! source file: /raid23/csomes/UVic/2.9/c_n_isotopes/last_glacial_experiments/dlgp15/updates/tracer.F subroutine tracer (joff, js, je, is, ie) !======================================================================= ! compute tracers at "tau+1" for rows js through je in the MW. ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW !======================================================================= implicit none character(120) :: fname, new_file_name integer istrt, iend, i, k, j, ip, kr, jq, n, jp, jrow, iou, js integer je, limit, joff, is, ie, kmx, m, kb, idiag, index integer it(10), iu(10), ib(10), ic(10), nfnpzd, mfnpzd, mxfnpzd integer id_time, id_xt, id_yt, id_zt logical inqvardef, exists real time real t_i, t_j, dz_t2r, dz_tr, dz_wtr, dx_t2r, dx_tr, dy_t2r real dy_tr, adv_tx, adv_ty, adv_tz, adv_txiso, adv_tyiso real adv_tziso, diff_tx, diff_ty, diff_tz, zmax, cont, drho real drhom1, wt, ahbi_cstr, ahbi_csu_dyur, gamma, fy, fyz include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "accel.h" include "coord.h" include "cregin.h" include "csbc.h" include "emode.h" include "grdvar.h" include "hmixc.h" include "levind.h" include "mw.h" include "scalar.h" include "switch.h" include "timeavgs.h" include "tmngr.h" include "vmixc.h" include "diaga.h" real rrc14std include "ice.h" real t_in(km), po4_in(km) real o2_in(km) real s_in(km), dic_in(km), alk_in(km), co2_in, dic13_in(km) real no3_in(km), sgb_in(km), sgomsk_in real din15_in(km) real felimit_in(km), felimit_D_in(km) real expo, tnpzd(km,ntnpzd) include "atm.h" include "cembm.h" include "npzd.h" parameter (istrt=2, iend=imt-1) real twodt(km) real ai, hi, hs, rctheta, dayfrac, swr, declin real src(imt,km,jsmw:jemw,nsrc) include "isopyc.h" include "fdift.h" !----------------------------------------------------------------------- ! bail out if starting row exceeds ending row !----------------------------------------------------------------------- if (js .gt. je) return !----------------------------------------------------------------------- ! limit the longitude indices based on those from the argument list ! Note: this is currently bypassed. istrt and iend are set as ! parameters to optimize performance !----------------------------------------------------------------------- ! istrt = max(2,is) ! iend = min(imt-1,ie) !----------------------------------------------------------------------- ! build coefficients to minimize advection and diffusion computation !----------------------------------------------------------------------- limit = min(je+1+joff,jmt) - joff do j=js,limit jrow = j + joff do i=istrt-1,iend cstdxtr(i,j) = cstr(jrow)*dxtr(i) cstdxt2r(i,j) = cstr(jrow)*dxtr(i)*p5 cstdxur(i,j) = cstr(jrow)*dxur(i) ah_cstdxur(i,j) = diff_cet*cstr(jrow)*dxur(i) enddo enddo !----------------------------------------------------------------------- ! ocean biogeochemistry and isotopes !----------------------------------------------------------------------- declin = sin((mod(relyr,1.) - 0.22)*2.*pi)*0.4 ! declination nbio = c2dtts/dtnpzd dtbio = c2dtts/nbio rdtts = 1./c2dtts rnbio = 1./nbio do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .gt. 0) then ai = aice(i,jrow,2) hi = hice(i,jrow,2) hs = hsno(i,jrow,2) ! calculate day fraction and incoming solar ! angle of incidence = lat - declin, refraction index = 1.33 rctheta = max(-1.5, min(1.5, tlat(i,jrow)/radian - declin)) rctheta = kw/sqrt(1. - (1. - cos(rctheta)**2.)