! source file: /Users/csomes/Research/Models/UVic_ESCM/2.9/sim/nonredfield_dom/clean_up_code/seaice_wind_bug/afs_high/updates/vmixc.F subroutine vmixc (joff, js, je, is, ie) !======================================================================= ! set viscosity coefficient on bottom face of "u" cells ! set diffusion coefficient on bottom face of "t" cells ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW !======================================================================= implicit none integer i, k, j, ip, kr, jq, js, je, istrt, is, iend, ie, jstrt integer jend, jrow, joff, ks real zn2, hab, zkappa include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "coord.h" include "mw.h" include "switch.h" include "vmixc.h" include "isopyc.h" include "tidal_kv.h" include "diag.h" include "grdvar.h" include "levind.h" include "timeavgs.h" !----------------------------------------------------------------------- ! bail out if starting row exceeds ending row !----------------------------------------------------------------------- if (js .gt. je) return !----------------------------------------------------------------------- ! limit the longitude and latitude indices !----------------------------------------------------------------------- istrt = max(2,is) iend = min(imt-1,ie) jstrt = max(2,js-1) jend = je-1 !----------------------------------------------------------------------- ! constant vertical mixing coefficients !----------------------------------------------------------------------- do j=jstrt,jend jrow = j + joff do i=istrt,iend do k=1,km visc_cbu(i,k,j) = kappa_m ! calculate N^2 = -g/rho drhodz on bottom of cell face ! (where K33 and diff_cbt = kappa_h are defined). Note that ! N2 is not guaranteed to be positive. If instability occurs, ! convective adjustment will eliminate it. ! drodzb is defined in isopyc.h ! ZN2 is defined on T-cell bottom (zw pt) ZN2 = -gravrho0r*drodzb(i,k,j,0) ! height above bottom if (kmt(i,jrow) .ne. 0.0) then hab = zw(k) - zw(kmt(i,jrow) - 1) else hab = 0.0 endif if (Zn2 .ne. 0.0) then zkappa = 0.33*ogamma*edr(i,jrow)*exp(hab*zetar)/ & (ZN2*(1-exp(-zetar*zw(kmt(i,jrow))))) else zkappa = 0.0 endif if (tlat(i,j+joff) .lt. -40.) zkappa = max(zkappa,1.00) cao below is the old code used in "my" standard version and in Schmittner et al. (2009). a.o., 27.12.10 ! if (tlat(i,j+joff) .lt. -40. .and. ! & zw(kmt(i,j+joff)).gt.50000.) zkappa = max(zkappa,1.00) ! limit diff_cbt diff_cbt(i,k,j) = max(kappa_h, min(10., zkappa + kappa_h)) enddo enddo enddo !----------------------------------------------------------------------- ! Add K33 component to vertical diffusion coefficient !----------------------------------------------------------------------- do j=jstrt,jend do i=istrt,iend do k=1,km diff_cbt(i,k,j) = diff_cbt(i,k,j) + K33(i,k,j) enddo enddo enddo !----------------------------------------------------------------------- ! accumulate time average diapycnal (without K33) diffusivity !----------------------------------------------------------------------- if (timavgperts .and. .not. euler2) then do j=jstrt,jend jrow = j + joff do k=1,km do i=istrt,iend ta_diff_cbt(i,k,jrow) = ta_diff_cbt(i,k,jrow) & + diff_cbt(i,k,j) enddo enddo enddo endif return end