isle)+n) resis = resis + cfn2(i,j)*dpsi(i ,j+1) & +cfs2(i,j)*dpsi(i ,j-1) & +cfe2(i,j)*dpsi(i+1,j ) & +cfw2(i,j)*dpsi(i-1,j ) & -sor*( forc2(i,j)) enddo resis = resis - sor*dpsi(i,j) resmax = max(abs(resis),resmax) do n=1,nippts(isle) i = iperm(iofs(isle)+n) j = jperm(iofs(isle)+n) dpsi(i,j) = dpsi(i,j) + resis enddo endif enddo call border(dpsi, bc_symm) !----------------------------------------------------------------------- ! test for convergence of the relaxation. !----------------------------------------------------------------------- step = resmax !----------------------------------------------------------------------- ! the solver is deemed to have converged when the estimated ! maximum sum of all future corrections does not exceed ! crit at any point. !----------------------------------------------------------------------- if (mscan .eq. 1) then step1 = step estimated_error = step if (step .lt. crit) goto 1001 elseif (step .lt. crit) then cfactor = log(step/step1) convergence_rate = exp(cfactor/(mscan-1)) estimated_error = step*convergence_rate/(1.0-convergence_rate) if (estimated_error .lt. crit) goto 1001 endif enddo !--------------------------------------------------------------------- ! end of iteration loop !--------------------------------------------------------------------- 1001 continue if (mscan .lt. mxscan) then converged = .true. else converged = .false. endif !--------------------------------------------------------------------- ! return the last increment to dpsi in the argument res !----------------------------------------------------------------------- do i=1,imt do j=1,jmt res(i,j) = res(i,j) enddo enddo return end