subroutine eqstate (zt, km, ro0_den, to_den, so_den, c_den &, tmink, tmaxk, smink, smaxk) #if defined O_mom !======================================================================= ! E Q U A T I O N O F S T A T E M O D U L E ! Calculate polynomial coefficients for density computations in MOM. ! To generate the coefficients: ! 1) set up the grid in "grids.F" module ! 2) compile and run this module by setting the options in and ! executing the "run_denscoef" script ! To install the coefficients in MOM: ! 3) follow the directions at the end of the output from 2) ! This program calculates the 9 coefficients of a third order ! polynomial approximation to the equation of state for sea water. ! The program yields coefficients that will compute density as a ! function of temperature, and salinity, at predetermined depths, ! as used in the MOM subroutine "state". ! More specifically, the densities calculated from the polynomial ! formula are in the form of sigma anomalies. The method is ! taken from that described by Bryan & Cox (1972). ! By default, the program uses the equation of state set by the ! Joint Panel on Oceanographic Tables & Standards (UNESCO, 1981) ! an described by Gill (1982). An option exists to use the older ! Knudsen-Ekman equation of state, as described by Fofonoff (1962), ! if the user prefers. ! Subroutine "lsqsl2" performs the iterative least-squares ! polynomial fitting for the overdetermined system. The algorithm ! is outlined by Hanson and Lawson (1969), and the code looks as if ! it has not be touched since that time. ! references: ! Bryan, K. & M. Cox, An approximate equation of state ! for numerical models of ocean circulation, J. Phys. ! Oceanogr., 2, 510-514, 1972. ! Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience, ! New York, 1962, pp 3-30. ! Gill, A., Atmosphere-Ocean Dynamics: International Geophysical ! Series No. 30. Academic Press, London, 1982, pp 599-600. ! Hanson, R., & C. Lawson, Extensions and applications of the ! Householder algorithm for solving linear least squares ! problems. Math. Comput., 23, 787-812, 1969. ! UNESCO, 10th report of the joint panel on oceanographic tables ! and standards. UNESCO Tech. Papers in Marine Sci. No. 36, ! Paris, 1981. ! ifdef options: ! "knudsen" ! To over-ride the default of using the UNESCO equation of state ! and to instead employ the Knudsen-Ekman formula. ! The default assumption is that potential temperatures will be used ! (asin the ocean model code). !----------------------------------------------------------------------- implicit none include "stdunits.h" character(10) :: fname integer kmax, kx, kxx, kk, ksdim, krdim, km, k, io, i, j, ka integer ndim, nrow, ncol, in, itmax, it, ieq, irank, nn, nhdim parameter (kmax=200) parameter (kx = 5, kxx = 2*kx, kk = kx*kxx ) parameter (ksdim = kk+72, krdim = kk+36 ) real (kind=8) c0, c1, c2, cmtocm, fkx, fi, t1, s1, tot, th1 real (kind=8) fkk, d, s, t, densit, theta, tot1, tanom, sanom real (kind=8) eps, enorm real (kind=8) a(kk,9), sigma(kk), sigman(kk), c(kk,9), x(9) real (kind=8) sb(ksdim), r(krdim) real (kind=8) tmin(kmax), smin(kmax), tmax(kmax), smax(kmax) real (kind=8) z(kmax), dd(kmax), ss(kmax), ab(13,kmax), ts(33,4) real (kind=8) ta(kxx), sa(kxx), tp(kk), sp(kk), th(kk) real