/1.33**2.) dayfrac = min( 1., -tan(tlat(i,jrow)/radian)*tan(declin)) dayfrac = max(1e-12, acos(max(-1., dayfrac))/pi) swr = tap*dnswr(i,jrow)*1e-3*(1. + ai*(exp(-ki*(hi + hs)) & - 1.)) ! set prognostic variables tnpzd(:,1) = t(i,:,j,ipo4,taum1) tnpzd(:,2) = t(i,:,j,idop,taum1) tnpzd(:,3) = t(i,:,j,iphyt,taum1) tnpzd(:,4) = t(i,:,j,izoop,taum1) tnpzd(:,5) = t(i,:,j,idetr,taum1) tnpzd(:,6) = t(i,:,j,idic,taum1) tnpzd(:,7) = t(i,:,j,ino3,taum1) tnpzd(:,8) = t(i,:,j,idon,taum1) tnpzd(:,9) = t(i,:,j,idiaz,taum1) tnpzd(:,10) = t(i,:,j,idin15,taum1) tnpzd(:,11) = t(i,:,j,idon15,taum1) tnpzd(:,12) = t(i,:,j,iphytn15,taum1) tnpzd(:,13) = t(i,:,j,izoopn15,taum1) tnpzd(:,14) = t(i,:,j,idetrn15,taum1) tnpzd(:,15) = t(i,:,j,idiazn15,taum1) tnpzd(:,16) = t(i,:,j,idic13,taum1) tnpzd(:,17) = t(i,:,j,idoc13,taum1) tnpzd(:,18) = t(i,:,j,iphytc13,taum1) tnpzd(:,19) = t(i,:,j,izoopc13,taum1) tnpzd(:,20) = t(i,:,j,idetrc13,taum1) tnpzd(:,21) = t(i,:,j,idiazc13,taum1) ! set other input variables t_in(:) = t(i,:,j,itemp,taum1) !degree Celsius po4_in(:) = t(i,:,j,ipo4,taum1) o2_in(:) = t(i,:,j,io2,taum1)*1000. ! uM s_in(:) = 1.e3*t(i,:,j,isalt,taum1) + 35.0 dic_in(:) = t(i,:,j,idic,taum1) !mol/m^3 alk_in(:) = t(i,:,j,ialk,taum1) !eq/m^3 co2_in = co2ccn dic13_in(:) = tnpzd(:,16) !mol/m^3 no3_in(:) = tnpzd(:,7) din15_in(:) = tnpzd(:,10) sgb_in(:) = sg_bathy(i,j,:) sgomsk_in = sg_ocean_mask(i,j) do k=1,kmt(i,jrow) call fe_limit(i,j,k,felimit_in(k),felimit_D_in(k)) enddo ! end input call mobi (kmt(i,jrow), c2dtts, rctheta, dayfrac, swr, tnpzd &, t_in, po4_in &, o2_in &, s_in, dic_in, alk_in, co2_in, dic13_in &, no3_in, sgb_in, sgomsk_in &, din15_in &, felimit_in, felimit_D_in &, src(i,:,j,:)) !----------------------------------------------------------------------- ! accumulate time averages !----------------------------------------------------------------------- if (timavgperts .and. .not. euler2) then expo = rprca ta_rprocal(i,jrow) = ta_rprocal(i,jrow) + rprca do k = 1, kmt(i,jrow) ta_rnpp(i,k,jrow) = ta_rnpp(i,k,jrow) + rnpp(k) ta_rgraz(i,k,jrow) = ta_rgraz(i,k,jrow) + rgraz(k) ta_rgraz_Z(i,k,jrow) = ta_rgraz_Z(i,k,jrow) + rgraz_Z(k) ta_rgraz_Det(i,k,jrow) = ta_rgraz_Det(i,k,jrow) & + rgraz_Det(k) ta_rmorp(i,k,jrow) = ta_rmorp(i,k,jrow) + rmorp(k) ta_rmorpt(i,k,jrow)= ta_rmorpt(i,k,jrow) + rmorpt(k) ta_rmorz(i,k,jrow) = ta_rmorz(i,k,jrow) + rmorz(k) ta_rexcr(i,k,jrow) = ta_rexcr(i,k,jrow) + rexcr(k) ta_rnpp_D(i,k,jrow) = ta_rnpp_D(i,k,jrow) + rnpp_D(k) ta_rgraz_D(i,k,jrow) = ta_rgraz_D(i,k,jrow) + rgraz_D(k) ta_rmorp_D(i,k,jrow) = ta_rmorp_D(i,k,jrow) + rmorp_D(k) ta_rmorpt_D(i,k,jrow) = ta_rmorpt_D(i,k,jrow) & + rmorpt_D(k) ta_rnfix(i,k,jrow) = ta_rnfix(i,k,jrow) + rnfix(k) ta_rbdeni(i,k,jrow) = ta_rbdeni(i,k,jrow) + rbdeni(k) expo = expo*dztr(k) ta_rremi(i,k,jrow) = ta_rremi(i,k,jrow) + rremi(k) ta_rexpo(i,k,jrow) = ta_rexpo(i,k,jrow) + rexpo(k) expo = expo - rprca*rcak(k) ta_rexpocal(i,k,jrow) = ta_rexpocal(i,k,jrow) + expo expo = expo*dzt(k) ta_rwcdeni(i,k,jrow) = ta_rwcdeni(i,k,jrow) & + rwcdeni(k) enddo endif endif enddo enddo !----------------------------------------------------------------------- ! set source for c14 !----------------------------------------------------------------------- do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .gt. 0) then do k=1,kmt(i,jrow) src(i,k,j,isc14) = src(i,k,j,isdic)*rc14std & - 3.836e-12*t(i,k,j,ic14,taum1) enddo endif enddo enddo !----------------------------------------------------------------------- ! solve for one tracer at a time ! n = 1 => temperature ! n = 2 => salinity ! n > 2 => other tracers (if applicable) !