! source file: /Users/csomes/Research/Models/UVic_ESCM/2.9/source/mom/invtri.F subroutine invtri (z, topbc, botbc, dcb, tdt, kmz, mask, is, ie &, joff, js, je) !======================================================================= ! solve the vertical diffusion equation implicitly using the ! method of inverting a tridiagonal matrix as described in ! Numerical Recipies in Fortran, The art of Scientific Computing, ! Second Edition, Press, Teukolsky, Vetterling, Flannery, 1992 ! pages 42,43. ! this routine assums that the variables are defined at grid points ! and the top and bottom b.c. are flux conditions. ! inputs: ! z = right hand side terms ! topbc = top boundary condition ! botbc = bottom boundary condition ! dcb = vertical mixing coeff at base of cell ! tdt = 2 * timestep ! kmz = level indicator ! mask = land/sea mask ! is = index of starting longitude ! ie = index of ending longitude ! js = starting latitude row in MW ! je = ending latitude row in MW ! joff = offset between jrow on disk and j in the MW ! outputs: ! z = returned solution !======================================================================= implicit none integer j, js, je, jrow, joff, k, km1, kp1, i, is, ie real factu, factl, eps include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "grdvar.h" include "vmixc.h" integer kmz(imt,jmt) real z(imt,km,jmw), topbc(imt,1:jmw), botbc(imt,1:jmw) real dcb(imt,km,jsmw:jemw), mask(imt,km,1:jmw) real a(imt,km,jsmw:jemw), b(imt,km,jsmw:jemw) real c(imt,0:km,jsmw:jemw), d(imt,km,jsmw:jemw) real f(imt,0:km,jsmw:jemw), e(imt,km,jsmw:jemw) real bet(imt,jsmw:jemw), tdt(km) do j=js,je jrow = j + joff do k=1,km km1 = max(1,k-1) kp1 = min(k+1,km) factu = dztur(k)*tdt(k)*aidif factl = dztlr(k)*tdt(k)*aidif do i=is,ie a(i,k,j) = -dcb(i,km1,j)*factu*mask(i,k,j) c(i,k,j) = -dcb(i,k,j)*factl*mask(i,kp1,j) f(i,k,j) = z(i,k,j)*mask(i,k,j) b(i,k,j) = c1 - a(i,k,j) - c(i,k,j) enddo enddo do i=is,ie a(i,1,j) = c0 c(i,km,j) = c0 b(i,1,j) = c1 - a(i,1,j) - c(i,1,j) b(i,km,j) = c1 - a(i,km,j) - c(i,km,j) ! top and bottom b.c. f(i,1,j) = z(i,1,j) + topbc(i,j)*tdt(1)*dztr(1)*aidif & *mask(i,1,j) k=max(2,kmz(i,jrow)) f(i,k,j) = z(i,k,j) - botbc(i,j)*tdt(k)*dztr(k)*aidif & *mask(i,k,j) enddo enddo ! decomposition and forward substitution eps = 1.e-30 do j=js,je do i=is,ie bet(i,j) = mask(i,1,j)/(b(i,1,j) + eps) z(i,1,j) = f(i,1,j)*bet(i,j) enddo do k=2,km do i=is,ie e(i,k,j) = c(i,k-1,j)*bet(i,j) bet(i,j) = mask(i,k,j)/(b(i,k,j) - a(i,k,j)*e(i,k,j) + eps) z(i,k,j) = (f(i,k,j) - a(i,k,j)*z(i,k-1,j))*bet(i,j) enddo enddo enddo ! back substitution do j=js,je do k=km-1,1,-1 do i=is,ie z(i,k,j) = z(i,k,j) - e(i,k+1,j)*z(i,k+1,j) enddo enddo enddo return end