ro0_den(km), to_den(km), so_den(km), c_den(km,9), zt(km) real tmink(km), tmaxk(km), smink(km), smaxk(km), realz data fname /'dncoef.new'/ ! enter bounds for polynomial fit: at 33 levels from sfc to 8000 m. ! ts(k,1)=lower bnd of t at z=(k-1)*250 meters ! ts(k,2)=upper bnd of t ! ts(k,3)=lower bnd of s ! ts(k,4)=upper bnd of s ! The user should review the appropriateness of the "ts" values set ! below, and modify them if the intended modelling application could ! be expected to yield temperature and salinity values outside of the ! "ts" ranges set by default. data (ts(k,1),k=1,33) / 4*-2.0, 15*-1.0, 14*0.0 / data (ts(k,2),k=1,33) / 29.0, 19.0, 14.0, 11.0, 9.0, 28*7.0 / data (ts(k,3),k=1,33) / 28.5, 33.7, 34.0, 34.1, 34.2, 34.4, & 2*34.5, 15*34.6, 10*34.7 / data (ts(k,4),k=1,33) / 37.0, 36.6, 35.8, 35.7, 35.3, 2*35.1, & 26*35.0 / ! z = model levels (midpoint of model layers) ! tmin, tmax, smin, smax = minimum and maximum in situ temperature ! and salinity values which define the ranges to be used ! when computing the polynomials at each model level ! dd, ds = increment between temperature and salinity values at ! each model level to be used in constructing array of ! temperature, salinity and density for curve fitting ! ta, sa = in situ temperature and salinity values available for ! constructing array of data for curve fitting at each ! model level ! tp, sp = in situ temperature and salinity values constructed from ! all combinations of ta & sa ! th = potential temperature values associated with "tp" at a ! given level and salinity ! t1, s1, tot1, th1 = level mean insitu temp., salinity, density, ! and potential temp. used in polynomial fitting ! tot = density (in sigma units) calculate from t1 and s1 at a ! given model level ! sigma = insitu densities (in sigma units) calculated from "tp" ! and "sp" values ! sigman = insitu density anomalies at a given level (formed by ! subtracting "tot" from sigma) ! tanom, sanom = temperature and salinity anomalies used in loading ! array "a" for use in lsqsl2 curve fitting ! x = the 9 polynomial coefficients ! r, sb = used only in lsqsl2 !======================================================================= if (km .gt. kmax) then write (stdout,*) '=>Error: increase "kmax" > ',km,' in eqstate' stop endif ! set some constants c0 = 0.0 c1 = 1.0 c2 = 2.0 ! construct depths (meters) from surface to midpoint of levels cmtocm = 1.0d-2 do k=1,km z(k) = zt(k) * cmtocm if (z(k) .gt. 8000.0) then write (stdout,*) '=>Error:depth can`t exceed 8000m in eqstate' stop endif enddo ! set the temperature and salinity ranges to be used for each ! model level when performing the polynomial fitting do k=1,km realz = z(k)/250.0 i = ifix (realz) + 1 tmin(k) = ts(i,1) tmax(k) = ts(i,2) smin(k) = ts(i,3) smax(k) = ts(i,4) enddo ! set temperature and salinity increments to be used in creating ! curve fitting array at each level (twice as many temperature values ! than salinity values) fkx = kx do k=1,km dd(k) = (tmax(k)-tmin(k)) / (c2*fkx-c1) ss(k) = (smax(k)-smin(k)) / (fkx-c1) enddo ! loop over all model levels do k=1,km do i=1,kxx fi = i ta(i) = tmin(k) + (fi-c1)*dd(k) sa(i) = smin(k) + (fi-c1)*ss(k) enddo ! load the "kxx" combinations of the 2*"kx" insitu temp. and "kx" ! salinity values into "tp" and "sp" do i=1,kxx do j=1,kx ka = kx*i + j - kx