----------------------------------------------------------------------- do n=1,nt !----------------------------------------------------------------------- ! calculate advective tracer flux !----------------------------------------------------------------------- call adv_flux (joff, js, je, is, ie, n) !----------------------------------------------------------------------- ! calculate diffusive flux across eastern and northern faces ! of "T" cells due to various parameterizations for diffusion. !----------------------------------------------------------------------- ! diffusive flux on eastern face of "T" cells do j=js,je do k=1,km do i=istrt-1,iend diff_fe(i,k,j) = & ah_cstdxur(i,j)* & (t(i+1,k,j,n,taum1) - t(i,k,j,n,taum1)) enddo enddo enddo ! diffusive flux on northern face of "T" cells ! (background for isopycnal mixing) do j=js-1,je jrow = j + joff do k=1,km do i=istrt,iend diff_fn(i,k,j) = & diff_cnt* & csu_dyur(jrow)*(t(i,k,j+1,n,taum1) - t(i,k,j,n,taum1)) enddo enddo enddo !----------------------------------------------------------------------- ! calculate diffusive flux across bottom face of "T" cells !----------------------------------------------------------------------- do j=js,je do k=1,km-1 do i=istrt,iend diff_fb(i,k,j) = diff_cbt(i,k,j)*dzwr(k)* & (t(i,k,j,n,taum1) - t(i,k+1,j,n,taum1)) enddo enddo enddo !----------------------------------------------------------------------- ! compute isopycnal diffusive flux through east, north, ! and bottom faces of T cells. !----------------------------------------------------------------------- call isoflux (joff, js, je, is, ie, n) !----------------------------------------------------------------------- ! set surface and bottom vert b.c. on "T" cells for diffusion ! and advection. for isopycnal diffusion, set adiabatic boundary ! conditions. ! note: the b.c. at adv_fb(i,k=bottom,j) is set by the above code. ! However, it is not set when k=km so it is set below. ! adv_fb(i,km,j) is always zero (to within roundoff). !----------------------------------------------------------------------- do j=js,je jrow = j + joff do i=istrt,iend kb = kmt(i,jrow) diff_fb(i,0,j) = stf(i,j,n) diff_fb(i,kb,j) = btf(i,j,n) adv_fb(i,0,j) = adv_vbt(i,0,j)*(t(i,1,j,n,tau) + & t(i,1,j,n,tau)) adv_fb(i,km,j) = adv_vbt(i,km,j)*t(i,km,j,n,tau) enddo enddo !----------------------------------------------------------------------- ! set source term for "T" cells !----------------------------------------------------------------------- source(:,:,:) = c0 if (itrc(n) .ne. 0) then do j=js,je do k=1,km do i=istrt,iend source(i,k,j) = src(i,k,j,itrc(n)) enddo enddo enddo endif !----------------------------------------------------------------------- ! solve for "tau+1" tracer using statement functions to represent ! each component of the calculation !----------------------------------------------------------------------- ! 1st: solve using all components which are treated explicitly do j=js,je jrow = j + joff do k=1,km twodt(k) = c2dtts*dtxcel(k) do i=istrt,iend t(i,k,j,n,taup1) = t(i,k,j,n,taum1) + twodt(k)*( & DIFF_Tx(i,k,j) + DIFF_Ty(i,k,j,jrow,n) + DIFF_Tz(i,k,j) & - ADV_Tx(i,k,j) - ADV_Ty(i,k,j,jrow,n) - ADV_Tz(i,k,j) & + source(i,k,j) & )*tmask(i,k,j) enddo enddo enddo ! 2nd: add in portion of vertical diffusion handled implicitly call ivdift (joff, js, je, istrt, iend, n, twodt) do j=js,je call setbcx (t(1,1,j,n,taup1), imt, km) enddo !----------------------------------------------------------------------- ! construct diagnostics associated with tracer "n" !