tp(ka) = ta(i) sp(ka) = sa(j) enddo enddo t1 = c0 s1 = c0 tot = c0 th1 = c0 fkk = kk ! calculate insitu density "sigma" for each t,s combination at ! this depth "d" do ka=1,kk d = z(k) s = sp(ka) t = tp(ka) # if defined O_knudsen ! "knuekm" returns density (in sigma units) from insitu ! temperature, salinity, & depth (pressure) using the ! Knudsen-Ekman formula call knuekm(t,s,d,densit) sigma(ka) = densit # else ! "unesco" returns density (kg per m**3) from insitu ! temperature, salinity, & depth (pressure) using the UNESCO ! equation of state call unesco(t,s,d,densit) sigma(ka) = densit - 1.0d3 + 2.5d-2 # endif ! "potem" returns potential temp. from from insitu temperature, ! salinity, & depth (pressure) call potem(t,s,d,theta) th(ka) = theta t1 = t1 + tp(ka) s1 = s1 + sp(ka) tot = tot + sigma(ka) th1 = th1 + th(ka) enddo ! form layer averages "t1", "s1", "th1", and "tot1", and compute ! reference density "tot" from "t1" and "s1" at this depth "d" t1 = t1/fkk s1 = s1/fkk th1 = th1/fkk tot1 = tot/fkk # if defined O_knudsen ! "knuekm" returns density from insitu temp., salinity, & depth ! (pressure) using the Knudsen-Ekman formula call knuekm (t1, s1, d, densit) tot = densit # else ! "unesco" returns density from insitu temp., salinity, & depth ! (pressure) using the UNESCO equation of state call unesco (t1, s1, d, densit) tot = densit - 1.0d3 + 2.5d-2 # endif ! define insitu t1 = th1 ! begin loading "ab" array with level averages ab(1,k) = z(k) ab(2,k) = tot ab(3,k) = t1 ab(4,k) = s1 do ka=1,kk ! define insitu tp(ka) = th(ka) ! create anomalies for temperature, salinity & density and ! load work array "a" with the anomalies and their products tanom = tp(ka) - t1 sanom = sp(ka) - s1 sigman(ka) = sigma(ka) - tot a(ka,1) = tanom a(ka,2) = sanom a(ka,3) = tanom * tanom a(ka,4) = tanom * sanom a(ka,5) = sanom * sanom a(ka,6) = a(ka,3) * tanom a(ka,7) = a(ka,5) * tanom a(ka,8) = a(ka,3) * sanom a(ka,9) = a(ka,5) * sanom enddo ! set the arguments used in call to "lsqsl2" ! ndim = first dimension of array a ! nrow =number of rows of array a ! ncol = number of columns of array a ! in = option number of lsqsl2 ! itmax = number of iterations ndim = 50 nrow = kk ncol = 9 in = 1 itmax = 4 it = 0 ieq = 2 irank = 0 eps = 1.0e-7 nhdim = 9 ! LSQL2 is a Jet Propulsion Laboratory subroutine that ! computes the least squares fit in an iterative manner for ! overdetermined systems. call lsqsl2 (ndim, a, nrow, ncol, sigman, x, irank, in, itmax, & it, ieq, enorm, eps, nhdim, c, r, sb) do i=1,ncol ab(i+4,k) = x(i) enddo ! end loop on model levels enddo nn = ncol + 4 do k=1,km ab(2,k) = 1.e-3 * ab(2,k) ab(4,k) = 1.e-3 * ab(4,k) - 0.035 ab(5,k) = 1.e-3 * ab(5,k) ab(7,k) = 1.e-3 * ab(7,k) ab(10,k) = 1.e-3 * ab(10,k) ab( 9,k) = 1.e+3 * ab( 9,k) ab(11,k) = 1.e+3 * ab(11,k) ab(13,k) = 1.e+6 * ab(13,k) enddo ! save this data for a model execution converting insitu ! temperatures to potential temperatures do k=1,km ro0_den(k) = ab(2,k) to_den(k) = ab(3,k) so_den(k) = ab(4,k) d = z(k) s = smin(k) t = tmin(k) call potem(t,s,d,theta) tmink(k) = theta s = smax(k) t = tmax(k) call potem(t,s,d,theta) tmaxk(k) = theta smink(k) = smin(k) smaxk(k) = smax(k) do i=5,13 c_den(k,i-4) = ab(i,k) enddo enddo # if defined O_linearized_density ! Density a linear function of temp. No pressure effects. ! Take following numbers from Appendix 3 of Gill (1982) ! with T=10C, S=35psu, p=0atm. ! model salinity is S(model) = (S(psu)-35)/1000 do k=1,km c_den(k,1) = -2.55e-4 ab(1+4,k) = c_den(k,1) ro0_den(k) = 0.025022 ab(2,k) = ro0_den(k) to_den(k) = 19.0 ab(3,k) = to_den(k) so_den(k) = 0.0 ab(4,k) = so_den(k) do i=2,9 c_den(k,i) = c0 ab(i+4,k) = c_den(k,i) enddo enddo # endif write (stdout,9531) write (stdout,9532) & (i,z(i),tmin(i),tmax(i),smin(i),smax(i),tmink(i),tmaxk(i),i=1,km) # if defined O_knudsen write (stdout,'(/a/a/)') & 'Note: density coefficients were calculated using the "knudsen"' &,' formulation.' # else write (stdout,'(/a/a/)') & 'Note: density coefficients were calculated using the UNESCO' &,' formulation.' # endif 9531 format(' density coefficients were calculated ', # if defined O_knudsen & /' employing the Knudsen-Ekman equation of state ', # else & /' (employing the UNESCO equation of state)', # endif & /' and are valid for the following depths and', & ' both INSITU and POTENTIAL T and S ranges' & /' ',t7,'k',t14,'depth',t27,'tmin',t37, & 'tmax',t52,'smin',t62,'smax',t70,'Pot tmin',t80,'Pot tmax') 9532 format(' ',t5,i3,t12,f7.2,'e2',t25,f7.3,t35,f7.3,t50,f7.4, & t60,f7.4,t70,f7.3,t80,f7.3) return end subroutine knuekm (t, s, d, rho) !======================================================================= ! this subroutine calculates the density of seawater using the ! Knudsen-Ekman equation of state. ! input [units]: ! in-situ temperature (t): [degrees centigrade] ! salinity (s): [per mil] ! depth (d): [meters of depth, to approximate pressure] ! output [units]: ! density (rho): sigma units ! reference: ! Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience, ! New York, 1962, pp 3-30. !----------------------------------------------------------------------- implicit none real (kind=8) eps2, t2, t, t3, s2, s, s3, f1, f2, f3, fs, sigma real (kind=8) a, d, b1, b2, b, co, alpha, rho data eps2/1.d-16/ t2 = t*t t3 = t2*t s2 = s*s s3 = s2*s f1 = -1.0d0 * (t - 3.98d0)**2 * (t + 2.83d2) / & (5.0357d2*(t + 6.726d1)) f2 = t3*1.0843d-6 - t2*9.8185d-5 + t*4.786d-3 f3 = t3*1.6670d-8 - t2*8.1640d-7 + t*1.803d-5 fs = s3*6.76786136d-6 - s2*4.8249614d-4 + s*8.14876577d-1 sigma= f1 + (fs + 3.895414d-2)* & (1.0d0 - f2 + f3*(fs - 2.2584586d-1)) a= d*1.0d-4*(1.055d2 + t*9.50d0 - t2*1.58d-1 - d*t*1.5d-4) - & (2.27d2 + t*2.833d1 - t2*5.51d-1 + t3*4.0d-3) b1 = (fs - 2.81324d1)*1.d-1 b2 = b1 * b1 b = -b1* (1.473d2 - t*2.72d0 + t2*4.0d-2 - d*1.0d-4* & (3.24d1 - 0.87d0*t + 2.0d-2*t2)) b = b + b2*(4.5d0 - 1.0d-1*t - d*1.0d-4*(1.8d0 - 6.0d-2*t)) co = 4.886d3/(1.0d0 + 1.83d-5*d) alpha = d*1.0d-6*(co + a + b) rho = (sigma + alpha)/(1.d0 - 1.0d-3*alpha) return end subroutine lsqsl2 (ndim,a,d,w,b,x,irank,in,itmax,it,ieq,enorm,eps1 &,nhdim,aa,r,s) ! this routine is a modification of lsqsol. march,1968. r. hanson. ! linear least squares solution ! this routine finds x such that the euclidean length of ! (*) ax-b is a minimum. ! here a has k rows and n columns, while b is a column vector with ! k components. ! an orthogonal matrix q is found so that qa is zero below ! the main diagonal. ! suppose that rank (a)=r ! an orthogonal matrix s is found such that ! qas=t is an r x n upper triangular matrix whose last n-r columns ! are zero. ! the