----------------------------------------------------------------------- call diagt1 (joff, js, je, istrt, iend, n, twodt) !----------------------------------------------------------------------- ! end of tracer component "n" loop !----------------------------------------------------------------------- enddo !----------------------------------------------------------------------- ! explicit convection: adjust column if gravitationally unstable !----------------------------------------------------------------------- call convct2 (t(1,1,1,1,taup1), joff, js, je, is, ie, kmt) do j=js,je do n=1,nt call setbcx (t(1,1,j,n,taup1), imt, km) enddo enddo if (timavgperts .and. eots) then if (joff .eq. 0) nta_conv = nta_conv + 1 do j=js,je jrow = j + joff do i=istrt,iend ta_totalk(i,jrow) = ta_totalk(i,jrow) + totalk(i,j) ta_vdepth(i,jrow) = ta_vdepth(i,jrow) + vdepth(i,j) ta_pe(i,jrow) = ta_pe(i,jrow) + pe(i,j) enddo enddo endif !----------------------------------------------------------------------- ! construct diagnostics after convection !----------------------------------------------------------------------- idiag = 10 call diagt2 (joff, js, je, istrt, iend, idiag) !----------------------------------------------------------------------- ! filter tracers at high latitudes !----------------------------------------------------------------------- if (istrt .eq. 2 .and. iend .eq. imt-1) then call filt (joff, js, je) else write (stdout,'(a)') & 'Error: filtering requires is=2 and ie=imt-1 in tracer' stop '=>tracer' endif do n=1,nt do j=js,je call setbcx (t(1,1,j,n,taup1), imt, km) enddo enddo !----------------------------------------------------------------------- ! construct diagnostics after filtering (for total dT/dt) !----------------------------------------------------------------------- idiag = 1 call diagt2 (joff, js, je, istrt, iend, idiag) !----------------------------------------------------------------------- ! if needed, construct the Atmos S.B.C.(surface boundary conditions) ! averaged over this segment ! eg: SST and possibly SSS !----------------------------------------------------------------------- call asbct (joff, js, je, istrt, iend, isst, itemp) call asbct (joff, js, je, istrt, iend, isss, isalt) call asbct (joff, js, je, istrt, iend, issdic, idic) call asbct (joff, js, je, istrt, iend, issdic13, idic13) call asbct (joff, js, je, istrt, iend, issc14, ic14) call asbct (joff, js, je, istrt, iend, issalk, ialk) call asbct (joff, js, je, istrt, iend, isso2, io2) call asbct (joff, js, je, istrt, iend, isspo4, ipo4) call asbct (joff, js, je, istrt, iend, issdop, idop) call asbct (joff, js, je, istrt, iend, issno3, ino3) call asbct (joff, js, je, istrt, iend, issdon, idon) call asbct (joff, js, je, istrt, iend, issdin15, idin15) call asbct (joff, js, je, istrt, iend, issdon15, idon15) call asbct (joff, js, je, istrt, iend, issdoc13, idoc13) !----------------------------------------------------------------------- ! calculate diagnostic delta carbon 14 !----------------------------------------------------------------------- if (tsiperts .or. timavgperts) then rrc14std = 1000./rc14std do j=js,je jrow = j + joff do k=1,km do i=istrt,iend dc14(i,k,j) = (rrc14std*t(i,k,j,ic14,taup1) & /(t(i,k,j,idic,taup1) + epsln) - 1000.) & *tmask(i,k,j) enddo enddo enddo endif if (tsiperts .and. eots) then if (js+joff .eq. 2) dc14bar = 0. do j=js,je jrow = j + joff fy = cst(jrow)*dyt(jrow) do k=1,km fyz = fy*dzt(k) do i=istrt,iend dc14bar = dc14bar + dc14(i,k,j)*dxt(i)*fyz*tmask(i,k,j) enddo enddo enddo endif if (timavgperts .and. .not. euler2) then do j=js,je jrow = j + joff do k=1,km do i=istrt,iend ta_dc14(i,k,jrow) = ta_dc14(i,k,jrow) + dc14(i,k,j) enddo enddo enddo endif return end subroutine diagt1 (joff, js, je, is, ie, n, twodt) !