system tz=c (c the first r components of qb) is then ! solved. with w=sz, the solution may be expressed ! as x = w + sy, where w is the solution of (*) of minimum euclid- ! ean length and y is any solution to (qas)y=ty=0. ! iterative improvements are calculated using residuals and ! the above procedures with b replaced by b-ax, where x is an ! approximate solution. implicit none integer nhdim, k, n, it, isw, l, m, j1, j2, j3, j4, j5, j6, j7 integer j8, j9, lm, irank, in, j, i, ieq, n2, n7, n1, ip, km integer n8, ipm1, ii, n3, ipp1, n4, irp1, irm1, n6, itmax, ns integer k1, d, w, ndim logical erm real (kind=8) top1, top, eps2, am, a1, eps1, sp, enorm, top2 real (kind=8) enm1, a2, sj, dp, up, bp, aj ! in=1 for first entry. ! a is decomposed and saved. ax-b is solved. ! in = 2 for subsequent entries with a new vector b. ! in=3 to restore a from the previous entry. ! in=4 to continue the iterative improvement for this system. ! in = 5 to calculate solutions to ax=0, then store in the array h. ! in = 6 do not store a in aa. obtain t = qas, where t is ! min(k,n) x min(k,n) and upper triangular. now return.do not obtain ! a solution. ! no scaling or column interchanges are performed. ! in = 7 same as with in = 6 except that soln. of min. length ! is placed into x. no iterative refinement. now return. ! column interchanges are performed. no scaling is performed. ! in = 8 set addresses. now return. ! options for computing a matrix product y*h or h*y are ! available with the use of the entry points myh and mhy. ! use of these options in these entry points allow a great saving in ! storage required. include "stdunits.h" real (kind=8) a(d,w), b(d), aa(d,w), s(d+72), x(w), h(nhdim,nhdim) real (kind=8) r(d+36) # if !defined O_read_denscoef ! d = depth of matrix. ! w = width of matrix. k=d n=w erm=.true. top1 = 0.0 top = 0.0 eps2 = 0.0 ! if it=0 on entry, the possible error message will be suppressed. if (it.eq.0) erm=.false. ! ieq = 2 if column scaling by least max. column length is ! to be performed. ! ieq = 1 if scaling of all components is to be done with ! the scalar max(abs(aij))/k*n. ! ieq = 3 if column scaling as with in =2 will be retained in ! rank deficient cases. ! the array s must contain at least max(k,n) + 4n + 4min(k,n) cells ! the array r must contain k+4n s.p. cells. ! the last card controls desired relative accuracy. ! eps1 controls (eps) rank. isw=1 l=min0(k,n) m=max0(k,n) j1=m j2=n+j1 j3=j2+n j4=j3+l j5=j4+l j6=j5+l j7=j6+l j8=j7+n j9=j8+n lm=l if (irank.ge.1.and.irank.le.l) lm=irank if (in.eq.6) lm=l if (in.eq.8) return ! return after setting addresses when in=8. if (in.eq.1) goto 10 if (in.eq.2) goto 360 if (in.eq.3) goto 810 if (in.eq.4) goto 390 if (in.eq.5) goto 830 if (in.eq.6) goto 10 if (in.eq.7) goto 10 ! equilibrate columns of a (1)-(2). ! (1) 10 continue ! save data when in = 1. if (in.gt.5) go to 30 do j=1,n do i=1,k aa(i,j)=a(i,j) enddo enddo 30 continue if (ieq.eq.1) go to 60 do j=1,n ! am=0.e0 am=1.e-30 do i=1,k am = max(am,abs(a(i,j))) enddo ! s(m+n+1)-s(m+2n) contains scaling for output variables. n2=j2+j if (in.eq.6) am=1.d0 s(n2)=1.d0/am do i=1,k a(i,j)=a(i,j)*s(n2) enddo enddo go to 100 60 continue ! am=0.d0 am=1.e-30 do j=1,n do i=1,k am= max(am,abs(a(i,j))) enddo enddo am=am/float(k*n) if (in.eq.6) am=1.d0 do j=1,n n2=j2+j s(n2)=1.d0/am enddo do j=1,n n2=j2+j do i=1,k a(i,j)=a(i,j)*s(n2) enddo enddo ! compute column lengths with d.p. sums finally rounded to s.p. ! (2) 100 continue do j=1,n n7=j7+j n2=j2+j s(n7)=s(n2) enddo ! s(m+1)-s(m+ n) contains variable permutations. ! set permutation to identity. do j=1,n n1=j1+j s(n1)=j enddo ! begin elimination on the matrix a with orthogonal matrices . ! ip=pivot row do ip=1,lm dp=0.d0 km=ip do j=ip,n sj=0.d0 do i=ip,k sj=sj+a(i,j)**2 enddo if (dp.gt.sj) go to 140 dp=sj km=j if (in.eq.6) go to 160 140 continue enddo ! maximize (sigma)**2 by column interchange. ! suppress column interchanges when in=6. ! exchange columns if necessary. if (km.eq.ip) go to 160 do i=1,k a1=a(i,ip) a(i,ip)=a(i,km) a(i,km)=a1 enddo ! record permutation and exchange squares of column lengths. n1=j1+km a1=s(n1) n2=j1+ip s(n1)=s(n2) s(n2)=a1 n7=j7+km n8=j7+ip a1=s(n7) s(n7)=s(n8) s(n8)=a1 160 continue if (ip.eq.1) go to 180 a1=0.d0 ipm1=ip-1 do i=1,ipm1 a1=a1+a(i,ip)**2 enddo if (a1.gt.0.d0) go to 190 180 continue if (dp.gt.0.d0) go to 200 ! test for rank deficiency. 190 continue if (sqrt(dp/a1).gt.eps1) go to 200 if (in.eq.6) go to 200 ii=ip-1 if (erm) write (stdout,1140) irank,eps1,ii,ii irank=ip-1 erm=.false. go to 260 ! (eps1) rank is deficient. 200 continue sp=sqrt(dp) ! begin front elimination on column ip. ! sp=sqroot(sigma**2). bp=1.d0/(dp+sp*abs(a(ip,ip))) ! store beta in s(3n+1)-s(3n+l). if (ip.eq.k) bp=0.d0 n3=k+2*n+ip r(n3)=bp up=sign(dble(sp)+abs(a(ip,ip)),dble(a(ip,ip))) if (ip.ge.k) go to 250 ipp1=ip+1 if (ip.ge.n) go to 240 do j=ipp1,n sj=0.d0 do i=ipp1,k sj=sj+a(i,j)*a(i,ip) enddo sj=sj+up*a(ip,j) sj=bp*sj ! sj=yj now do i=ipp1,k a(i,j)=a(i,j)-a(i,ip)*sj enddo a(ip,j)=a(ip,j)-sj*up enddo 240 continue a(ip,ip)=-sign(sp,a(ip,ip)) n4=k+3*n+ip r(n4)=up 250 continue enddo irank=lm 260 continue irp1=irank+1 irm1=irank-1 if (irank.eq.0.or.irank.eq.n) go to 360 if (ieq.eq.3) go to 290 ! begin back processing for rank deficiency case ! if irank is less than n. do j=1,n n2=j2+j n7=j7+j l=min0(j,irank) ! unscale columns for rank deficient matrices when ieq.ne.3. do i=1,l a(i,j)=a(i,j)/s(n7) enddo s(n7)=1.d0 s(n2)=1.d0 enddo 290 continue ip=irank 300 continue sj=0.d0 do j=irp1,n sj=sj+a(ip,j)**2 enddo sj=sj+a(ip,ip)**2 aj=sqrt(sj) up=sign(dble(aj)+abs(a(ip,ip)),dble(a(ip,ip))) ! ip th element of u vector calculated. bp=1.d0/(sj+abs(a(ip,ip))*aj) ! bp = 2/length of u squared. ipm1=ip-1 if (ipm1.le.0) go to 340 do i=1,ipm1 dp=a(i,ip)*up do j=irp1,n dp=dp+a(i,j)*a(ip,j) enddo dp=dp/(sj+abs(a(ip,ip))*aj) ! calc. (aj,u), where aj=jth row of a a(i,ip)=a(i,ip)-up*dp ! modify array a. do j=irp1,n a(i,j)=a(i,j)-a(ip,j)*dp enddo enddo 340 continue a(ip,ip)=-sign(dble(aj),dble(a(ip,ip))) ! calc. modified pivot. ! save beta and ip th element of u vector in r array. n6=k+ip n7=k+n+ip r(n6)=bp r(n7)=up ! test for end of back processing. if (ip-1.gt.0) goto 350 if (ip-1.le.0) goto 360 350 continue ip=ip-1 go to 300 360 continue if (in.eq.6) return do j=1,k r(j)=b(j) enddo it=0 ! set initial x vector to zero. do j=1,n x(j)=0.d0 enddo if (irank.eq.0) go to 690 ! apply q to rt. hand side. 390 continue do ip=1,irank n4=k+3*n+ip sj=r(n4)*r(ip) ipp1=ip+1 if (ipp1.gt.k) go to 410 do i=ipp1,k sj=sj+a(i,ip)*r(i) enddo 410 continue n3=k+2*n+ip