----------------------------------------------------------------------- ! construct diagnostics associated with tracer component "n" ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! n = (1,2) = (u,v) velocity component ! twodt = (2*dtts,dtts) on (leapfrog,mixing) time steps !----------------------------------------------------------------------- implicit none integer i, k, j, ip, kr, jq, n, jp, jrow, js, je, joff, is, ie integer mask, m real t_i, t_j, dz_t2r, dz_tr, dz_wtr, dx_t2r, dx_tr, dy_t2r real dy_tr, adv_tx, adv_ty, adv_tz, adv_txiso, adv_tyiso real adv_tziso, diff_tx, diff_ty, diff_tz, dtdx, dtdy, dtdz real r2dt, cosdyt, fx, darea, boxar, rtwodt, sumdx, delx real sumdxr, dxdy, dxdydz include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "accel.h" include "coord.h" include "cregin.h" include "csbc.h" include "ctavg.h" include "diag.h" include "diaga.h" include "emode.h" include "grdvar.h" include "hmixc.h" include "levind.h" include "mw.h" include "scalar.h" include "switch.h" include "vmixc.h" real temp1(imt,km), temp2(imt,km), temp3(imt,km) real twodt(km) include "isopyc.h" include "fdift.h" !----------------------------------------------------------------------- ! diagnostic: integrate |d(tracer)/dt| and tracer variance on "tau" ! globally !----------------------------------------------------------------------- if (tsiperts .and. eots) then do j=js,je jrow = j + joff r2dt = c1/c2dtts cosdyt = cst(jrow)*dyt(jrow) do k=1,km fx = r2dt/dtxcel(k) do i=is,ie darea = dzt(k)*dxt(i)*cosdyt*tmask(i,k,j) temp3(i,k) = t(i,k,j,n,tau)*darea temp1(i,k) = t(i,k,j,n,tau)**2*darea temp2(i,k) = abs(t(i,k,j,n,taup1)-t(i,k,j,n,taum1))* & darea*fx enddo do i=is,ie tbar(k,n,jrow) = tbar(k,n,jrow) + temp3(i,k) travar(k,n,jrow) = travar(k,n,jrow) + temp1(i,k) dtabs(k,n,jrow) = dtabs(k,n,jrow) + temp2(i,k) enddo enddo enddo endif !----------------------------------------------------------------------- ! diagnostic: accumulate tracers for averages under horizontal ! regions (use units of meters, rather than cm) !----------------------------------------------------------------------- if (tavgts .and. eots) then do j=js,je jrow = j + joff do i=is,ie mask = mskhr(i,jrow) if (mask .ne. 0) then boxar = cst(jrow)*dxt(i)*dyt(jrow)*tmask(i,1,j)*0.0001 sumbf(mask,n) = sumbf(mask,n) + stf(i,j,n)*boxar do k=1,km sumbk(mask,k,n) = sumbk(mask,k,n) + t(i,k,j,n,tau) & *boxar*dzt(k)*tmask(i,k,j)*0.01 enddo endif enddo enddo endif !----------------------------------------------------------------------- ! diagnostic: compute the northward transport components of ! each tracer !----------------------------------------------------------------------- if (gyrets .and. eots) call gyre (joff, js, je, is, ie, n) !----------------------------------------------------------------------- ! diagnostic: integrate r.h.s. terms in the tracer equations ! over specified regional volumes. !----------------------------------------------------------------------- if (trmbts .and. eots) call ttb1 (joff, js, je, is, ie, n) return end subroutine diagt2 (joff, js, je, is, ie, idiag) !