bp=r(n3) if (ipp1.gt.k) go to 430 do i=ipp1,k r(i)=r(i)-bp*a(i,ip)*sj enddo 430 continue r(ip)=r(ip)-bp*r(n4)*sj enddo do j=1,irank s(j)=r(j) enddo enorm=0.d0 if (irp1.gt.k) go to 510 do j=irp1,k enorm=enorm+r(j)**2 enddo enorm=sqrt(enorm) go to 510 460 continue do j=1,n sj=0.d0 n1=j1+j ip=s(n1) do i=1,k sj=sj+r(i)*aa(i,ip) enddo ! apply at to rt. hand side. ! apply scaling. n7=j2+ip n1=k+n+j r(n1)=sj*s(n7) enddo n1=k+n s(1)=r(n1+1)/a(1,1) if (n.eq.1) go to 510 do j=2,n n1=j-1 sj=0.d0 do i=1,n1 sj=sj+a(i,j)*s(i) enddo n2=k+j+n s(j)=(r(n2)-sj)/a(j,j) enddo ! entry to continue iterating. solves tz = c = 1st irank ! components of qb . 510 continue s(irank)=s(irank)/a(irank,irank) if (irm1.eq.0) go to 540 do j=1,irm1 n1=irank-j n2=n1+1 sj=0. do i=n2,irank sj=sj+a(n1,i)*s(i) enddo s(n1)=(s(n1)-sj)/a(n1,n1) enddo ! z calculated. compute x = sz. 540 continue if (irank.eq.n) go to 590 do j=irp1,n s(j)=0.d0 enddo do i=1,irank n7=k+n+i sj=r(n7)*s(i) do j=irp1,n sj=sj+a(i,j)*s(j) enddo n6=k+i do j=irp1,n s(j)=s(j)-a(i,j)*r(n6)*sj enddo s(i)=s(i)-r(n6)*r(n7)*sj enddo ! increment for x of minimal length calculated. 590 continue do i=1,n x(i)=x(i)+s(i) enddo if (in.eq.7) go to 750 ! calc. sup norm of increment and residuals top1=0.d0 do j=1,n n2=j7+j top1= max(top1,abs(s(j))*s(n2)) enddo do i=1,k sj=0.d0 do j=1,n n1=j1+j ip=s(n1) n7=j2+ip sj=sj+aa(i,ip)*x(j)*s(n7) enddo r(i)=b(i)-sj enddo if (itmax.le.0) go to 750 ! calc. sup norm of x. top=0.d0 do j=1,n n2=j7+j top= max(top,abs(x(j))*s(n2)) enddo ! compare relative change in x with tolerance eps . if (top1-top*eps2.lt.0.) goto 690 if (top1-top*eps2.ge.0.) goto 650 650 continue if (it-itmax.lt.0) goto 660 if (it-itmax.ge.0) goto 680 660 continue it=it+1 if (it.eq.1) go to 670 if (top1.gt..25*top2) go to 690 670 continue top2=top1 if (isw.eq.1) go to 390 if (isw.eq.2) go to 460 680 continue it=0 690 continue sj=0.d0 do j=1,k sj=sj+r(j)**2 enddo enorm=sqrt(sj) if (irank.eq.n.and.isw.eq.1) go to 710 go to 730 710 continue enm1=enorm ! save x array. do j=1,n n1=k+j r(n1)=x(j) enddo isw=2 it=0 go to 460 ! choose best solution 730 continue if (irank.lt.n) go to 750 if (enorm.le.enm1) go to 750 do j=1,n n1=k+j x(j)=r(n1) enddo enorm=enm1 ! norm of ax - b located in the cell enorm . ! rearrange variables. 750 continue do j=1,n n1=j1+j s(j)=s(n1) enddo do j=1,n do i=j,n ip=s(i) if (j.eq.ip) go to 780 enddo 780 continue s(i)=s(j) s(j)=j sj=x(j) x(j)=x(i) x(i)=sj enddo ! scale variables. do j=1,n n2=j2+j x(j)=x(j)*s(n2) enddo return ! restore a. 810 continue do j=1,n n2=j2+j do i=1,k a(i,j)=aa(i,j) enddo enddo return ! generate solutions to the homogeneous equation ax = 0. 830 if (irank.eq.n) return ns=n-irank do i=1,n do j=1,ns h(i,j)=0.d0 enddo enddo do j=1,ns n2=irank+j h(n2,j)=1.d0 enddo if (irank.eq.0) return do j=1,irank do i=1,ns n7=k+n+j sj=r(n7)*h(j,i) ! this part of the code should not be executed. However some ! compilers generate warning msgs that "irp1" is not defined ! so it is arbitrarily set here to fool the compilers irp1 = 1 if (i .gt. 0) then write (stdout,*) ' Error in lsqsl2: search for this msg' stop endif do k1=irp1,n sj=sj+h(k1,i)*a(j,k1) enddo n6=k+j bp=r(n6) dp=bp*r(n7)*sj a1=dp a2=dp-a1 h(j,i)=h(j,i)-(a1+2.*a2) do k1=irp1,n dp=bp*a(j,k1)*sj a1=dp a2=dp-a1 h(k1,i)=h(k1,i)-(a1+2.