----------------------------------------------------------------------- ! construct d(tracer)/dt diagnostics ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! idiag = 1 => total tracer change ! idiag = 10 => change of tracer due to filtering(also convection) !----------------------------------------------------------------------- implicit none integer idiag, j, js, je, k, i, joff, iocv, jrow, is, ie real rdt, reltim, period include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "coord.h" include "diaga.h" include "iounit.h" include "mw.h" include "scalar.h" include "switch.h" include "tmngr.h" include "timeavgs.h" !----------------------------------------------------------------------- ! diagnostic: integrate d/dt(tracer) over specified regional volumes ! after convection and filtering !----------------------------------------------------------------------- if (trmbts .and. eots) call ttb2 (joff, js, je, is, ie, idiag) return end subroutine asbct (joff, js, je, is, ie, isbc, itr) !----------------------------------------------------------------------- ! construct the Atmos S.B.C. (surface boundary conditions) ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! isbc = index for sbc ! itr = index for tracer !----------------------------------------------------------------------- implicit none integer isbc, itr, j, js, je, jrow, joff, i, is, ie real rts include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "csbc.h" include "levind.h" include "mw.h" include "scalar.h" include "switch.h" ! initialize the Atmos S.B.C. at the start of each ocean segment ! (do not alter values in land) if (isbc .le. 0 .or. itr .le. 0) return if (eots .and. osegs) then do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .ne. 0) sbc(i,jrow,isbc) = c0 enddo enddo endif ! accumulate surface tracers for the Atmos S.B.C. every time step if (eots) then do j=js,je jrow = j + joff do i=is,ie sbc(i,jrow,isbc) = sbc(i,jrow,isbc)+t(i,1,j,itr,taup1) enddo enddo endif ! average the surface tracers for the Atmos S.B.C. at the end of ! each ocean segment. (do not alter values in land) if (eots .and. osege) then rts = c1/ntspos do j=js,je jrow = j + joff do i=is,ie if (kmt(i,jrow) .ne. 0) & sbc(i,jrow,isbc) = rts*sbc(i,jrow,isbc) enddo enddo endif return end subroutine ivdift (joff, js, je, is, ie, n, twodt) !----------------------------------------------------------------------- ! solve vertical diffusion of tracers implicitly ! input: ! joff = offset relating "j" in the MW to latitude "jrow" ! js = starting row in the MW ! je = ending row in the MW ! is = starting longitude index in the MW ! ie = ending longitude index in the MW ! n = tracer component ! twodt = (2*dtts, dtts) on (leapfrog, mixing) time steps !----------------------------------------------------------------------- implicit none integer j, js, je, k, i, is, ie, n, joff real rc2dt include "size.h" include "param.h" include "pconst.h" include "stdunits.h" include "levind.h" include "mw.h" include "switch.h" include "vmixc.h" real twodt(km) ! store terms to compute implicit vertical mixing on ! diagnostic time steps if (trmbts .and. eots) then do j=js,je do k=1,km do i=is,ie zzi(i,k,j) = t(i,k,j,n,taup1) enddo enddo enddo endif call invtri (t(1,1,1,n,taup1), stf(1,1,n), btf(1,1,n) &, diff_cbt(1,1,jsmw), twodt, kmt, tmask(1,1,1), is, ie &, joff, js, je) ! compute residual implicit vertical mixing if (trmbts .and. eots) then do j=js,je do k=1,km rc2dt = c1/twodt(k) do i=is,ie zzi(i,k,j) = rc2dt*(t(i,k,j,n,taup1) - zzi(i,k,j)) enddo enddo enddo endif return end subroutine swflux0 (joff, js, je, is, ie, source) return end !