*a2) enddo enddo enddo ! rearrange rows of solution matrix. do j=1,n n1=j1+j s(j)=s(n1) enddo do j=1,n do i=j,n ip=s(i) if (j.eq.ip) go to 900 enddo 900 continue s(i)=s(j) s(j)=j do k1=1,ns a1=h(j,k1) h(j,k1)=h(i,k1) h(i,k1)=a1 enddo enddo # endif return 1140 format (/'warning. irank has been set to',i4,' but(',1pe10.3, 1 ') rank is',i4,'. irank is now taken as ',i4) end subroutine potem (t, s, p, theta) !======================================================================= ! this subroutine calculates potential temperature as a function ! of in-situ temperature, salinity, and pressure. ! input [units]: ! in-situ temperature (t): [degrees centigrade] ! salinity (s): [per mil] ! pressure (p): [decibars, approx. as meters of depth] ! output [units]: ! potential temperature (theta): [degrees centigrade] ! references: ! based on Fofonoff and Froese (1958) as shown in ... ! Fofonoff, N., The Sea: Vol 1, (ed. M. Hill). Interscience, ! New York, 1962, page 17, table iv. !----------------------------------------------------------------------- implicit none real (kind=8) b1, p, b2, t, t2, t3, b3, b4, b5, s, b6, s2 real (kind=8) p2, b7, b8, b9, b10, b11, potmp, theta b1 = -1.60d-5*p b2 = 1.014d-5*p*t t2 = t*t t3 = t2*t b3 = -1.27d-7*p*t2 b4 = 2.7d-9*p*t3 b5 = 1.322d-6*p*s b6 = -2.62d-8*p*s*t s2 = s*s p2 = p*p b7 = 4.1d-9*p*s2 b8 = 9.14d-9*p2 b9 = -2.77d-10*p2*t b10 = 9.5d-13*p2*t2 b11 = -1.557d-13*p2*p potmp = b1+b2+b3+b4+b5+b6+b7+b8+b9+b10+b11 theta = t-potmp return end subroutine unesco (t, s, pin, rho) !======================================================================= ! this subroutine calculates the density of seawater using the ! standard equation of state recommended by unesco(1981). ! input [units]: ! in-situ temperature (t): [degrees centigrade] ! salinity (s): [practical salinity units] ! pressure (pin): [decibars, approx. as meters of depth] ! output [units]: ! density(rho): kilograms per cubic meter ! references: ! Gill, A., Atmosphere-Ocean Dynamics: International Geophysical ! Series No. 30. Academic Press, London, 1982, pp 599-600. ! UNESCO, 10th report of the joint panel on oceanographic tables ! and standards. UNESCO Tech. Papers in Marine Sci. No. 36, ! Paris, 1981. !----------------------------------------------------------------------- implicit none real (kind=8) c1p5, p, pin, rw, t, rsto, s, xkw, xksto, xkstp, rho c1p5 = 1.5d0 ! convert from depth [m] (decibars) to bars p = pin * 1.0d-1 rw = 9.99842594d2 + 6.793952d-2*t - 9.095290d-3*t**2 & + 1.001685d-4*t**3 - 1.120083d-6*t**4 + 6.536332d-9*t**5 rsto = rw + (8.24493d-1 - 4.0899d-3*t + 7.6438d-5*t**2 & - 8.2467d-7*t**3 + 5.3875d-9*t**4) * s & + (-5.72466d-3 + 1.0227d-4*t - 1.6546d-6*t**2) * s**c1p5 & + 4.8314d-4 * s**2 xkw = 1.965221d4 + 1.484206d2*t - 2.327105d0*t**2 + & 1.360477d-2*t**3 - 5.155288d-5*t**4 xksto = xkw + (5.46746d1 - 6.03459d-1*t + 1.09987d-2*t**2 & - 6.1670d-5*t**3) * s & + (7.944d-2 + 1.6483d-2*t - 5.3009d-4*t**2) * s**c1p5 xkstp = xksto + (3.239908d0 + 1.43713d-3*t + 1.16092d-4*t**2 & - 5.77905d-7*t**3) * p & + (2.2838d-3 - 1.0981d-5*t - 1.6078d-6*t**2) * p * s & + 1.91075d-4 * p * s**c1p5 & + (8.50935d-5 - 6.12293d-6*t + 5.2787d-8*t**2) * p**2 & + (-9.9348d-7 + 2.0816d-8*t + 9.1697d-10*t**2) * p**2 * s rho = rsto / (1.0d0 - p/xkstp) #endif return end